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We propose a class of Markovian agent based models for the time evolution of a share

price in an interactive market. The models rely on a microscopic description of a market

of buyers and sellers who change their opinion about the stock value in a stochastic way.
The actual price is determined in realistic way by matching (clearing) offers until no

further transactions can be performed. Some analytic results for simple special cases are

presented. We also propose basic interaction mechanisms and show in simulations that
these already reproduce certain particular features of prices in real stock markets.
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1. Introduction

The financial markets constitute an intriguing and complex system that has not
failed to attract mathematicians and scientists from other fields for a long time.
Only rather recently, however, has mathematical finance, and more specifically the
theory of derivatives on the stock markets become a major field of mathematics
and one of the major sources of inspiration for probability theory in general and
stochastic analysis in particular.

One of the crucial issues in the financial mathematics is the modelling of prices of
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commodities (stocks, currencies etc.) with help of stochastic processes. This theory
originated with the thesis of Bachelier [1], who argued that the price process was
a result of many small random actions of market participants and that this should
lead to the price performing, effectively, a (geometric) Brownian motion. This basic
model was the original basis of the tremendously successful theory of Black, Scholes
[4], and Mertens [22] for the pricing of options. Extensions of this theory still make
up the main stream of modern financial mathematics (for good textbook exposition
see, e.g., [18,15]).

On the other hand, it has become evident from financial data, that real life price
processes have statistical features that are incompatible with geometric Brownian
motion. This has led to a wealth of work attempting to improve Bachelier’s mod-
elling ansatz and to derive more realistic models that should reflect the observed
“stylised facts” of real price processes. The basic premise of most models is, in the
words of H. Föllmer [14], that “As prices are generated by the demand of agents
who are active on the financial market for the given asset, a [. . . ] model [. . . ] should
be explained in terms of the interaction of these agents.”

We want to distinguish two strategies that are followed today in agent based
modelling of financial markets. One consists of introducing a behavioural model of
a market consisting of a certain number of agents that typically are given a rather
small possible states respective to the market, typically of the type “buy”, “sell”, or
“hold”. Agents at each time step may change their state according to deterministic
or stochastic rules that are supposed to reflect more or less rational behaviours of
real world traders. Popular examples of such models are the “minority game” (MG)
and its more or less sophisticated versions; for reviews, see Jeffries and Johnson
[17], Bouchaud and Giardina [16], and references therein. In such models the price
of the traded commodity is usually obtained through an empirical rule that links
the market imbalance at a given time to the increment of the price.

Another approach to agent based modelling is concentrated more on the actual
price formation process and replaces the empirical mechanism alluded to above by
the actual mechanism of double auctioning that takes place at a stock exchange.
This requires to model the behaviour of agents in more detail. An agent does not
just want to buy, sell, or hold, but actually must place an order to buy or sell
a certain number of units of a given stock at a set price (limit order) or at any
price (market order). The set of all these orders placed at a stock exchange is
called the “order book”. The price of the commodity traded is then obtained by
matching executable orders (following some set rules that may depend on the type
of exchange), until the lowest price of sell orders is higher than the highest price
of buy orders, fixing the “ask” and the “bid” price of the stock. A natural way of
modelling the price process is thus to model the time evolution of this order book,
which then in principle yields the price process as a derived quantity. This seems
even more appealing since actual order book data are available and can be (and
have been [26,6]) statistically analysed.
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There are several ways of modelling the order book dynamics that have been
proposed in the literature. They roughly fall into two classes: One possibility is
to consider orders arriving with a given statistics at certain prices, staying there
a certain amount of time, before disappearing, or being executed. The advantage
of such models is that it is possible to obtain statistics of these phenomena from
real data on stock exchanges. Thus the models can reflect the actual dynamics of a
market. The disadvantage, from our point of view, is that the modelling level here
is rather remote from the level of the decision making process that is entered on a
purely statistical basis. This type of models seems to go back to Mendelson [21] and
was further developed by Cohen et al [10], Domowitz and Wang [12], and Bollerslev
et al [5]. More recently, Farmer et al [11,23] have studied variants of such models
using dimensional analysis and have obtained a number of interesting analytical
results.

Another type of model has been proposed by Bak et al [2] and further inves-
tigated by by Eliezer et al [13,9], and Tang and Tian [25]. Here the price range is
fixed, and orders arrive only at the upper or lower end of the range. Once an order
is placed, it performs a random walk on the price range, until it leaves the range or
encounters a matching order of opposite type, whereupon both orders disappear.
The purpose of this model is to provide a microscopic model for the dynamics of
the price front in terms of a simple but realistic stochastic model. The authors
provide a wide range of numerical and (heuristic) analytical results. The model is
not intended as a model for the global market or for long time scales. It is also not
meant to model the whole market, but only the fraction of highly active professional
traders. We will see that in the context of the models we propose, the model of Bak
et al emerges in a natural way.

A general feature of all order book dynamics models seems to be that they
attempt to model the actual order book, rather then the behaviour of all market
participants. In this respect they differ from the other class of agent based models
discussed above, there at each time the state of each agent it known. In order book
models, one typically sees only the orders placed by agents, while we know nothing
about them when they have no order placed. But the total volume of orders placed
at any given time represents only a small fraction (< 1%) of the total amount
of existing stock (resp. demand). On the other hand, agents that have not placed
orders will still have some opinion on the value of the stock, i.e., may be willing
to buy or sell at some price, which may happen to be so far from the current price
that they do not bother to place an order. However, their opinion will be relevant:
as the price changes, they will be prompted to place orders. (Zovko and Farmer [26]
and Bouchaud [6] have studied the shape of the order books at the London resp.
Paris stock markets far away from the current price and found interesting power
low behaviour. In all cases the number of orders placed decreases rapidly (although
not as rapidly as one might think) away from the current price, which naturally
explains the (reasonable) reluctance of people to place orders that are unlikely to
have a chance of being ever executed).
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In this paper we will formulate a class of models that combines the agent based
approach with the order book dynamics. From the agent based point of view, we
extend the state space of each agent to be the set of all possible opinions on the
(logarithm of) value of the stock (i.e., R, resp. Z), and we replace the empirical
derivation of the price by a rigorous double auction mechanism of the order book
models. From the order book point of view, we extend the real order book to a
“virtual order book” that keeps track of the evolution the opinions on the value of
all agents, whether they have placed an order or not. In principle, this should be
a fully realistic description of the market, provided we could model the dynamics
of the opinion changes correctly. On the modelling side, the main challenge is to
find a reasonable model for this dynamics that is simple enough to be handled, and
realistic enough to allow to recover key features of price processes. Mathematically,
the main challenge is, as we will see, the derivation of properties of the price process
as a derived quantity within the model.

The remainder of this article is organised as follows. In Section 2 we explain the
basic principles of our modelling approach and illustrate them in some special cases.
Further, we introduce a number of additional features that should be implemented
to obtain more realistic models, and discuss some of the additional effects they
produce. In Section 3 we study our model in two very simple cases. We analyse
some of the phenomena that can already be observed in this simplest setup and
relate them to certain features of real world data. In Section 4 we present our
conclusions.

2. The model.

We want to consider the time evolution of a virtual order book or a “trading state”
containing the opinions of each participating agent about the “value”a of the stock.
The evolution is driven by the change in opinion of the agents and the action of the
market maker.

A minimal model in which this idea can be implemented can be described as
follows. We consider trading in one particular stock, and we assume that there are
N “traders” and M < N shares of the stock. We make the simplifying assumption
that each trader can own at most one share. The state of each trader i is given
by its opinion, pi ∈ R, resp. εZ (the latter is the case we will mostly consider,
ε corresponding to the tick-size), on the logarithm of the value of the stock, and by
the number of shares, ni ∈ {0, 1}, he owns (i.e., whether this is a buying or selling
opinion). This is to say, the trader i would be willing to sell his share at the price
epi , if he owns one (ni = 1), respectively to buy a share at this price, if he does not

aWe will distinguish the notion of the value from that of the price. The value is what agents
have an opinion about, while the price is determined by the market. The opinion on the value

can be driven by fundamental considerations (e.g., earning or dividend expectations, typically
coming from outside information), or speculative considerations (e.g., predictions based on partial
knowledge on the current state of the opinions of other traders), or both.
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own one (ni = 0). We say that a trading state is stable, if the M traders having the
M highest opinions pi all own a shareb. This means, in particular, that, in a stable
state, one can infer the set of owners of shares from the knowledge of the state of
opinions, p = (p1, . . . , pN ). Thus, a stable trading state is completely determined
by the set of N values, pi, and we will in the sequel identify stable trading states
with the vector p. As we will normally only work with stable trading states, we
suppress the qualifier stable when no confusion can arise.

Given a stable trading state p we denote by p̂ = (p̂1, . . . , p̂N ) its order
statistics, that is, p̂i = pπi

, for a permutation, π ≡ π(p), of the set of N ele-
ments, such that p̂1 ≤ · · · ≤ p̂N . Then, the number of shares owned by traders,
n(p) =

(
n1(p), . . . , nN (p)

)
, satisfies

ni(p) =
{

0, if πi(p) ≤ N −M ,
1, if πi(p) ≥ N −M + 1.

(2.1)

With a trading state, p, we associate the ask price

pa ≡ pa(p) = p̂N−M+1 , (2.2)

and the bid price

pb ≡ pb(p) = p̂N−M . (2.3)

For convenience we will refer to the mid-price, 1
2 (pa + pb), as the current price.

Any dynamics p(t), defined on the trading state, induces a dynamics of p̂(t),
and in particular of the pair

(
pa(t), pb

(
t)).

Our basic assumption is that the trading state, p, evolves in time as a (usually
time-inhomogeneous) Markov chainc p(t) with state space (εZ)N . We will further
assume that time is discrete (this is inessential but more convenient for computer
simulations) and that the updating proceeds asynchronously, i.e., typically at a
given instant only a single opinion changes. In fact, in general the dynamics can be
described as follows:

• at time t + 1, a trader i ∈ {1, . . . , N} is selected according to a probability
distribution g( · ;p(t), t), depending in principle on p(t) and t;

• trader i decides to change its opinion to pi(t)+d, according to a probability
distribution f( · ;p(t), i, t) on εZ;

• if the trading state p′(t) ≡
(
p1(t), . . . , pi(t) + d, . . . , pN (t)

)
, is stable, then

p(t + 1) = p′(t);
• otherwise, a transaction move takes place, in which the trader i exchanges

its ownership state ni(t) with the highest bidder, resp. lowest asker j. More-
over, the opinions of both i and j are updated according to some probability

bOne may prefer not to think of our “traders” as real traders, but just consider the numbers pi

abstractly as opinions attached to single shares, or demands of single shares. This is not unrealistic,

as a “real” trader may at a given moment of time have a strategy to sell and buy various amounts
of shares at different prices.
cWe will discuss the Markovian assumption later.
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law away from the bid, resp. ask price in such a way that a new stable mar-
ket state, p(t + 1), is achieved.

This dynamics can be considered as an interacting particle system with the
transaction mechanism, which in the context of particle systems resembles to some
extent an interactive phase boundary.

To implement this general scheme one must make reasonable choices for the
different probability distributions mentioned above, as these should mimic the be-
haviour of real agents. Our hope is that already reasonably simple choices, based
on elementary principles, allow to recover some of the particularities of real price
processes.

Before we discuss specific implementations of this general setup, a few remarks
concerning some features that may appear offending are in place.

The first is doubtlessly the assumption that the process is Markovian. This ap-
pears unnatural because the most commonly available information on a stock is the
history of its price, the “chart”, and most serious traders will take this information
at least partly into account when evaluating a stock, with some making it the main
basis for any decision. Certainly one could retain such information and formulate
a non-Markovian model. However, if one starts to think about this, one soon finds
that it is very difficult to formulate reasonable transition rules on the basis of the
price history. On a more fundamental level, one will also come to the conclusion
that the analysis of the history of the share price is in fact performed in order to
obtain information of the current opinion of the traders concerning the value of
the stock with the hope of inferring information on the future development of the
price. For instance, if one knew that there are many people willing to sell shares at
a price not much higher than pa, one knows that it will be difficult for the price
to break through this level (this is known as a “resistance” by chart-analysts and
usually inferred from past failures to break through such a level). Therefore, instead
of devising rules based on past price history, we may simply assume that the market
participants have some access to the prevailing current opinions, obtained through
various sources (chart analysis, rumours, newspaper articles, etc.) and take them
into account when changing their own estimates.

The second irritating point is that money does not appear in our model except
in the form of opinions about values. In particular, we do not keep track of the
cash-flow of a given investor (that is to say we do not care whether a given investor
wins or looses money). There are various reasons to justify this. First, we consider
that the market participants do not invest a substantial fraction of their assets in
this one stock, so that shortage of cash will not prevent anyone to buy, if she deems
opportune to do so (in the worst case money can be obtained through credits).
Then, money is not conserved, but the total value of the stock can inflate as long
as there is enough confidence. Also, we do not keep track of the objective success of
a trader, because we do not know how this will eventually influence her decisions.
While a given trader may follow her personal strategy with the hope of making
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profits, we cannot be sure that these strategies will succeed. What is important
and what is built into our model, however, is the fact that any traderd will have
the subjective impression to make a profit at any transaction.e Thus we feel that
opinions about values are the correct variables to describe such a market rather
than the actual flow of capital, at least at the level of a simple model.

The above setting suggests a rather general and flexible class of models of a
stock market. Its main feature is that it describes the time evolution of a share
price as the result of an interacting random process that reflects the change of the
opinions of individual traders concerning the value of the stock. Even when this last
process is modelled as a Markov process, the resulting price process

(
pa(t), pb(t)

)
will in general not be a Markov process.

2.1. Implementation of the model

We will now discuss an implementation of the model introduced above that is rather
simple but contains already enough elements to make its behaviour reasonably
complex and its mathematical analysis rather hard.

Basically, one expects that the behaviour of a trader is influenced by the informa-
tion received from the market as well as external influences. Moreover, the opinion
held by a trader with respect to the current price should somehow reflect some his
intrinsic psychological characteristics. Moreover, when a transaction is performed,
both traders should probably feel that they have made a good deal; in other words,
the same person at the same time would buy only at a lower price than she would
sell, and vice versa.

This leads to the following set up:

• The derived process of the price (ask and bid) is the most easily accessible
piece of information about the trading state of the market for any trader.
It is natural that the updating rules should take the current value of this
process into account. The simplest and natural modification is to introduce
a bias towards the actual price p(t) =

(
pa(t)+pb(t)

)
/2 into the distribution

of opinion change.
• Traders whose opinion is far from the current price are likely not to pay

much attention to what is happening on the market. It is reasonable to
assume that they update their opinion less frequently. This feature can be
included by reducing the overall transition rates as a function of pi(t)−p(t).

• Finally, it is natural to assume that the traders performing a transaction,
that is exchange of a share, will update their opinions according to some

dWe could enlarge the model to incorporate a small fraction of traders which do not act according
to common sense, or against their own convictions (e.g., traders that have bought their stock on
credit and the latter are executed by their creditors on falling prices. It may be interesting to

consider the effect of that in the context of market crashes).
eWhich also implies that this subjective opinion must be wrong at least for one of the traders

involved, but this seems to reflect reality.
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special rules reflecting the fact that someone buying or selling a share at a
given price believes that she has struck a favourable deal, i.e., they attribute
a higher value to the share then what they paid, respectively a lower one
then what they got.

In the following we suggest some concrete framework in which these features are
implemented. We describe the construction of the process algorithmically.

Change of opinion: At any time step we first select a trader at random. We will
allow this probability to depend on pi, and we choose trader i with a probability
proportional to h(pi(t)−p(t)), with some function h(x) ≥ 0. We recall that we have
defined the “current price” via p(t) =

(
pa(t)+pb(t)

)
/2 . That means that we choose

the trader i with probability

g(i;p(t), t) = h(pi(t)− p(t))
/
Zg(p(t)), (2.4)

where the normalisation Zg(p(t)) is defined by
∑N

i=1 g(i;p(t), t) = 1. To reflect the
slower updating of opinions of traders not in the vicinity of the price, the function
h(x) must decrease with |x|. A possible choice for this functions is

h(x) = 1/(1 + |x|)α, α > 0. (2.5)

We have found in simulations that α ∼ 1.5 seems to be reasonable, however we do
not have any particular reason why this value should be preferred.

Once a trader has been selected, she changes her opinion from pi to p′i = pi + d

with probability equal to f(d;p(t), i, t). In typical cases, f depends on p(t) through
pa(t) and pb(t) only. In simulations we used

f(d;p(t), i, t) =
1

2l + 1
[
(δpi,p(t))deV (pi)−V (pi+d)∧1

]
for d ∈ ([−εl, εl] ∩ εZ) \ {0},

(2.6)
and f(0;p(t), i, t) = 1−

∑
0<|k|≤l f(εk;p(t), i, t). That means that d is first picked

uniformly in the set [−εl, εl]∩εZ, and then accepted (resp. refused) as a new opinion
according to a bias δpi,p(t) and some external potential V . As we want that opinion
changes are biased towards the price, we typically set δpi,p(t) = δs < 1 for sellers
(i.e., pi > p(t)), and δpi,p(t) = δb > 1 for buyers (pi < p(t)). The role of the external
potential V will be discussed later, typically we use V ≡ 0.

Once p′i is chosen, we check whether p′i < pa, if ni = 0, resp. whether p′i > pb, if
ni = 1. If this is the case, we set pi(t + 1) = p′i, and pj(t + 1) = pj(t) for all j 6= i,
and continue to the next time step. Otherwise, we perform

Transaction: Assume first that ni(t) = 0 and p′i ≥ pa(t). This means that the
buyer i has decided to buy at the current asked price. Since by definition there is at
least one seller who asks only the price pa(t), we select from all these one at random
with equal probabilities. Call this trader j. Then we set

pi(t + 1) = pa(t) + g, pj(t + 1) = pa(t)− g, (2.7)

where g ∈ εZ is a fixed or possibly random positive number. Similarly, if ni(t) = 1
and p′i ≤ pb(t), the seller i sells to one of the buyers that offer the price pb(t), and
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we set

pi(t + 1) = pb(t)− g, pj(t + 1) = pb(t) + g. (2.8)

The final state in all cases represents a new stable trading state and the process
continues. Note that g should be at least as large as to cover the transaction cost.
In simulations we used g being uniformly distributed on the set {εr1, εr2} ∩ εZ for
some integers 0 ≤ r1 ≤ r2 < ∞.

All features introduced in the previous paragraphs make the mathematical anal-
ysis of the model much more difficult, but they introduce some interesting effects
that are somewhat similar to phenomena observed in real markets. Let us briefly
comment on these.

Without any drift (i.e., setting δpi,p(t) ≡ 1 in the above algorithm) and in the
absence of any confining potential all opinions would in the long run spread over all
real numbers and the individual opinions would get arbitrarily far from each other.
This is avoided by the mechanism of the attraction to the current price.

Slowing down the jump rate of the particles far away from the current price
naturally introduces long time memory effects that lead to special features in the
distribution of the price process. One of them is possible existence of resistances:
if there is a large population of traders in a vicinity of some price p far from (say
above) the current price p(t), then this population tends to persist for a long time,
unless the current price approaches this value. If that happens, e.g., due to the
presence of an upward drift, one observes a slow-down of the upward movement
of the price when it approaches this value. The market has a resistance against
increase of the price through this value, reflected in multiple returns to essentially
the same extremal values for a long period.

A further effect of the slowing down is the tendency of the creation of “bubbles”
in the presence of strong drifts. In this case one observes a fast motion of the price
accompanied by a depletion of the population below this price. Effectively, a few
(buying) traders move with the drift, while most are left behind. Such a situation
can lead to a crash, if at some moment the drift is removed (due to external effects).
Both effects of slowing down were played out in simulations shown in Figure 1. Note
that after the crash on the second figure there was a strong increase of volatility.

The effect of pushing the opinions from the current price after the transaction
depletes the vicinity of the price and therefore increases the volatility. This goes
in the opposite direction to the attraction towards the price and the interplay of
both effects can lead to a non-trivial quasi-equilibrium state; the resulting price
fluctuations will be studied in the forthcoming paper [8].

2.2. Coupling with external influence

Price processes obtained from models of the above type tend to show rather boring
long-time behaviour. The main reason for this is that the attraction towards the
price effectively produces a potential valley around the price and all traders prefer to
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Fig. 1. Trading in between resistances(left), a sequence of “bubbles”(right)

stay in this valley. The density of traders around the price becomes quite large and,
consequently, the price has huge difficulties to move considerably, also the volatility
stays constant in time. Without the presence of the drift towards the price, the
situation is less dramatic, however it was already observed that models of this type
manifest some features that are not observed in real markets. In particular, the
value of the Hurst exponent obtained (∼ 0.25) is too low compared to values found
in real data.

Since, in a usual situation, time-homogeneous Markov chains have a tendency to
converge to equilibrium, we believe that some inhomogeneity should be introduced
into the model to resolve this problem. In the real market such inhomogeneity is
present due to the arrival of the external information which makes the traders more
optimistic, or pessimistic about the value of the stock.

We propose the following simple model for the arrival of the external informa-
tion. Let η0 = 0, and let (ηi, i ∈ N) be a homogeneous Poisson point process on
N with intensity ω. Further let si be a sequence of i.i.d. random variables whose
common distribution is centred around 0. For time step t, ηi ≤ t < ηi+1 we define
the external drift by

δext(t) = exp(si). (2.9)

We then use δext to modify the constant values δb, δs of δp(i),p(t) (which were intro-
duced in the paragraph after (2.6)) and set

δp(i),p(t) =

{
δb · δext(t) for buyers,

δs · δext(t) for sellers.
(2.10)

The introduction of the external process brings some interesting features into
the behaviour of the model. As an illustration we decided to observe the volatility
clustering. We have run two simulations of the model, once with external influence
and once without it. All other parameters stay fixed.f On Figure 2 we show the

fN = 2000, M = 1000, ε = 1, h(x) = (1+ |x|)1.5, δb = 1/δs = exp(0.1), l = 4, and g being uniform
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graphs of the empirical volatility correlation function, 〈(σ2(t + τ) − σ2(t))2〉. The
volatility σ2(t) was computed as the mean of last 100 square returns r(t)2, . . . , r(t−
99)2, where the returns were computed as the change of the price in each 100
steps of the algorithm, r(t) = p(100t) − p(100(t − 1)). We have found that the
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Fig. 2. Volatility clustering in model with external influence. In the inset the same quantity for
the original model

correlation function for the process with the external influence increases like the
power, τν , with ν ∼ 0.15. Remark that the same function computed from the real
data ([7], Section 7.2.2) shows the power-law scaling with ν ∼ 0.22. Observe also
that the power law behaviour remains valid up to τ ∼ 104 which corresponds to
106 time steps of the algorithm. This time is much longer than the mean number of
steps between ηi, ηi+1, which was 2000. For the comparison, the graph of the same
function for the model without the external influence is presented in the inset. In
this case only a very slow increase is observed that is in the range of measurement
error.

3. Examples

To get any rigorous result for the complete model presented in the previous section
is out of reach at this stage. However, there are simple special cases that allow
mathematical analysis. In this section we present two of them together with some
rigorous results.

3.1. Ideal gas approximation

Obviously the simplest model for the dynamics of the trading state p(t) is to choose
it as a collection of independent identically distributed one-dimensional Markov

in [5, 20]. Parameters of external process: ω = 1/2000, and si = εis
′
i, where εi are Bernoulli with

P[εi = ±1] = .5 and s′
i are Exponential with mean 0.12.
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processes (“random walks”) pi(t). This corresponds to the ideal gas approximation
in statistical mechanics. In this case, the price process is simply obtained from the
order statistics of independent processes and asymptotic results for M and/or N

large can be obtained rather easily (recall that M denotes the number of traded
shares and N the total number of traders). While this model is somewhat simplistic,
some rather interesting phenomena can already be modelled in this context, as we
will explain now.

We may be interested in a situation where a macro-economic model may predict
several stable (respectively metastable) values of the stock price, realised as the
minima of some utility functiong V . A trader knowing this will tend to adjust her
opinion towards one of the stable prices, her current state reflecting to what degree
he believes in one or the other scenario.

In such a situation it seems not unreasonable to model the process of a single
trader as a one-dimensional simple random walk in the price space εZ with drift
obtained from a potential function V . That means that in our algorithmic descrip-
tion we first choose uniformly a trader i, this trader then makes a step of size ε

right, resp. left with probabilities

f(±ε;p(t), i, t) =
1
2
(
exp{V (pi)− V (pi ± ε)} ∧ 1

)
, (3.1)

otherwise he does not move.
Let us consider the situation when there are two (meta)stable values of the price,

q1 and q2, q1 < q2, i.e., the situation where the potential V has two minima (wells)
at q1 and q2. If the potential is strong, resp. ε is small, an individual trader would
typically spent long periods of time near one of the favoured values q1 or q2.

Let w1 be the escape rate from the well q1 to the well q2 and let w2 be the
escape rate in the opposite direction. It is well known that these escape rates are
exponentially small, wi � exp

{
−2(V ∗ − Vqi

)/ε
}
, if ε is small. Here V ∗ denotes the

value of the maximum of V on the interval [q1, q2]. Denote by At the number of
traders in the right well q2 at time t ≥ 0. Suppose that A0 is much larger than
M implying that the actual price at the initial moment is situated near q2. We are
interested in describing the moment of the “crash”, i.e., when the price moves from
the right well q2 to the left well q1.

Then we can approximate the individual processes pi(t) by a two-state Markov
chains with state space {q1, q2} and transition rates w1 and w2. In this approxima-
tion we can compute the normalised expected number at ≡ EAt/N of traders in
state q2 at time t as the solution to the ordinary differential equation

d

dt
at = −w2at + w1(1− at) . (3.2)

gThis will occur naturally in non-linear models where the effect of the price of a stock on the

global economy is taken into account; e.g. high stock prices make sock owners feel wealthy and
more given to spending, which boosts the overall economy, of which the company and in turn its

stock price benefits, while a low stock price may trigger the opposite effect.
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We get

at =
w1

w2 + w1
+

(
a0 −

w1

w2 + w1

)
exp

{
−(w2 + w1)t

}
(3.3)

and the crash time Tc can be defined as t such that at = M/N ,

Tc =
1

w2 + w1
log

a0(w2 + w1)− w1

M
N (w2 + w1)− w1

(3.4)

If the energy barrier ∆V ≡ V ∗ − Vq2 is large enough, the time for each single
buyer to escape from the initial well is much larger than the relaxation time for the
system of At particles in the right well, and thus it is natural to expect that the
system will pass through the sequence of local equilibrium states corresponding to
At independent random walkers. Using this observation, the evolution of the price
can be described in terms of the Bt ≡ At − M ’s order statistic in a system of At

random variables whose distribution is approximately Gaussian with parameters q2

and
(
V ′′(q2)

)−1.
To do this, let F ( · ) denote the distribution function of an individual walker

conditioned to stay near q2 and define qB = q(Bt) as the solution to the equation

M

At
= 1− F (qB) ≈ 1− Φ

(
(qB − q2)

√
V ′′(q2)

)
, (3.5)

where Φ( · ) is the distribution function of the standard Gaussian variable. Using
the well-known asymptotics for the tail distribution of Φ( · ),

u

u2 + 1
e−u2/2

√
2π

≤ 1√
2π

∫ ∞

u

e−x2/2 dx ≡ 1− Φ(u) ≤ 1
u

e−u2/2

√
2π

, u →∞, (3.6)

we immediately get

qB ≈ q2 −
(2 log(At/Bt)

V ′′(q2)

)1/2

+
log(4π log(At/Bt))√
8V ′′(q2) log(At/Bt)

, Bt/M → 0 . (3.7)

Consequently, in the limit of large At, M such that ρ = 1−M/At is fixed we have

qB ≈ q2 −
(2 log(ρ−1)

V ′′(q2)

)1/2

. (3.8)

In this regime of “increasing ranks”, the fluctuations of the Bt’s order statistic
have Gaussian behaviour and their scaling can be derived from [20, Theorem 2.5.2].
To do this, consider a small enough y such that

At F (qB + y)
(
1− F (qB + y)

)
(3.9)

is large for large Bt and such that

M −At

(
1− F (qB + y)

)
(Bt M/At)1/2

→ τ (3.10)
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as At, M = (1− ρ)At, and Bt = ρAt are getting large. In view of the definition of
qB the left-hand side of the expression above equals√

Bt At

M

(F (qB + y)
F (qB)

− 1
)

, (3.11)

where the last ratio can be approximated by

q2 − qB

q2 − qB − y

exp
{
−(qB + y − q2)2V ′′(q2)/2

}
exp

{
−(qB − q2)2V ′′(q2)/2

} ≈ 1 + (q2 − qB)V ′′(q2) y , (3.12)

assuming that (q2 − qB)2V ′′(q2) is large enough. As a result, in the limit of large
M and Bt, we have

τ ≈
√

ρM(q2 − qB)V ′′(q2)
1− ρ

y ≈
√

2ρMV ′′(q2) log(ρ−1)
1− ρ

y . (3.13)

It remains to observe that Theorem 2.5.2 from [20] implies then that the ask price
pa(t) satisfies

Pr
(
pa(t) ≤ qB + y

)
→ Φ(τ) . (3.14)

In other words, the price corresponding to a system of At such traders has mean
qB , shifted away from the well q2 on a distance of order

{
log(ρ−1)/V ′′(q2)

}1/2 and
the variance of the price (i.e., the volatility) diverges as

{
MV ′′(q2)ρ log(ρ−1)

}−1 in
the limit of small ρ = Bt/(M + Bt).

Finally, recalling the hydrodynamic description of Bt and the definition of Tc,
we can also describe the time dependence of the mean Eρ,

Eρ = Eρt ≈
1− exp{−(w2 + w1)(Tc − t)}

1 + w1 exp{(w2 + w1)t}/
(
(w2 + w1)a0 − w1

) , t ≤ Tc. (3.15)

Figure 3(a) shows the simulated crash in double well potential in the ideal gas
approximation. To illustrate the influence of different features discussed in Section 2,
we present the typical pictures of a crash, if (b) attraction to the current price, and
(c) slowdown of traders far from price are introduced. In all simulations the same
potential function V having two local minima (one metastable and one stable)
was used. All simulations start with the same initial condition where all traders
are located near the metastable minimum. Notice the increased volatility in the
slowdown case. The volatility increase before the crash is particularly marked.

3.2. B + S → ∅ model

Another simple model that could be studied is so called B + S → ∅ model. This
model has been proposed as a model of the order book dynamics already in [2]. A lot
of interest in this model comes also from chemistry, where it is used to describe the
behaviour of the boundary between two diffusing, irreversibly reacting chemicals [3].
In this section we announce some rigorous results about this model. An interested
reader can find their proofs in the forthcoming paper [8].
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Fig. 3. Crash scenario

Let us first describe the model. The traders take opinions that belong to the set
ΛL = {−L,−L + 1, . . . , L}. The opinion of any trader perform a time-continuous
simple random walk (possibly with a drift) in this set. If the opinion leaves ΛL, then
it disappears from the game. On the other hand, the sellers and buyers are injected
at L, resp. −L with rates ρ+, and ρ−. If a buyer meets a seller they interchange the
stock and then both change their opinion in such a way that they leave ΛL and are
no longer considered.

Formally, we use η to denote a state of the model, η = {η(x)}x∈ΛL
∈ ZΛL . If

η(x) > 0, then η(x) sellers and no buyer have opinion x. Similarly, if η(x) < 0 then
|η(x)| buyers and no seller have opinion x. Since the opinions of all sellers must be
higher than the opinions of the buyers, all possible configurations η are contained
in a subset ΩL of ZΛL defined by

ΩL = {η ∈ ZΛL : η(x) < 0 < η(y) =⇒ x < y}. (3.16)

As we have already discussed it seems reasonable to introduce a drift toward the
price into the dynamics. To this end we choose a function δL(x, η) with values in
(0, 1); given the state η an trader with opinion x then increases (decreases) her
opinion with probability (1+δL(x, η))/2, resp. (1−δL(x, η))/2. In the simplest case
treated later δL(x, η) will be function only of sign(η(x)), i.e., the drift will be the
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same for all the buyers, resp. sellers. If δL(x, η) ≡ 0 then there is no drift. Given L,
ρ±, and δL, the B +S → ∅ dynamics is defined as a continuous-time Markov ηt(x)
chain on ΩL with generator

(LLf)(η) =
∑

x∈ΛL

|η(x)|
2

[(
1 + δL(x, η)

)
f(ηx,x+1) +

(
1− δL(x, η)

)
f(ηx,x−1)− 2f(η)

]
+ ρ+

(
f(ηL,+)− f(η)

)
+ ρ−

(
f(η−L,−)− f(η)

)
(3.17)

for any bounded continuous function f : ΩL → R. Here, the configurations ηx,x±1

and ηx,± are defined by

ηx,x±1(y) =


η(y) if y /∈ {x, x± 1},
η(x± 1) + sign(η(x)) if y = x± 1,

η(x)− sign(η(x)) if y = x,

(3.18)

and

ηx,±(y) =

{
η(y) if y 6= x,

η(x)± 1 if y = x.
(3.19)

Note that due to the suitable definition of ηx,x±1, the transaction is not represented
visibly in the generator.

The reader has surely remarked that this model does not have all features that we
have incorporated into our modelling framework. The two most offending differences
are: the presence of the boundary connected with the necessity of the injection of
the traders, and a very non-realistic definition of the behaviour of traders after the
transaction. Both of these differences are so significant that it is difficult to see what
is the relevance of the B +S → ∅ model to the complete framework. We argue that
the model can be regarded, to some extent, as an approximation of the dynamics in
a small (moving) window around the price in the complete model. The injection at
boundaries is then easy to explain as the arrival of traders from the outside of the
window into BL. Similarly, the disappearance of the traders after the transaction
can be related to the change of opinion after the transaction in the original model.
Indeed, as we have already argued, after the transaction the traders should take
opinion that is not in the closest vicinity of the price. If the size of the window L is
smaller than the typical distance between the price and the newly taken opinions
of the trading traders after a transaction, then both traders disappear from the
window. The quality of such approximation can be disputed and we do not want to
enter in such discussion. In any case, the B + S → ∅ is an interesting model and
we find that it deserves a rigorous study.

Let us first present our results for δ ≡ 0. In this case both buyers and sellers
perform independent simple random walks. This property allows us to construct a
coupling between two systems of non-interacting simple random walks. These two
systems are defined by their generators that are the same as LL with ρ+, resp.
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ρ− being set to zero. The existence of such coupling allows to prove the following
theorem.

Theorem 3.1. Assume that δL(x, η) ≡ 0.
(i) The Markov chain ηt has an unique invariant measure, µL

ρ+,ρ− , which satisfies

µL
ρ+,ρ−(η(x)) =

ρ+ + ρ−
L + 1

x + ρ+ − ρ−. (3.20)

(ii) There exists a measure, µρ, on ZZ such that for any bounded, continuous,
cylinder function f : ZZ → R

lim
L→∞

µL
Lρ,Lρ(f) = µρ(f). (3.21)

This theorem implies that, if ρ+ = ρ−, then the properties of the equilibrium
measure around the interface depend only on the slope of the mean profile ρ = ρ+/L.
It seems from simulations (see Figure 4) that in equilibrium, the fluctuation of the
interface between two types of the traders are Gaussian, however we were not able
to show it rigorously.
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Fig. 4. Histograms of mid-price in drift free B + S → ∅ model for different L with constant slope

ρ = 1/200, (•L = 62, ◦L = 200, � L = 620)

For financial application the study of the equilibrium properties of the dynamics
is only partially important. The market is constantly put out of the equilibrium by
various external impulses. There is therefore a need to study the out-of-equilibrium
dynamical properties of the model. It is possible to get description of such properties
using the formalism of hydrodynamic limit [24,19].

This formalism allows to treat also the model with drift. As an example we study
here the system with small but temporarily and spatially constant drift towards the
price, δL(x, η) = δ sign(η(x))/L.
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To present the result we need some definitions. For any ηL ∈ ΩL we define a
measure on [−1, 1]

πL(ηL)(dx) =
L∑

x=−L

ηL(x)
(2L + 1)2

δx/L(dx). (3.22)

For a sequence of (possibly random) measures πL on [−1, 1] we write πL → π, if for
every continuous function f : [−1, 1] → R, πL(f) → π(f) in probability. We use ηL

t

to denote the Markov chain with generator LL, and with initial configuration ηL.
The following theorem can be proved using large deviations methods for the

hydrodynamic limit of interacting particle systems.

Theorem 3.2. Assume that πL(ηL) → ρ0(x) dx for some continuous function ρ0 :
[−1, 1] → R. Define ρ± = 2Lc± with c± > 0, and set δL(x, η) = −δ sign(η(x))/2L.
Then for any finite time t

πL(ηL
L2t) → ρ(t, x)dx, (3.23)

where ρ(t, x) is the unique solution of the non-linear Cauchy problem

∂

∂t
ρ(t, x) =

∂2

∂x2
ρ(t, x) + δ sign(ρ(t, x))

∂

∂x
ρ(t, x) x ∈ (−1, 1), t > 0,

ρ(0, x) = ρ0(x) x ∈ [−1, 1],

ρ(t,−1) = −c− t ≥ 0, (3.24)

ρ(t,+1) = c+ t ≥ 0.

We use this theorem to stress how important is the presence of the drift towards
the price in the model. To simplify the reasoning we will consider only the equi-
librium profile as a function of c+, c−, and δ. The equilibrium profile is defined as
the unique solution of the system of equations (3.24) with the left hand side of the
first equation set to 0. Let x(δ) = x(c+, c−, δ) be the position of the unique zero
of such solution. It is not difficult to find that x(δ) satisfies x(δ) = δ−1 log(y(δ)),
where y(δ) is the larger root of the quadratic equation

c−y2 + eδ(c+ − c−)y − c+ = 0. (3.25)

Figure 5 shows the graph of x as function of δ and c+/c−. Remark that as δ in-
creases, the equilibrium position becomes more sensitive to the change of boundary
conditions.

4. Conclusions

We have presented a class of Markov models that allow a realistic description of
the price evolution of a commodity under trading. The model is formulated in the
language of interacting particle systems and describes the time evolution of a virtual
order-book, i.e., the collection of all opinions of all traders on the current value of
the traded commodity. The price process is inferred from this state according to
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Fig. 5. The position of the equilibrium price

rules analogous to those used in real markets. In the simplest case of independent
traders, explicit computations are possible, and we have analysed a crash scenario
in a bistable market in this context.

We discussed several basic mechanisms that we think should be taken into ac-
count when modelling financial markets. These include attraction to the current
price, slowdown of activity for the traders with opinions far away from the cur-
rent price, and repulsion from the price of traders having performed a transaction.
These effects lead to interesting properties of the price process which are analogous
to those observed in reality.

We hope to have motivated that the interacting particle systems have place in
modelling of financial and economic phenomena. For such modelling to be fruitful,
one has to consider interactions taking into account special features of these phe-
nomena and to ask questions that are natural in financial and economic context. In
particular, the analysis of the price process raises rather “non-traditional” but very
interesting problems regarding order statistics in the interacting particle model. As
we will discuss in the forthcoming article [8], these problems are closely related to
the study of interfaces and phase boundaries in particle systems.
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