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Abstract. We give a general proof of aging for trap models using the arcsine law
for stable subordinators. This proof is based on abstract conditions on the potential
theory of the underlying graph and on the randomness of the trapping landscape. We
apply this proof to aging for trap models on large two-dimensional tori and for trap
dynamics of the Random Energy Model on a broad range of time scales.

1. Introduction

We establish in this article a general mechanism explaining the phenomenon of aging
for some important dynamics in random media, i.e. the “trap models”. This general
scheme is based on the classical arcsine law for stable subordinators. The general context
is the following. Consider Y (i) a discrete-time Markov chain on a discrete space V with
transition kernel p(x, y). Assume that a function τ is given from the state space V to
(0,∞). τ will later be assumed to be random. It should be seen as a random landscape or
a random scenery. Consider then the following sampling process: every time the Markov
chain Y is at x ∈ V it collects an (independent) exponential random variable with mean
τx. More precisely let (ei : i ≥ 0) be an independent collection of i.i.d. exponential
mean-one random variables and define for any k ≥ 0

S(u) =

buc−1∑
i=0

eiτY (i). (1.1)

The question we address first is the following: what is the behaviour of the process S(u)
for large u’s, when the landscape τ is highly heterogeneous, typically (but not necessar-
ily) when the τx are i.i.d. and heavy tailed? We are not interested here in the case where
τ is random but reasonably tame, which is usually studied under the name of Random
Walk in Random Scenery (for recent important results see [AC06, GvdHK06, GKS06]
and references therein). We will, on the contrary, isolate general conditions bearing both
on the distribution of the random landscape τ and on the potential theory of the chain
Y which will ensure that the process S(u) can be approximated, in appropriate large
time scales, by a stable subordinator. This convergence result will enable us to give a
general mechanism explaining aging for the so-called Random Hopping Times dynamics
or trap models, i.e. for the continuous time Markov chain X(t) whose jump rates are
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given by:

wτ
xy = τ(x)−1p(x, y). (1.2)

Indeed X(t) is a time change of Y (k) and the time change is given by (the inverse of)
S(u), which we call here the clock process :

X(t) = Y (k) for all t ∈ [S(k), S(k + 1)). (1.3)

We will give a limit theorem stating that the clock process is close to a stable subor-
dinator. We will then use the classical arcsine law, which gives the probability that a
deterministic interval (a, b) does not intersect the range of a subordinator as a function
of the ratio a/b, in order to estimate the probability

R(tw, tw + t; τ ) := P[X(tw + t) = X(tw)|τ ] (1.4)

for large times tw and t in appropriate time scales. In particular, we will show that it is
asymptotically a function of the ratio of these times tw/t, which is what is usually called
aging for the chain X(t) in the statistical physics literature.

The class of examples we do have in mind is the simple case where Y is the standard
random walk on a (connected) graph G = (V , E), i.e. where the transition probability is
given by:

p(x, y) = 1/dx if x and y are neighbours on the graph, 〈x, y〉 ∈ E (1.5)

and dx is the degree of the vertex x. This class of examples comes under the name of
“trap models” in statistical mechanics of disordered media, and has been introduced by
J.P Bouchaud (see [Bou92]). We refer to our lecture notes [BČ06] for a complete survey
and a more extensive bibliography.

Let us summarise very briefly here the state of known results about aging for trap
models. The trap models have been already studied on Zd and on “mean-field” objects,
that is on large complete graphs. Aging was first proved for large complete graphs in
[Bou92, BD95]. This case was seen by Bouchaud as a good ansatz for the dynamics of the
simplest spin-glass, the Random Energy Model (REM). It corresponds to the simplest
case, where the Markov chain Y (i) is simply a sequence of i.i.d. random variables
uniformly distributed on a large finite set. Aging was then proved for the longest possible
time scales for the REM dynamics in [BBG03a, BBG03b], with a hard proof based on
renewal theory. It was also proved for the trap model on Z with a proof based on a
direct scaling limit argument in [FIN02] and [BČ05]. Finally, aging was proved for the
model on Zd, d ≥ 2, on the shortest possible time scale [BČM06, Čer03]. The proof
there is based on a difficult coarse-graining procedure.

The striking fact is that these aging results are identical for Zd, d ≥ 2 and the large
complete graph, or the REM. In other terms, the mean-field results are valid from infinite
dimension down to dimension 2.

The new approach we give here is based on what we have learnt from these examples
and has the following advantages

1. It shows very clearly how aging is based on the arcsine law, isolating the natural
interplay between the potential theory of the chain and the randomness of the landscape.
It also shows that even though Bouchaud’s ansatz (the model on the complete graph)
is not universal in finite dimensions, one of its features is, at least for d ≥ 2, i.e. the
nature of the clock process. The two-time function R being insensitive to anything but
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the range of the clock process, this is enough to imply aging, through the arcsine law,
as soon as the approximation by a stable subordinator is valid.

2. It allows us to give aging results in a broad range of time scales. For instance on
very long time scales in finite dimensions (d ≥ 2), or in short time scales for the REM.
We will see that there is a natural range of space scales (i.e. level sets of τ) and time
scales in which the scheme based on the arcsine law applies. We will also see that it
is possible in our scheme to have varying exponents in the arcsine law in varying time
scales for the same model (the REM for instance). Moreover this will show that the
aging phenomenon is a question about the transient part of relaxation to equilibrium
and not necessarily related to equilibrium questions. The most striking illustration being
the fact that we prove that aging can occur for the REM above the critical temperature
(where equilibrium questions are trivial).

3. It allows us to think of random landscapes which would not be i.i.d., and thus open
the possibility of studying aging of trap dynamics of more relevant spin glasses than the
REM. At least with a good dose of optimism, and naturally for time scales short enough
to not yet feel the model-specific equilibrium features.

Let us now be more specific, and describe precisely the questions we address here.
Even though everything we prove in this paper is valid in the general context described
above with no change at all, we will restrict the exposition to the case of trap models for
the sake of simplicity. We will nevertheless expand a bit the framework by considering a
sequence of graphs rather than one fixed graph (in order to accommodate also the large
complete graphs of Bouchaud’s ansatz or the hypercube in high dimensions needed for
the REM). Consider thus a sequence of connected graphs Gn = (Vn, En), n ∈ N, with the
vertex set Vn and the edge set En. Let (Yn(j) : j ≥ 0) be a discrete-time simple random
walk on Gn. For each vertex x ∈ Vn, let τx be a non-negative real number, which
we call the depth of the trap at x, and denote by τ n the collection of these depths,
τ n = {τx : x ∈ Vn}. We will assume that τ n is a sequence of “random environments”,
i.e. random variables with distribution µn on [0,∞)Vn . We suppose that µn are defined
on a common probability space, so that we can consider a.s. convergence. Note that we
do not assume a priori that the τx’s are i.i.d., even though in the classical examples the
τx’s are i.i.d. and heavy tailed [BČ06].

Given the environment τ n, we define the trap model as a continuous-time Markov
process Xn(·) with state space Vn whose transition rates are given by

wτ
xy =

{
(dxτx)

−1 if 〈x, y〉 ∈ En,

0 otherwise.
(1.6)

Here dx stands for the degree of x in the graph Gn. In words, Xn waits at x an expo-
nentially distributed time with mean τx and then it jumps to one of the neighbours of x
with the equal probability d−1

x . We write Px for the distribution of Xn conditioned on
Xn(0) = x. Usually, we will consider Xn to be started at some arbitrary fixed vertex
that does not depend on τ n. This vertex is denoted by 0, we write P = P0.
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As we have already explained, Xn is a time change of Yn. Indeed, define the clock
process Sn(u), u ≥ 0 by

Sn(u) :=

buc−1∑
i=0

eiτYn(i). (1.7)

So that,

Xn(t) = Yn(j) for all t ∈ [Sn(j), Sn(j + 1)). (1.8)

To study aging we need choose a two-time function that reflects the behaviour of the
system in the time interval [tw, tw + t]. The most natural two-time function for the trap
models is the probability that at both times tw and tw + t the system is in the same
state,

Rn(tw, tw + t; τ n) := P[Xn(tw + t) = X(tw)|τ n]. (1.9)

There are other possible choices for the two-time function (see [BČ06]). We will however
not consider them here.

Definition 1.1. We say that the function Rn exhibits aging if for some sequence t(n)
such that limn→∞ t(n) = ∞ it satisfies

lim
n→∞

Rn(t(n), (1 + θ)t(n); τ n) = R(θ) (1.10)

for all θ > 0 and some non-trivial function R(θ). We call R(θ) the aging function.

As we have already remarked, in all cases where aging of Rn was proved, with the
exception of the one-dimensional case, the limiting function R(θ) was given by the arcsine
law for Lévy processes1,

R(θ) = Aslα(1/1 + θ), (1.11)

where Aslα(u) stands for the distribution function of the generalised arcsine law with
parameter α,

Aslα(z) :=
sinαπ

π

∫ z

0

uα−1(1− u)−α du. (1.12)

Note that Aslα(a/b) is equal to the probability that the range of an α-stable subordinator
does not intersect the interval [a, b] [Ber96].

The aim of this paper is to give a set of possibly simple conditions that guarantee for
general graphs Gn and time scales t(n) the same behaviour, that is the convergence of
Rn(t(n), (1 + θ)t(n)) to Aslα(1/1 + θ).

We will give first a set of four general conditions (A)–(D) which ensure the convergence
of the rescaled clock process to a stable subordinator. These four conditions are true
for every known example (except, naturally, for the model on Z where the clock process
converge to a Kesten-Spitzer process [KS79], see also [BČ06]). We will then, in Section 2,
give a set of four more general conditions 1–4 which are weaker but sufficient to ensure
the convergence of the range of the clock process, which is enough to apply the arcsine
law. In order to prove aging for the two-time function Rn using this arcsine law we still
need to impose two extra technical conditions, either on top of (A)–(D) or on top of 1–4.

1In [BBG03b] a more complicated limiting procedure than in (1.10) was used and the two-time
function R was slightly different, we will make more comments about this issue later.
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Let us introduce some notations useful in order to state our conditions. Let Tn be a
stopping time for Yn. We use Gn

Tn
(x, y), x, y ∈ Vn, to denote the Green’s function of Yn,

that is the mean time that Yn spends in y before Tn when started at x,

Gn
Tn

(x, y) = Ex

Tn−1∑
i=0

1l{Yn(i) = y}. (1.13)

For a set A ⊂ Vn we define its hitting time Hn(A) as

Hn(A) := inf{i ≥ 0 : Yn(i) ∈ A}. (1.14)

To simplify the notation we write Gn
A(·, ·) for Gn

H(A)(·, ·). We define another two-time

function Rn
A(tw, tw + t) as the probability that X does not visits any “fresh” site in A

during the observation interval: let `A(tw) be the last time when Xn visited A before tw,

`A(tw) = max{t ≤ tw : Xn(t) ∈ A}, (1.15)

and let T = inf
{
s ≥ tw : Xn(s) ∈ A \ {Xn(`A(tw))}

}
, then

Rn
A(tw, tw + t; τ ) = P[T > tw + t|τ ]. (1.16)

A two-point function of this type was considered in [BBG03a].
We further say that the set A ⊂ Vn is a Poisson cloud on Vn with density ρ ∈ (0, 1)

if each site x ∈ Vn is in A with probability ρ independently of all others, i.e. if A is a
site-percolation process on Vn.

We can now formulate the first set of conditions that implies aging on the time scale
t(n). First, we need to control the behaviour of the random environment.

Condition (A). For all n the random environment τ n is i.i.d. Further, there exist a
depth scale g(n), a density scale ρ(n) and a constant α ∈ (0, 1) such that g(n) →∞ and
ρ(n) → 0 as n→∞, and

ρ(n)−1µn[τx ≥ ug(n)]
n→∞−−−→ u−α, (1.17)

uniformly on all compact subsets of (0,∞). Moreover, there exist a constant C such
that for all u > 0 and n ∈ N

µn[τx ≥ ug(n)] ≤ Cu−αρ(n). (1.18)

The next two conditions control the motion of the simple random walk Yn between
points of a Poisson cloud.

Condition (B). Let An be a sequence of Poisson clouds on Vn with densities ρρ(n),
ρ ∈ (0,∞). Then there exists a constant KG ∈ (0,∞) independent of ρ such that for
a.e. sequence An

max
x∈An

∣∣∣f(n)−1Gn
An\{x}(x, x)−KG

∣∣∣ n→∞−−−→ 0, (1.19)

where the scale f(n) is given by f(n) = t(n)/g(n).

Condition (C). There exists Kr ∈ (0,∞) such that for all s > 0 and a.e. sequence An

of Poisson clouds as in Condition (B)

max
x∈An∪{0}

∣∣∣∣Ex

[
exp

(
− s

r(n)
Hn(An \ {x})

)]
− Krρ

s+Krρ

∣∣∣∣ n→∞−−−→ 0, (1.20)
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where r(n)ρ(n) = f(n). In other words, Hn(An \ {x})/r(n) is asymptotically exponen-
tially distributed with mean 1/Krρ. (The scale r(n) represents the number of steps that
Xn makes before time t(n).)

Finally, we need one technical condition

Condition (D). There exists a large constant Ks such that for all m > 0 and n large∑
x∈Vn

(
eλnGn

mr(n) − 1
)
≤ Ksλn

∑
x∈Vn

Gn
mr(n)(0, x) = Ksλnmr(n), (1.21)

and
∑∞

n=1 exp
(
− cλnf(n)

)
is finite for all c > 0.

Theorem 1.2. Assume that Conditions (A)–(D) hold. Then
(i) for a.e. random environment τ the rescaled clock process t(n)−1S(r(n)·) converges

to an α-stable subordinator weakly in the Skorokhod topology on D([0, T ]) for all T > 0.
(ii) Further, define the set of deep traps TM

ε (n) := {x ∈ Vn : εg(n) ≤ τx < Mg(n)}.
Then Rn

T M
ε (n) ages:

lim
ε→0

M→∞

lim
n→∞

Rn
T M

ε (n)(t(n), (1 + θ)t(n)) = Aslα(1/1 + θ). (1.22)

2. Graph-independent mechanism of proof

In this section we state the second set of the conditions. This set is adjusted to prove
aging for the two-time function R and its convergence to Aslα. The conditions are more
complicated than the Conditions (A)–(D) of the first set, and can be rather regarded as
parts of a mechanism of a proof of aging.

To understand these conditions it is useful to keep in mind the analogy with the sum
of i.i.d. non-negative α-stable random variables. It is known fact that, after a proper
renormalisation, this sum converge to an α-stable subordinator. Moreover, the sum is
typically dominated by a finite number of large contributions whose size depend on the
number of terms. We want to prove that the same holds for the clock process.

To formulate the second set of conditions it is necessary to choose several objects that
depend on the particular sequence Gn and on the observation time scale t(n).

First, it is necessary to fix a (random) time ξn up to which we observe Yn. This time
will serve as an upper time scale up to which we observe Yn. It must therefore be chosen
large enough to ensure that (with high probability) Sn(ξn) is larger than (1+ θ)t(n) (see
Condition 4 below). On the other hand, ξn should be as small as possible to simplify
the verification of the other conditions.

Second, a scale g(n) for deep traps should be chosen according to Gn and t(n). This
scale defines the set of the deep traps by

TM
ε (n) := {x ∈ Vn : εg(n) ≤ τx < Mg(n)}. (2.1)

This set will determine the behaviour of the clock process Sn at the time scale t(n).
That is the clock process should be dominated by a very small number of relatively
large contributions due to visits of deep traps in TM

ε (n).
We use TM(n) := T∞M (n) = {x ∈ Vn : Mg(n) ≤ τx} to denote the set of very deep

traps. Similarly, we write T ε(n) := T ε
0 (n) = {x ∈ Vn : τx < εg(n)} for the set of shallow

traps. To justify the analogy with the sum of i.i.d. random variables, the contribution
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of these two sets should be negligible. This is the content of the first two conditions.
Condition 1 states that shallow traps are irrelevant because the time spent in them is
too small. Condition 2 states that very deep traps are irrelevant because they are not
seen by the Markov chain.

Condition 1. There is a function h(ε) satisfying limε→0 h(ε) = 0, such that for a.e. re-
alisation of τ := {τ n : n > 0} and for all n large enough

E
[ ξn∑

i=0

eiτYn(i)1l{Yn(i) ∈ T ε(n)}
∣∣∣τ]

≤ h(ε)t(n). (2.2)

That is, the expected time spent in shallow traps before ξn is small with respect to t(n).

The second conditions ensures the negligibility of the very deep traps. Recall that
Hn(A) denotes the hitting time of the set A by Yn.

Condition 2. Given ξn, for any δ > 0 there exists M large enough such that for
a.e. realisation of τ and for all n large

P
[
Hn(TM(n)) ≤ ξn

∣∣τ ]
≤ δ. (2.3)

We need other definitions to state conditions that guarantee the existence of the limit
in (1.10). First, let rn(j) be the sequence of times when a new deep trap is visited,
rn(0) = 0, and

rn(i) = min
{
j > rn(i− 1) : Yn(j) ∈ TM

ε (n) \ {Yn(rn(i− 1))}
}
. (2.4)

We use ζn to denote the largest j such that rn(j) ≤ ξn,

ζn := max{j : rn(j) ≤ ξn}. (2.5)

We define the process Un(j) that records the trajectory of Yn (and thus of Xn) restricted
to the deep traps,

Un(j) := Yn(rn(j)), j ∈ N0. (2.6)

Finally, let sn(j) be the time that Xn spends at site Un(j) between steps rn(j) and
rn(j + 1),

sn(j) :=

rn(j+1)∑
i=rn(j)

eiτYn(i)1l{Yn(i) = Un(j)}, j < ζn. (2.7)

It is easy to observe that sn(j) has an exponential distribution with mean

τUn(j)G
n
T M

ε \{Un(j)}(Un(j), Un(j)). (2.8)

Since Conditions 1 and 2 ensure that the visits of the deep traps determine the be-
haviour of the time change Sn(j), the sum

∑j−1
i=1 sn(i) can be considered as a good

approximation of Sn(rn(j)). We would like to show that the sn(j) become independent
as n → ∞, and that they have an appropriate tail behaviour. To this end, we define
(σM

ε (i), i ∈ N) as a sequence of i.i.d. random variables taking values between ε and M
with common distribution function

P[σM
ε (i) ≤ u] =

ε−α − u−α

ε−α −M−α
=:

ε−α − u−α

pM
ε

, u ∈ [ε,M ]. (2.9)
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Let (êi, i ∈ N) be a sequence of mean-one i.i.d. exponential random variables that are
independent of σM

ε , and let s∞(i) := êiσ
M
ε (i). For notational convenience we define

sn(j) = s∞(j) for all j ≥ ζn.
The following conditions will ensure that the limit in (1.10) is given by the arcsine

law (1.11). First, we need the asymptotic independence and the proper tail behaviour:

Condition 3. There exists a constant K > 0 such that for all ε, M and for a.e. τ , the
sequence (sn(j)/t(n), j ∈ N) converges as n→∞ in law to the sequence of i.i.d. random
variables (Ks∞(j), j ∈ N).

We need also to ensure that Sn(rn(ζn)) is larger than (1 + θ)t(n) with a large prob-

ability. Since rn(ζn) ≥
∑ζn−1

i=1 sn(i), and sn(i) are easier to control than Sn(rn(j)) we
require

Condition 4. For a.e. τ and for any fixed θ > 0, δ > 0 it is possible to choose ξn such
that for all ε small and M large enough, and for ζn defined in (2.5)

P
[ ζn−1∑

i=1

sn(i) ≥ (1 + θ)t(n)
∣∣∣τ]

≥ 1− δ. (2.10)

The next pair of conditions is, in principle, necessary only for a “post-processing”.
If they are not verified, it is possible to prove aging for the TM

ε (n)-dependent two-time
function Rn

T M
ε (n). Observe that this function can be also written as

Rn
T M

ε (n)(tw, tw + t; τ ) = P
[
∃j : Sn(rn(j)) ≤ tw < tw + t < Sn(rn(j + 1))

∣∣τ ]
= P[{Sn(j) : j ∈ N} ∩ (tw, tw + t] = ∅|τ ].

(2.11)

To prove aging for the two-point function R we need to know that for any time t′

between Sn(rn(j)) and Sn(rn(j + 1)) the probability that Xn(t′) = Un(j) is large. For a
formal statement of this claim we need some more definitions. Let t′n be a deterministic
time sequence satisfying t(n)/2 ≤ t′n ≤ (1 + θ)t(n), and let δ > 0. We define jn ∈ N by

Sn(rn(jn)) ≤ t′n ≤ Sn(rn(jn + 1))− δt(n), (2.12)

and jn = ∞ if (2.12) is not satisfied for any integer. Let An(δ) be the event

An(δ) := {0 < jn < ζn}. (2.13)

Condition 5. For any δ it is possible to choose ε small and M large enough such that
for a.e. τ and all n large enough

P[Xn(t′n) = Un(jn)|An(δ), τ ] ≥ 1− δ. (2.14)

The last condition that we need to prove aging for R excludes repetitions in the
sequence Un.

Condition 6. For any fixed ε and M and a.e. τ

lim
n→∞

P[∃0 < i, j ≤ ζn such that i 6= j and Un(i) = Un(j)|τ ] = 0. (2.15)

We now show how to use these six conditions to prove the aging behaviour for the
two-time functions Rn, Rn

T M
ε (n).
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Theorem 2.1. (i) Assume that Conditions 1–6 are satisfied. Then for a.e. realisation
of the random environment τ

lim
n→∞

Rn(t(n), (1 + θ)t(n); τ ) = Aslα(1/1 + θ). (2.16)

(ii) If only Conditions 1–4 hold, then the same is valid for the two-time function Rn
T M

ε (n),

lim
ε→0

M→∞

lim
n→∞

Rn
T M

ε (n)(t(n), (1 + θ)t(n); τ ) = Aslα(1/1 + θ). (2.17)

Before proving Theorems 1.2 and 2.1 let us explain how both sets of conditions are
related.

Proposition 2.2. Conditions (A)–(D) imply Conditions 1–4 for the same scale g(n)
and for ξn = mr(n) with some large θ-dependent constant m.

We will use this proposition for both examples that we study later. That is to prove
aging for Rn we will always verify Conditions (A)–(D), 5 and 6.

Observe also that neither in Conditions 1–6, neither in Theorem 2.1 we suppose that
the τx’s are i.i.d. This assumption is however used twice when proving Proposition 2.2
as we will see later. First, we will use the independence to verify Condition 1 from
Condition (D) (see formulas (2.48), (2.49) below), that is to prove that the time spent
in the shallow traps is small. We do however believe that Condition 1 stays valid
also for some dependent random environment. The second use of the independence is
more substantial. It implies that the geometrical structure of the set of the deep traps is
particularly simple: it is a Poisson cloud. It is therefore easy to control, e.g., the minimal
distance between deep traps or the relative size of the slices T u

ε , TM
ε . This control can

be problematic when the τx’s are dependent.
Remark also that Theorem 1.2(ii) is a simple consequence of Proposition 2.2 and

Theorem 2.1(b). Therefore, we first prove Theorem 2.1, then we verify Proposition 2.2.
In the end we show Theorem 1.2(i), that is the convergence of the clock process. Note
that Conditions 1–6 are not strong enough to imply directly such a convergence. We are
however not aware of any particular case where Conditions 1–6 hold and this convergence
does not take place.

Proof of Theorem 2.1. Let us define

S̃(j) =
1

t(n)

j−1∑
i=1

sn(i) (2.18)

and let E = E(n) be the event whose probability we are trying to estimate,

E(n) = {Xn(t(n)) = Xn((1 + θ)t(n))}. (2.19)

We first explain the strategy of the proof. The most important observation is that the
clock process Sn contains enough information about Xn to prove aging. Between times
Sn(rn(j)) and Sn(rn(j + 1)) the process Xn visits (possibly many times) only one deep
trap, Un(j), and it also visits many shallow traps. Condition 5 ensures that if we pick a
time t between Sn(rn(j)) and Sn(rn(j+1)), then Xn(t) = Un(j) with a high probability.
That means that if Sn(rn(j)) ≤ t(n) ≤ (1 + θ)t(n) < Sn(rn(j + 1)) for some j ≥ 1,
then E holds with a probability close to 1. On the other hand, if there is a j such
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that t(n) < Sn(rn(j)) < (1 + θ)t(n), then, using Condition 6, E can happen only if at
both times t(n) and (1 + θ)t(n) the process is in the same shallow trap. However, this
event has (again by Condition 5) a very small probability. Therefore, it is important to
estimate the probability that there is no Sn(rn(j)) in the time interval of interest. To
this end, we will show that S̃n(j) is a good approximation of Sn(rn(j))/t(n), and then
we will estimate the probability that there is no S̃n(j) in [1, 1 + θ]. At the end of the
proof we use these results to give a rigorous version of the reasoning in this paragraph.

First, let us show that S̃n(j) approximates well Sn(rn(j))/t(n), at least for all relevant
indices j ≤ ζn.

Lemma 2.3. For all θ and δ > 0 there exist ξn, ε, and M such that τ -a.s.

P
[
max

{∣∣∣Sn(rn(j))

t(n)
− S̃n(j)

∣∣∣ : Sn(rn(j)) ≤ (1 + θ)t(n)
}
> δ

∣∣∣τ]
< δ. (2.20)

Proof. By Condition 4 we can choose ξn not depending on ε and M such that

P[S̃n(ζn) ≤ 1 + θ] ≤ δ/2. (2.21)

Observing that Sn(rn(j))/t(n) − S̃n(j) is positive and increasing in j, it is sufficient to
estimate Sn(rn(ζn))/t(n)− S̃n(ζn). However,

Sn(rn(ζn))

t(n)
− S̃n(ζn) ≤

ξn∑
i=0

eiτYn(i)

t(n)
1l{Yn(i) ∈ T ε(n) ∪ TM(n)}. (2.22)

The contribution coming from T ε(n) can be bounded using Condition 1 and Chebyshev
inequality,

P
[
t(n)−1

ξn∑
i=0

eiτYn(i)1l{Yn(i) ∈ T ε(n)} ≥ δ/2
∣∣∣τ]

≤ cδ−1h(ε). (2.23)

Since h(ε) → 0 as ε→ 0, we can fix ε such that the last expression is bounded by δ/4.
Similarly, using Condition 2, we can choose M such that

P
[ ξn∑

i=0

eiτYn(i)1l{Yn(i) ∈ TM(n)} 6= 0
∣∣∣τ]

≤ δ/4. (2.24)

The lemma then follows combining (2.21), (2.23) and (2.24). �

We further compute the probability that an interval does not contain any of the
S̃n(j)’s.

Lemma 2.4. For all 0 < a < b and for a.e. τ

lim
ε→0

M→∞

lim
n→∞

P
[
[a, b] ∩ {S̃n(j), j ∈ N} = ∅

∣∣τ ]
= Aslα(a/b). (2.25)

Proof. Let y0 = 0 and let (yi, i ∈ N), yi < yi+1, be a homogeneous Poisson point process
on (0,∞) with intensity pM

ε := ε−α −M−α. Consider process (Yn(u), u ≥ 0) given by

Yn(u) =
∑

i:yi≤u

sn(j)

t(n)
(2.26)
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or, equivalently, Yn(u) = S̃n(j) for all u ∈ [yj−1, yj). We use YM
ε to denote the Lévy

process whose Lévy measure νM
ε is given by (a multiple of) the distribution of s∞(j),

E
[
exp

(
− λYM

ε (u)
)]

= exp
{
− u

∫ ∞

0

(1− e−λv)νM
ε (dv)

}
, (2.27)

νM
ε (dv) = pM

ε P[s∞ ∈ dv] = dv

∫ M

ε

αz−α−2e−v/z dz. (2.28)

Condition 3 implies that as Yn → KYM
ε as n → ∞ weakly in the Skorokhod topology

for a.e. τ .
Let R(Yn) denote the range of the process Yn, R(Yn) =

⋃
u≥0 Yn(u). It follows that

P
[
[a, b] ∩ {S̃n(j), j ∈ N} = ∅

∣∣τ ]
= P

[
R(Yn) ∩ [a, b] = ∅

∣∣τ ]
, (2.29)

Since the distribution of s∞ has no atoms, the probability that a/K or b/K are contained
in R(YM

ε ) is zero. Therefore, the weak convergence of Yn implies that

lim
n→∞

P
[
[a, b] ∩ {S̃n(j), j ∈ N} = ∅|τ

]
= P[R(YM

ε ) ∩ [a/K, b/K] = ∅|τ ]. (2.30)

To estimate the right-hand side of the previous expression observe that as ε → 0 and
M →∞ the Lévy measure νM

ε converges to

dv

∫ ∞

0

αz−α−2e−v/z dz = αΓ(1 + α)v−1−αdv. (2.31)

This is the Lévy measure of an α-stable subordinator. Therefore, as ε→ 0 and M →∞,
the process YM

ε converges weakly in the Skorokhod topology to the stable subordinator.
Using the same reasoning as before we get

lim
ε→0

M→∞

P[R(YM
ε ) ∩ [a/K, b/K] = ∅|τ ] = Aslα(a/b). (2.32)

This finishes the proof. �

We can now finally estimate the probability of the event E(n) (defined by (2.19)) for
large n. Fix δ > 0. Let B be the event that is considered in Condition 4,

B =
{ ζn∑

i=1

sn(i) ≥ (1 + θ)t(n)
}
. (2.33)

According to Condition 4 we can choose ξn such that P[Bc|τ ] ≤ δ for a.e. τ . We divide
the probability space into three disjoint sets:

G1(n) = {dist(1,R(Yn)) ≤ 2δ or dist(1 + θ,R(Yn)) ≤ 2δ}
G2(n) = {dist(1,R(Yn)) > 2δ, dist(1 + θ,R(Yn)) > 2δ and

(1, 1 + θ) ∩R(Yn) 6= ∅}
G3(n) = {[1− 2δ, 1 + θ + 2δ] ∩R(Yn) = ∅}

(2.34)

Here, for A,B ⊂ R, dist(A,B) = min{|x − y| : x ∈ A, y ∈ B}. As we have already
remarked, this division has the following reasons. Heuristically, on the event B, to the
precision δ (see Lemma 2.3), any interval that does not intersect R(Yn) corresponds
to a time period spent in one site of the top and neighbouring shallow traps. On the
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other hand, the points of R(Yn) (or more precisely very short periods preceding them)
correspond to times when no deep trap is visited for a large number of steps.

We wish to show that the events E(n) and G3(n) are essentially the same. Obviously,
for a.e. τ (omitting the conditioning on τ in the notation)

P[E(n) ∩G3(n)] ≤ P[E(n)] ≤ P[G3(n)] + P[G1(n)] + P[E(n) ∩G2(n)]. (2.35)

We should therefore estimate all quantities in the last display. The probability of G1(n)
is small. Indeed,

P[G1(n)] ≤ P[dist(1,R(Yn)) ≤ 2δ] + P[dist(1 + θ,R(Yn)) ≤ 2δ]. (2.36)

The both probabilities on the right-hand side can be estimated using Lemma 2.4, namely
it is possible to choose ε small and M , n large enough, such that

P[dist(1,R(Yn)) ≤ 2δ] = P
[
[1− 2δ, 1 + 2δ] ∩R(Yn) = ∅

]
≤ δ + 1− Aslα

(1− 2δ

1 + 2δ

)
≤ Cδ1−α. (2.37)

In the same way we estimate the second probability from (2.36).
If B ∩G2(n) holds, then there are j1 < j2 ≤ ζn such that

S̃n(j1) + 2δ ≤ 1 ≤ S̃n(j1 + 1)− 2δ,

S̃n(j2) + 2δ ≤ 1 + θ ≤ S̃n(j2 + 1)− 2δ,
(2.38)

and therefore, using Lemma 2.3,

Sn(rn(j1)) + δt(n) ≤ t(n) ≤ Sn(rn(j1 + 1))− δt(n),

Sn(rn(j2)) + δt(n) ≤ (1 + θ)t(n) ≤ Sn(rn(j2 + 1))− δt(n).
(2.39)

Hence, according to Condition 5, for all ε small and M large

P
[
X(t(n)) = Un(j1), Xn((1 + θ)t(n)) = Un(j2)

∣∣τ ,B ∩G2

]
≥ 1− δ. (2.40)

Using Condition 6, it follows that P[E(n)|G2(n) ∩ B] ≤ δ for all n large enough. There-
fore,

P[E(n) ∩G2(n)] ≤ P[E(n)|G2(n) ∩ B] + P[Bc] ≤ 2δ. (2.41)

At last, we estimate the terms related to G3(n). Using Lemma 2.4, choosing ε small
and n, M large enough, we get∣∣P[G3(n)]− Aslα(1/1 + θ)

∣∣ ≤ Cδ. (2.42)

Finally, by Condition 5 and using a similar reasoning as in (2.38), (2.39),

P
[
X(t(n)) = X((1 + θ)t(n))

∣∣B ∩G3

]
≥ 1− δ. (2.43)

Since δ can be taken arbitrarily small, Theorem 2.1(i) follows from (2.35) and the results
of the last three paragraphs.

The proof of Theorem 2.1(ii) proceeds along the same lines as the proof of (i). The
only needed changes are the re-definition of E(n) as

E(n) :=
{
∃j : Sn(rn(j)) ≤ t(n) < (1 + θ)t(n) ≤ Sn(rn(j + 1))

}
(2.44)

and the observation that Conditions 5 and 6 are not necessary in this case. �
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Proof of Proposition 2.2. Now we show that Conditions (A)–(D) imply Conditions 1–4.
To this end we choose ξn = mr(n) with some large constant m. The scale g(n) is, of
course, the same in both sets of conditions.

(A), (D) =⇒ Condition 1. We show that there is a large constant K independent
of ε, M , and m such that Condition 1 is satisfied with h(ε) = Kmε1−α, that is for
P-a.e. realisation of τ and for all large n

E
[ ξn∑

i=0

eiτYn(i)1l{Yn(i) ∈ T ε(n)}
∣∣∣τ]

≤ Kmε1−αt(n). (2.45)

To this end we use the same slicing strategy as in [BČM06, Čer03]. We divide T ε(n)

into disjoint sets T ε2−i+1

ε2−i (n) with i ∈ N. We show that there is a large constant K ′ such
that P-a.s. for all but a finite number of n the following holds: for all i ∈ N

E
[ ξn∑

i=0

eiτYn(i)1l
{
Yn(i) ∈ T ε2−i+1

ε2−i

}∣∣∣τ]
≤ K ′mε1−α2i(α−1)t(n). (2.46)

The summation over all i then yields directly the claim (2.45).

Let pn,i = P[x ∈ T ε2−i+1

ε2−i ]. By Condition (A)

pn,i ≤ Cε−α2iαρ(n) (2.47)

for some C independent of n, i, and ε. For all i ∈ N we have

P
[
E

[ ξn∑
i=0

eiτYn(i)1l
{
Yn(i) ∈ T ε2−i+1

ε2−i

}∣∣∣τ]
≥ K ′mε1−α2i(α−1)t(n)

]
= P

[ ∑
x∈Vn

Gn
ξn

(0, x)τx1l
{
x ∈ T ε2−i+1

ε2−i

}
≥ K ′mε1−α2i(α−1)t(n)

]
≤ P

[ ∑
x∈Vn

Gn
mr(n)(0, x)1l

{
x ∈ T ε2−i+1

ε2−i

}
≥ K ′mε−α2iα−1t(n)g(n)−1

]
.

(2.48)

By Chebyshev inequality with λn of Condition (D) this is bounded by

≤ exp(−λnmK
′ε−α2iα−1t(n)g(n)−1)

∏
x∈Vn

[
1 + pn,i

(
eλnGn

mr(n)
(0,x) − 1

)]
. (2.49)

Using x ≥ log(1 + x) and (2.47) we get

≤ exp{−λnmK
′ε−α2iα−1t(n)g(n)−1 + Cε−α2iαρ(n)

∑
x∈Vn

(
eλnGn

mr(n)
(0,x) − 1

)
}. (2.50)

Condition (D) ensures that the last expression is bounded by

≤ exp{−λnmε
−α2iαt(n)g(n)−1(K ′ − CKs)} (2.51)

Now it is easy to prove (2.46) and thus Condition 1: it is sufficient to take K ′ > 2CKs,
to sum over all i and then to apply the Borel-Cantelli lemma. This is possible due to
the second part of Condition (D).

(A), (C) =⇒ Condition 2. By the assumptions of Theorem 1.2 τx are i.i.d. Therefore,
TM(n) is a Poisson cloud with density that is bounded by Cρ(n)M−α. The normalised
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hitting time of this cloud, Hn(TM(n))/r(n), is by Condition (C) asymptotically expo-
nentially distributed with mean Mα/KrC. So that, by choosing M large, we can make
the probability that Hn(TM(n)) ≤ ξn arbitrarily small.

(A)–(C) =⇒ Condition 3. We first prove the following easy lemma which is a conse-
quence of Condition (C) and the lack-of-memory property of the exponential distribution

Lemma 2.5. Assume that Condition (C) holds. Let x ∈ An ∪ {0}, and let A1
n, A

2
n be

such that A1
n ∪ A2

n = An, A
1
n ∩ A2

n = ∅ and

lim
n→∞

|Ak
n|/|An| = ρk/ρ k ∈ {1, 2}, ρk ∈ (0, 1). (2.52)

Define Hk := Hn(Ak
n \ {x})/r(n), H := H(An \ {x})/r(n). Then, given that Yn(0) = x,

the distribution function of H1l{H1 < H2} converges uniformly in x to F (u) := ρ2/ρ +
ρ1(1− e−Krρu)/ρ, u ≥ 0, and, in particular,

lim
n→∞

sup
x∈An

∣∣∣Px[H1 < H2]−
ρ1

ρ

∣∣∣ = 0. (2.53)

Proof. We define νk
n(du) := Px[Hk ∈ du], k ∈ {∅, 1, 2}, and

fn(u) =

{
Px[H1 < H2|H = u] if u ∈ r(n)−1Z,

0 otherwise.
(2.54)

Using a decomposition on H and Yn(H), we get from the Markov property of Yn for any
continuous bounded function h : R+ → R∫

h(u)ν1
n(du) =

∫
νn(du)fn(u)h(u)

+

∫
νn(du)(1− fn(u))

∫
ν̄n,u(dv)h(u+ v),

(2.55)

where the measure ν̄n,u is defined as

ν̄n,u(dv) =
∑

y∈A2
n\{x}

Px[Yn(r(n)H) = y|H = u,H2 < H1]Py[H1 ∈ dv]. (2.56)

Now we take h(u) = e−ηu, η ≥ 0. From Condition (C) it follows that for all ε > 0 there
is n0 independent of x ∈ An such that for n > n0, k ∈ {∅, 1, 2},∣∣∣ ∫

νk
n(du)e−ηu − Krρk

Krρk + η

∣∣∣ ≤ ε,∣∣∣ ∫
ν̄n,u(du)e

−ηu − Krρ1

Krρ1 + η

∣∣∣ ≤ ε.

(2.57)

Inserting this in (2.55) and re-arranging it slightly we get∫
e−ηufn(u)νn(du) =

Krρ

Krρ+ η
· ρ1

ρ
+O(ε), (2.58)

from which the first claim of the lemma directly follows. Taking η = 0 in (2.58) we get
also (2.53). �
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To prove Condition 3 we need to verify that the sequence sn(j)/t(n) (see (2.7) for the
definition) converges to the i.i.d. sequence s∞. We control first the sequence of depths
of visited deep traps:

Lemma 2.6. The sequence (τUn(j)/g(n), j ∈ N) converges weakly as n → ∞ to the
i.i.d. sequence (σM

ε (j), j ∈ N) defined in (2.9).

Proof. Fix u ∈ (ε,M). Since τx are i.i.d. the set TM
ε and also its subsets T u

ε , TM
u are

Poisson clouds with densities converging to pM
ε ρ(n), resp. pu

ερ(n) and pM
u ρ(n), where

pb
a := a−α − b−α. We can therefore use Condition (C) and Lemma 2.5: uniformly in
x ∈ TM

ε ∪ {0}

Px

[
τYn(H(T M

ε \{x})) ≤ ug(n)
]

= Px

[
H(T u

ε \ {x}) = H(TM
ε \ {x})

] n→∞−−−→ pu
ε

pM
ε

. (2.59)

The lemma then follows easily. �

Observe now that given Un(j) = x ∈ TM
ε (n), the random variable sn(j)/τx is expo-

nentially distributed with mean Gn
T M

ε \{x}(x, x) = KGf(n)(1+o(1)) as n→∞. The error

is uniformly bounded in x. Using the Markov property we get

P[sn(j)/t(n) ≥ u|sn(1), . . . , sn(j − 1)]

=

∫ M

ε

P[sn(j) ≥ ut(n)|τUn(j) = vg(n), sn(1), . . . , sn(j − 1)]

× P[τUn(j)/g(n) ∈ dv|sn(i), i = 1, . . . , j − 1]

=

∫ M

ε

exp
{
− ut(n)(1 + o(1))

vg(n)KGf(n)

}
P[τUn(j)/g(n) ∈ dv|sn(i), i = 1, . . . , j − 1].

(2.60)

By definition g(n)f(n) = t(n). The weak convergence of the sequence τUn(j)/g(n) proved
in Lemma 2.6 then yields that the right-hand side of (2.60) converges to∫ M

ε

e−u/KGvP[σM
ε (1) ∈ dv], (2.61)

and Condition 3 is proved.

(A)–(C) =⇒ Condition 4. Fix temporarily ε = 1/2, M = 2. Since the distribution
of sn(i)/t(n) converges to the distribution of s∞(i), for any δ > 0 it is possible to fix a
large integer R such that for all n large enough

P
[ R∑

i=1

sn(i) ≥ (1 + θ)t(n)
]
≥ 1− δ/2. (2.62)

To satisfy Condition 4, the constant m should be fixed such that P[ζn ≥ R] ≥ 1− δ/2.
But it can be done easily, since ζn is the number of deep traps that are visited before
ξn, and the distribution of this number converges to the Poisson distribution with mean
p2

1/2m/K as follows from Condition (C). Taking now ε < 1/2 or M > 2, the sum∑ζn

i=1 sn(i) can become only larger. Therefore, for chosen m Condition 4 is verified for
all ε < 1/2 and M > 2. �
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Proof of Theorem 1.2(i). We want to to verify that Conditions (A)–(D) imply the weak
convergence in the Skorokhod topology of the process S(r(n)·)/t(n) to an α-stable sub-
ordinator. As usual, it is sufficient to check the convergence of fixed-time distributions
and the tightness in D([0, T ]).

Fix t0 ∈ (0, T ). Let Nn(t0) be the number of deep traps visited in first t0r(n) steps,

Nn(t0) = max{j : rn(j) ≤ t0r(n)}. (2.63)

It follows from Condition (C) that the distribution of Nn(t0) converges to the Poisson
distribution with mean t0Krp

M
ε . Due Proposition 2.2 Conditions 1–4 holds, therefore

using a similar reasoning as to show Lemma 2.3, we can show that for any δ there are ε
and M such that with probability larger than 1− δ

t(n)−1

Nn(t0)−1∑
i=0

sn(i) ≤ t(n)−1Sn(t0r(n)) ≤ δ + t(n)−1

Nn(t0)∑
i=0

sn(i). (2.64)

Now, it is easy to proceed as in Lemma 2.4 to see that the Laplace transform of

(KGt(n))−1
∑Nn(t0)

i=0 sn(j) converges as n → ∞ to (2.27) evaluated at u = Krt0. The
distribution with such Laplace transform can be made arbitrarily close (in the weak
sense) to the distribution at Krt0 of the α-stable subordinator with Lévy measure (2.31)
by taking ε small and M large. From this the convergence of the distribution at the
fixed time t0 follows. One can get completely analogously the convergence of joint dis-
tributions of (t(n)−1Sn(rnt0), . . . , t(n)−1Sn(rntk)).

Since Sn is increasing to prove the tightness it is sufficient to check the tightness of the
sequence of real random variables t(n)−1Sn(r(n)T ). However, this can be done easily
using (2.64) with t0 = T and Conditions 1–4. �

3. Aging for short time scales in the Random Energy Model

The Random Energy Model (REM) is the simplest mean-field model for spin-glasses
and its static behaviour is well understood. The studies of dynamics are much more
sparse. The first proof of aging in the REM was given in [BBG03a, BBG03b], based on
renewal theory. The approach of Section 2 allows to prove aging on a broad range of
shorter time scales. We will compare both results later. Before doing it, let us define
the model and give some motivation why and in what ranges of times and temperatures
aging occurs.

The REM is a mean-field model of a spin-glass. It consists of n spins that can take
values −1 or 1, that is configurations of the REM are elements of Vn = {−1, 1}n. The
energies {Ex, x ∈ Vn} of the configurations are i.i.d. random variables. The standard
choice of the marginal distribution of Ex is centred normal distribution with variance n.
We then define

τx = exp(βEx). (3.1)

For the dynamics of the REM we require that only one spin can be flipped at a given
moment. This corresponds to

En = {〈x, y〉 ∈ V2
n :

n∑
i=1

|xi − yi| = 2}, (3.2)
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where (x1, . . . , xn) are the values of individual spins. We use Gn to denote the n-
dimensional hypercube (Vn, En). There are many choices for the dynamics of REM,
which have the Gibbs measure τ as a reversible measure. We will naturally consider the
trap model dynamics (1.6). which is one of the simplest choices. We always suppose
that

Yn(0) = Xn(0) = 0 = (1, . . . , 1). (3.3)

We have seen in Section 2 that aging occurs only if the τx are sufficiently heavy-
tailed. However, this certainly fails to be true for τx here: an easy calculation gives
P[τx ≥ u] ≤ u− log u/2β2n which decreases faster than any polynomial. It is therefore clear
that if the process is given enough time to explore a large part of the configuration space
and thus to discover the absence of heavy tails, then no aging occurs, at least in our
picture. On the other hand, on shorter time scales the process does not feel the non-
existence of heavy tails as can be seen from the following simple estimate. Let α > 0,
then

eα2β2n/2P
[
τx ≥ ueαβ2n(αβ

√
2πn)−1/α

]
= eα2β2n/2P

[ Ex√
n
≥ log u+ αβ2n− α−1 log(αβ

√
2πn)

β
√
n

]
n→∞−−−→ u−α,

(3.4)

which can be obtained easily using P[Ex/
√
n ≥ u] = (u

√
2π)−1e−u2/2(1+o(1)). Therefore

as n→∞

P
[ τx

eαβ2n(αβ
√

2πn)−1/α
≥ u

]
= e−α2β2n/2 · u−α(1 + o(1)). (3.5)

In view of the fact that the simple random walk on the hypercube almost never backtrack
it seems reasonable to presume that if the process had time to make only approximately
eα2β2n/2 steps, then aging could be observed. As we will see later this presumption shows
to be true.

Before we state the aging result let us remark that there is a much stronger relation
between “random exponentials” τx and heavy-tailed random variables. Let (Ei, i ∈ N) be
an i.i.d. sequence with the same common distribution as Ex. It was proved in [BBM05]
that for some properly chosen Z(n) and N(n) the normalised sum

1

Z(n)

N(n)∑
i=1

eβ
√

nEi (3.6)

converges as n → ∞ in law to an α-stable distribution with α depending on β and
N(n). Our methods allow to show that the same is true for the properly normalised
clock process Sn, which is a properly-normalised sum of correlated random variables (see
(1.7)).

We now fix objects for which we verify Conditions 1–6, or more precisely (A)–(D)
together with Conditions 5, 6. The scales we choose should appear natural in view
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of (3.5). We define

t(n) = g(n) = (αβ
√

2πn)−1/α exp(αβ2n), (3.7)

r(n) = ρ(n)−1 = exp(α2β2n/2), (3.8)

ξn = mr(n), (3.9)

TM
ε (n, α) =

{
x ∈ Vn : τx ∈

(
εg(n),Mg(n)

)}
. (3.10)

Theorem 3.1. Let the parameters α ∈ (0, 1) and β > 0 be such that

3/4 < α2β2/2 log 2 < 1. (3.11)

Then for P-a.e. random environment τ

lim
n→∞

Rn(t(n), (1 + θ)t(n); τ ) = Aslα(1/1 + θ). (3.12)

Remark. 1. We believe that the range of the validity (3.11) of the Theorem 3.1 is not
the broadest possible. The upper bound 1 is correct. If α2β2/2 log 2 > 1, then ξn � 2n.
That means that the state space Vn becomes too small and the process can feel its
finiteness. On the other hand, the lower-bound 3/4 is purely technical and can probably
be improved. It appears because the potential-theoretic methods for the simple random
walk on the hypercube that we use imply our conditions only if the set TM

ε is sufficiently
sparse, or more precisely, if it satisfies the so called minimal distance condition (see
Proposition 3.2 and Lemma 3.7 below).

2. Observe that α is a free parameter. It is not fixed by the temperature β. Moreover,
the condition (3.11) can be rewritten as

α−1βc

√
3/4 < β < α−1βc, (3.13)

where βc =
√

2 log 2 is the critical temperature in the usual REM. This, in particular,
means that aging can be observed in REM also above the critical temperature, β < βc.

We now compare our results with those of [BBG03b]. To allow this comparison we
describe very briefly some of the results of this paper. In [BBG03b] a discrete-time
dynamics is considered, however as n → ∞ this dynamics differs very little from the
continuous-time dynamics used here. The most important object used to prove aging
in [BBG03a] is a set of deep traps defined by Tn(E) = {x ∈ Vn : Ex ≥ un(E)}, where

the function un(E) = βc

√
n + E/βc

√
n + O(

√
log n/n) is chosen in the way that the

distribution of |Tn(E)| converges to some non-degenerate distribution as n → ∞ and
E is kept fixed. The mean of this distribution diverges if E → −∞ afterwards. The
two-time function considered there is essentially the function RTn(E) averaged over all
the starting points in the top, let call it Πn(tw, tw + t, E). The main aging result of
[BBG03b] says that for any β > βc and ε > 0

lim
t→∞

lim
E→−∞

lim
n→∞

P
[∣∣∣Πn(cnt, (1 + θ)cnt, E)

Aslβc/β(1/1 + θ)
− 1

∣∣∣ > ε
]

= 0, (3.14)

where cn ∼ eβ
√

nun(E).
Here are the main differences between both results
1. Different two-time functions are considered. We believe that it is possible to

eliminate the dependence on Tn(E) (i.e. to convert something RTn(E) to something Rn)
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from (3.14) by a post-processing in the direction of Condition 5. It would be probably
more difficult to get the a.s. convergence instead of the convergence in probability.

2. The main differences are in the considered top sizes and time scales. In [BBG03b]
the size of the top is kept bounded as n→∞. This allows to apply “lumping techniques”
to describe the properties of the projection of a simple random walk on the hypercube to
the top, that is to prove that that an equivalent of our process Un (see (2.6)) converges
to the simple random walk on the complete graph with the vertex set Tn(E). In our case
the size of the top TM

ε (n) increases exponentially with n. This makes the application
of the lumping more difficult. That is why we needed to develop different techniques to
control the process Un and in particular the random variables τUn(j). These techniques
can be found in Section 3.1. Using them we can verify the crucial Conditions (B) and
(C) which imply Condition 3.

3. The time scale cn ∼ eβ
√

nun(E) ∼ eββcn+βE/βc used in [BBG03b] corresponds to

the case αβ/βc = 1 and is much larger than the scale t(n) ∼ eαβ2n = e
αβ
βc

ββcn. These
scales become closer if αβ/βc approaches 1, which is the upper limit of the validity of
our theorem. We could probably, with some minor notational complications, improve
our result to t(n) = eββcnh(n) with some h(n) → 0 as n→∞ sufficiently fast, but even
in this case t(n) � cn. Another possibility would be to take the double limit as (3.14).
This approach may be possibly practicable, however, it does not fall into our framework
and we therefore prefer not to pursue it.

3.1. Potential theory on the hypercube. In this section we study properties of the
simple random walk on the hypercube, in particular hitting times of some relatively
diluted but still large subsets of the hypercube.

Let us introduce some notation first. We write I(x) for the rate function of the
symmetric Bernoulli distribution on {0, 1}

I(x) := x log x+ (1− x) log(1− x) + log 2. (3.15)

For γ ∈ (1/2, 1) we use ω = ω(γ) to denote the unique solution of the equation

I(ω) = (2γ − 1) log 2, 0 ≤ ω ≤ 1/2. (3.16)

Proposition 3.2. Let for all n ≥ 1 sets An ⊂ Vn be such that |An| = ρn2n, with
“densities” ρn satisfying limn→∞ ρn2γn = ρ ∈ (0,∞), for some γ ∈ (1/2, 1). Let further
the sets An satisfy the minimal distance condition

min{d(x, y) : x, y ∈ An} ≥ (ω(γ) + ε)n, (3.17)

for some small constant ε > 0. Then for all s ≥ 0

lim
n→∞

max
x∈An

∣∣∣Ex

[
exp

(
− s

2γn
H

(
An \ {x}

))]
− ρ

s+ ρ

∣∣∣ = 0. (3.18)

So that, the hitting time H(An\{x})/2γn is asymptotically exponentially distributed with
mean 1/ρ.

Remark. 1. Eventually, we will take An to be the set TM
ε , that is a Poisson cloud on Vn

with density ρ(n). We will verify that the assumptions of the proposition are a.s. verified
if γ is large enough. This is the result of Lemma 3.7 that can be found at the end of this
section. 2. Note that in [BG06] similar results were obtained for sets with the minimal
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distance between the points o(n), but, on the other hand, the size of these sets should
be much smaller than in our case, namely O(log n).

Proof. We will use a method introduced by Matthews [Mat88] to show this Proposition.
The advantage of this method is that the hitting time of a large set can be controlled
by means of much simple estimates on the hitting time of a point.

We define

f+
n (s) := max{Ex[exp(−s2−γnH(y))] : x, y ∈ An, x 6= y},
f−n (s) := min{Ex[exp(−s2−γnH(y))] : x, y ∈ An, x 6= y}

(3.19)

The following lemma is the most important building block of the proof.

Lemma 3.3 (Theorem 1.3 of [Mat88]). For any x ∈ An

Γ(1/f−n (s))

Γ(1/f+
n (s))

· Γ(|An|)
Γ(|An| − 1)

· Γ(|An| − 2 + 1/f+
n (s))

Γ(|An| − 1 + 1/f−n (s))

≤ Ex

[
e−sH(An\{x})/2γn]

≤ Γ(1/f+
n (s))

Γ(1/f−n (s))
· Γ(|An|)
Γ(|An| − 1)

· Γ(|An| − 2 + 1/f−n (s))

Γ(|An| − 1 + 1/f+
n (s))

,

(3.20)

where Γ is the usual gamma-function.

Proof. The lemma follows directly from Theorem 1.3 of [Mat88]. Using hat for objects

as they appear in that paper, we identify N̂ with |An| − 1 and Âi, i = 1, . . . , N̂ with
points of An \ {x}. Since we are interested in the first visit of the set An \ {x}, the
expression (3.20) is obtained by setting n̂ = 1 in Matthews’ theorem, and by rewriting
the products appearing there using Γ functions. �

To apply the previous lemma we need very precise estimates on f+
n and f−n . Later in

this section we will show

Lemma 3.4. Let the assumptions of Proposition 3.2 be satisfied. Then for all s > 0 the
functions f+

n and f−n satisfy

lim
n→∞

1

2(1−γ)nf+
n (s)

= lim
n→∞

1

2(1−γ)nf−n (s)
= s, (3.21)

lim
n→∞

1

f−n (s)
− 1

f+
n (s)

= 0. (3.22)

To finish the proof of Proposition 3.2 we will need another elementary technical lemma.

Lemma 3.5. Let am, bm, δm be such that am → a, bm → b and δm → 0 as m→∞ with
0 < a, b <∞. Then

lim
m→∞

Γ(amm)

Γ(amm+ δm)
· Γ(bmm+ δm)

Γ(bmm)
= 1. (3.23)

Proof. By Stirling formula, Γ(m) =
√

2π(m− 1)m− 1
2 e−m+1(1 + o(1)). Therefore, up to a

multiplicative correction 1 + o(1), the expression inside the limit (3.23) equals(
1 + δm

bmm−1

)bmm− 1
2(

1 + δm

amm−1

)amm− 1
2

· (bmm− 1 + δm)δm

(amm− 1 + δm)δm
. (3.24)
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The logarithm of the numerator of the first fraction satisfies(
bmm− 1

2

)
log

(
1 +

δm
bmm− 1

)
≤ cδm

m→∞−−−→ 0. (3.25)

The same hold for the denominator. The logarithm of the second fraction is

δm log
bmm− 1 + δm
amm− 1 + δm

m→∞−−−→ 0. (3.26)

This finishes the proof. �

We now use Lemmas 3.3–3.5 to finish the proof of Proposition 3.2. Define

m = m(n) = 2(1−γ)n

δm = 1/f−n (s)− 1/f+
n (s)

am = 2−(1−γ)n(|An| − 2 + 1/f+
n (s))

bm = 2−(1−γ)n(1/f+
n (s))

(3.27)

Then, by Lemma 3.4, am, bm, δm satisfy the assumptions of Lemma 3.5. Therefore,

lim
n→∞

Γ(1/f−n (s))

Γ(1/f+
n (s))

· Γ(|An| − 2 + 1/f+
n (s))

Γ(|An| − 2 + 1/f−n (s))
= 1. (3.28)

Comparing the last display with the left-hand side of (3.20) we get using Lemma 3.4

Ex

[
e−s2−γnH(An\{x})

]
≥ |An| − 1

|An| − 2 + 1/f−n (s)
(1 + o(1)) =

ρ

s+ ρ
(1 + o(1)). (3.29)

The corresponding upper bound can be obtained analogously. �

Proof of Lemma 3.4. To estimate f+
n (s) and f−n (s) we need to compute the Laplace

transform fn(x, y; s) := Ex[exp(−s2−γnH(y))] for all pairs x, y ∈ An. This task can be
largely simplified using symmetries of the hypercube. First, it is obvious that fn(x, y; s)
depends only on the distance between x and y, that is if d(x, y) = k, then fn(x, y; s) =
fn(k, s), where

fn(k, s) := Ezk
[exp(−s2−γnH(0))], zk := (

k times︷ ︸︸ ︷
−1, . . . ,−1, 1, . . . , 1). (3.30)

Second, any walk started at zk should visit a point in the distance l < k from 0 before
hitting 0. This implies that fn(k, s) ≤ fn(l, s). Therefore, using the minimal distance
condition (3.17),

fn(n, s) ≤ f−n (s) ≤ f+
n (s) ≤ fn((ω + ε)n, s). (3.31)

The statement of Lemma 3.4 is thus equivalent to

lim
n→∞

1

2(1−γ)nfn(n, s)
= s, (3.32)

fn((ω + ε)n, s)− fn(n, s) = o(2−2(1−γ)n). (3.33)

We first compute fn(n, s) = Ezn

[
e−s2−γnH(0)

]
. This computation closely follows Sec-

tion 3 of [Mat89]. We should be a little bit more careful, since we need to compute the
Laplace transform of H(0) on a scale that is not typical for it, normally H(0) ∼ 2n. (In
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[Mat89] Ex

[
e−s2−nH(0)

]
was estimated.) By Fourier methods for random walks on finite

groups ([Mat88, Mat89], see also [Dia88] for the general theory)

Exe
−λH(0) =

∑
y∈Vn

(−1)x·y[1− e−λ(1− 2d(y,0)
n

)
]−1∑

y∈Vn

[
1− e−λ(1− 2d(y,0)

n
)
]−1 , (3.34)

where x · y =
∑n

i=1 xiyi is the standard scalar product in Rn. Setting λ = s/2γn, the
denominator of (3.34) (which does not depend on x) equals

n∑
i=0

(
n

i

)[
1− e−s/2γn

(
1− 2i

n

)]−1

. (3.35)

We expand e−s/2γn
= 1 − s/2γn + O(2−2γn). Treating separately the term i = 0, the

denominator becomes

(1− e−s/2γn

)−1

{
1 +

n∑
i=1

s

2γn
· n
2i

(
n

i

)}
(1 + o(1)). (3.36)

Writing n
2i

=
∑∞

j=0(1−
2i
n
)j for i /∈ {0, n}, we get

n∑
i=1

s

2γn
· n
2i

(
n

i

)
=

s

2γn

∞∑
j=0

( 2

n

)j
n−1∑
i=1

(
n

i

)(n
2
− i

)j

+O(2−γn)

= s2(1−γ)n(1 +O(n−1)).

(3.37)

To evaluate the inner sum we used the fact that it is, after the normalisation by 2−n,
up to a small error, equal to the j-th central moment of the binomial distribution with
parameters n and 1/2. The denominator of (3.34) is therefore equal to

s2(1−γ)n(1− e−s/2γn

)−1(1 + o(1)) = 2n(1 + o(1)). (3.38)

The calculation of the numerator of (3.34) for x = zn can be done analogously. The
only difference is that all factors

(
n
i

)
in (3.35) and further should be replaced by Cn(i) =

(−1)i
(

n
i

)
. We need therefore to compute

n∑
i=1

Cn(i)
s

2γn
· n
2i
, (3.39)

which corresponds to the sum in (3.36).

Lemma 3.6.
n∑

i=1

(−1)i

(
n

i

)
1

i
= −1− 1

2
− · · · − 1

n
. (3.40)

Proof. It is easy to see that

d

dx

(
x−1[(1− x)n − 1]

)
=

n∑
i=1

(−1)i

(
n

i

)
xi

i
. (3.41)

Therefore,
n∑

i=1

(−1)i

(
n

i

)
1

i
=

∫ 1

0

(1− x)n − 1

x
dx =

∫ 1

0

vn − 1

1− v
dv (3.42)
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from which it is easy to finish the proof. �

From the last lemma it follows easily that (3.39) tends to 0 as n → ∞, and the
numerator of (3.34) for x = zn is equal to

(1− e−s/2γn

)−1(1 + o(1)) =
2γn

s
(1 + o(1)). (3.43)

Putting together (3.34), (3.38), and (3.43) we get

fn(n, s) = Ezn

[
e−s2−γnH(0)

]
=

1

s2(1−γ)n
(1 + o(1)) as n→∞. (3.44)

This proves (3.32).
It remains to prove (3.33). We use again formula (3.34). Since the denominator does

not depend on x, we should only compute the numerator of the difference fn(h, s) −
fn(n, s) (eventually we will take h = (ω + ε)n as in (3.17)). Observing that the terms
with d(0, y) = 0 cancel, the numerator of the difference is equal to

n∑
i=1

Dn(i)
[
1− e−s/2γn

(
1− 2i

n

)]−1

, (3.45)

where the combinatorial factors Dn(i) are given by

Dn(i) =
∑

y:d(0,y)=i

[
(−1)zh·y − (−1)i

]
. (3.46)

An easy combinatorial reasoning gives that (using
(

n
k

)
:= 0 for k /∈ {0, . . . , n})

Dn(i) = −2(−1)i

n−h∑
j=1,3,5,...

(
n− h

j

)(
h

i− j

)
. (3.47)

Hence, expanding again e−s/2γn
, (3.45) can be written as

−
n∑

i=1

2(−1)i

n−h∑
j=1,3,5,...

(
n− h

j

)(
h

i− j

)
n

2i
(1 + o(1))

= −n
n−h∑

j=1,3,5,...

h∑
k=0

(−1)j+k

(
n− h

j

)(
h

k

)
1

j + k
(1 + o(1)). (3.48)

The sum over k can be computed similarly as in Lemma 3.6: for j ∈ N
h∑

k=0

(−1)k

j + k

(
h

k

)
=

∫ 1

0

xj−1(1− x)h dx =
Γ(1 + h)Γ(j)

Γ(1 + h+ j)
=

1

j

(
h+ j

j

)−1

. (3.49)

Observing that (−1)j = −1, the expression (3.45) equals (up to a multiplicative correc-
tion 1+o(1))

n

n−h∑
j=1,3,5,...

(
n− h

j

)(
h+ j

h

)−1
1

j
=: n

n−h∑
j=1,3,5,...

K(j). (3.50)
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Taking h = bξnc for some ξ ∈ (0, 1/2), and calculating the ratio of the consecutive
summands K(j)/K(j+ 2), we find that K(j) attains a maximum for j ∼ n(1

2
− ξ). The

last display is therefore bounded from above by

Cn2

(
(1− ξ)n

(1
2
− ξ)n

)(
1
2
n

ξn

)−1

. (3.51)

Standard Stirling type estimates applied to the previous expression imply that the nu-
merator of the difference fn(ξn, s)− fn(n, s) is, for all n large enough, bounded by

exp[n(I(ξ) + δ)] = 2nI(ξ−δ′)/ log 2, (3.52)

where δ, δ′ > 0 can be taken arbitrarily small. Taking now ξ = ω + ε, choosing δ′ < ε,
using (3.17), the fact that the denominator is of order 2n (see (3.38)), and I(x) is
decreasing on [0, 1/2], it is easy to prove (3.33). This completes the proof of Lemma 3.4.

�

The next lemma specifies conditions under which the assumptions of Proposition 3.2
are verified for a Poisson cloud on the hypercube. It also collects some technical facts
about this cloud that we will need later.

Lemma 3.7. Let An be a sequence of Poisson clouds on Vn with densities ρn satisfying
limn→∞ ρn2γn = ρ ∈ (0,∞) for some γ ∈ (0, 1). Then

(i) P-a.s. 2(γ−1)n|An| ∈ (ρ− δ, ρ+ δ) for any δ > 0 and n large enough.
(ii) Let γ > 1/2 and let ω′ < 1/2 be the unique solution of I(ω′) = 2(1 − γ) log 2.

Then P-a.s.
dmin := min{d(x, y) : x, y ∈ An} ≥ (ω′ − δ)n (3.53)

for any δ > 0 and n large enough.
(iii) If γ > 3/4, then the set An satisfies P-a.s. the assumptions of Proposition 3.2 for

all n large enough.
(iv) The claims (ii), (iii) stay valid if the set An is replaced by An ∪ {0}.

As a corollary of Proposition 3.2 and Lemma 3.7 we get

Corollary 3.8. If α2β2/2 log 2 > 3/4 then Condition (C) holds for r(n) and ρ(n) as
defined in (3.8) with Kr = 1.

Proof of Lemma 3.7. (i) The proof is standard. Using the Chebyshev inequality we get

P
[∣∣2(γ−1)n|An| − ρ

∣∣ ≥ δ
]
≤ δ−22n(γ−1). (3.54)

The Borel-Cantelli lemma then implies the result.
(ii) We construct the set An in the following way. Let R be a binomial random

variable with parameters 2n and ρn, and let (xi, i = 1, . . . , R) be a collection of randomly
chosen points in Vn, such that given (xj, j < i) the point xi is uniformly distributed in
Vn \ {xj : j < i}. It is easy to estimate the probability that xi is too close to some of
xj, j < i. Indeed, the volume of the ball with radius (ω′− δ)n around a point x satisfies∣∣{y ∈ Vn : d(x, y) ≤ (ω′ − δ)n}

∣∣ ≤ en(I(0)−I(ω′−δ)+ε) (3.55)

for all ε > 0 and n large enough. Therefore, for all i ≤ R

P
[
min
j<i

d(xi, xj) ≤ (ω′ − δ)n
]
≤ i− 1

2n − i+ 1
en(I(0)−I(ω′−δ)+ε). (3.56)
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So that, summing over i,

P
[
dmin ≤ (ω′ − δ)n

]
≤

2n∑
r=1

P[R = r]
r∑

i=1

P
[
min
j<i

d(xi, xj) ≤ (ω′ − δ)n
]

≤ P
[
R ≥ (1 + ε)2(1−γ)n

]
+ (1 + ε)222(1−γ)nen(−I(ω′−δ)+ε). (3.57)

It follows from the assumptions of the lemma that for any δ we can find ε > 0 such that
the right-hand side of the last expression decays exponentially with n. The Borel-Cantelli
lemma then implies (ii).

(iii) The assumption of Proposition 3.2 are satisfied if dmin ≥ (ω+ ε)n for some ε > 0
and ω defined in (3.16). Using part (ii) of this lemma, this condition is satisfied if
ω′ − δ ≥ ω + ε for some ε, δ. Since I(·) is decreasing on (0, 1/2), we get using the
definitions of ω, ω′ that γ should satisfy 2(1− γ) < 2γ− 1. This is true for any γ > 3/4.

Easy modifications of the proofs of (ii), (iii) to get (iv) are left to the reader. �

3.2. Proof of Theorem 3.1. We can now finish the proof of Theorem 3.1. Since
Condition (A) is trivially verified and (C) follows from Corollary 3.8, it remains to
verify Conditions (B), (D), 5 and 6 for the choice (3.7)–(3.10) of the parameters.

We need one technical lemma first:

Lemma 3.9. (a) Green’s function Gn
ξn

satisfies (recall ξn = mr(n))

lim sup
n→∞

Gn
ξn

(0,0) = lim sup
n→∞

Gn
ξn log ξn

(0,0) =: G∞ = 1. (3.58)

(b) For all x 6= 0 and for all n large enough

Gn
ξn

(0, x) ≤ cn−1. (3.59)

Proof. (a) Since Gn
ξn

(x, y) ≤ Gn
ξn log ξn

(x, y) it is sufficient to consider only the second
limit. The probability that Yn returns to 0 before ξn log ξn tends to 0 as n → ∞.
Indeed, using the Chebyshev inequality,

Pz1 [H(0) < ξn log ξn] ≤ esξn log ξn/2nEz1

[
e−sH(0)/2n]

. (3.60)

Performing more carefully the same computation as the one on page 138 of [Mat89] it
can be proved that

Ez1 [e
−sH(0)/2n

] =
1 + s/n

[
1 +O(s2−n) +O(1/n)

]
1 + s[1 +O(s2−n)][1 + 1/n+O(n−2)]

. (3.61)

Take now s = s(n) such that s(n) → ∞ and s(n)ξn log ξn/2
n → 0 as n → ∞, which

is possible by assumption (3.11) of Theorem 3.1. Then the right-hand side of (3.60)
tends to 0 as n → ∞. Therefore, for any ε > 0 there exists n0 such that for all n > n0

Pz1 [H(0) ≤ ξn log ξn] ≤ ε. Since after every visit of 0 the random walk Yn should jump
to some of its neighbours, we get by iterating the last estimate

P
[ ξn log ξn∑

i=0

1l{Yn = 0} ≥ k
]
≤ εk−1. (3.62)
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Therefore

Gn
ξn

(0,0) = E
[ ξn log ξn∑

i=0

1l{Yn = 0}
]
≤ (1− ε)−1 (3.63)

for all large n. Since ε was arbitrary, the proof of (a) is finished.
(b) Since Gn

ξn
(0, x) ≤ P[H(x) ≤ ξn]Gn

ξn
(0,0), and P[H(x) ≤ ξn] decreases as dist(x,0)

increases, it is sufficient to show that P[H(z1) ≤ ξn] = Pz1 [H(0) ≤ ξn] ≤ cn−1. However,
this is a direct consequence (3.61) and Chebyshev inequality with s(n) = n. �

Condition (D). We verify this condition with λn = n1/2. Then,
∞∑

n=0

exp{−λnt(n)/g(n)} =
∞∑

n=0

exp{−λn} <∞ (3.64)

as required. Using the last lemma we get∑
x∈Vn

(eλnGn
ξn

(0,x) − 1) = e2n1/2

+
∑

x∈Vn\{0}

(eλnGn
ξn

(0,x) − 1). (3.65)

For x ∈ Vn \ {0} Lemma 3.9 yields that λnG
n
ξn

(0, x) ≤ cn−1/2. Since eu − 1 ≤ 2u for all
u sufficiently close to 0, the last display is bounded from above by

e2n1/2

+
∑

x∈Vn\{0}

2Gn
ξn

(0, x) ≤ e2n1/2

+ 2ξ(n) ≤ Cmr(n), (3.66)

which was to be proved.
Condition (B). This condition follows from the next lemma.

Lemma 3.10. Uniformly for x ∈ TM
ε

lim
n→∞

Gn
T M

ε \{x}(x, x) = 1. (3.67)

Proof. Let H ′
n(x) = min{i ≥ 1 : Yn(i) = x}. Then

Gn
T M

ε \{x}(x, x) =
(
Px

[
Hn(TM

ε \ {x}) < H ′
n(x)

])−1
(3.68)

However

1− Px

[
Hn(TM

ε \ {x}) < H ′
n(x)

]
≤ Px[H

′
n(x) ≤ ξn log ξn] + Px[Hn(TM

ε \ {x}) ≥ ξn log ξn]. (3.69)

The first term is independent of x and converges to 0, as can be proved e.g. using
Lemma 3.9(a). Since Hn(TM

ε \ {x})/2γn is asymptotically exponentially distributed
with mean 1/pM

ε as follows from Corollary 3.8, and since ξn = m2γn, the second term
in (3.69) converges also to 0 uniformly in x. The lemma then follows from (3.68) and
(3.69). �

Condition 5. Let tn be a deterministic time sequence and An defined as in (2.13).
Fix ε small enough such that h(ε) used in Condition 1 satisfies h(ε) ≤ δ2/4. Then by
Chebyshev inequality the time spent in the shallow traps is small,

P
[ ξn∑

i=0

eiτYn(i)1l{Yn(i) ∈ T ε(n)} ≥ t(n)δ/2
∣∣∣τ]

≤ δ/2. (3.70)
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Let B be the event from the previous display. Conditionally on B and An, the event
{Xn(tn) 6= Un(jn)} occurs only if Xn returns to Un(jn) before the time Sn(rn(j + 1)).
However, the probability of such return tends to 0 by Lemma 3.9(a). This finishes the
proof.

Condition 6. As follows from (C) the number ζn of visited deep traps converges to
Poisson distribution with mean Krmp

M
ε . The probability that Yn returns to any of these

traps before ξn converges to 0 by Lemma 3.9(a). From these two facts the condition
follows easily.

4. Aging on the torus

As a second application of the general strategy presented in Section 2 we will give a
proof of aging on a two-dimensional torus. This complements the results of [BČM06]
about aging on Z2. Note that aging on d-dimensional torus, d ≥ 3, could be proved
analogously, however for notational convenience we treat only the two-dimensional case.

We will consider the following model. Let Gn = (Vn, En) be a two-dimensional torus
of size 2n with nearest-neighbours connection, i.e. Vn = Z2/2nZ2, and edge 〈x, y〉 ∈ En

iff
∑2

i=1 |xi − yi| mod 2n = 1. We use d(x, y) to denote the graph distance of x, y ∈ Vn.
Let further τ = {τn

x }, x ∈ Vn, n ∈ N, be a collection of positive i.i.d. random variables
satisfying

P[τn
x ≥ u] = u−α(1 + o(1)) (u→∞). (4.1)

For simplicity we assume that P[τx ≥ 1] = 1. Given graph Gn and the random environ-
ment τ we will consider the Markov processes Xn defined in Section 1. For this process
we will show:

Theorem 4.1. Let t(n) = 22n/αn1−(γ/α) for some γ ∈ (0, 1/6). Then for P-a.e. realisa-
tion of the random environment τ

lim
n→∞

Rn(t(n), (1 + θ)t(n); τ ) = Aslα(1/1 + θ). (4.2)

To show Theorem 4.1 we will verify that Conditions (A)–(D), 5, and 6 hold in our
case for the parameters

t(n) = 22n/αn1−γ/α, ξn = mr(n) = m22nn1−γ,

g(n) = ρ(n)−1/α = 22n/αn−γ/α, f(n) = n,

TM
ε (n) = {x ∈ Vn : τx ∈ (εg(n),Mg(n))}.

(4.3)

The main motivation for Theorem 4.1 is to extend the range of aging scales on Z2

and mainly to really explore the extreme values of the random landscape. Namely, the
BTM on the whole lattice Z2 does not find the deepest traps that are close to its starting
position. In the first 22n steps, it gets to the distance 2n and visits O(22n/ log(22n)) =
O(22n/n) sites. Therefore, the deepest visited trap has a depth of order 22n/α/n1/α,
which is much smaller that the depth of the deepest trap in the disk with radius 2n, that
is 22n/α. Eventually, the process visits also this deepest trap, however it will be too late.
This trap will no longer be relevant for the time change since much deeper traps will
have already be visited. The deepest trap is relevant only if the random walk stays in
the neighbourhood of its starting point a long enough time. One way to force it to stay



28

is to change Z2 to the torus. By changing the size of the torus relatively to the number
of considered steps, i.e. by changing γ, different depth scales become relevant for aging.

The range of possible values of γ ∈ (0, 1/6) has, as in the REM case, a natural bound
and an artificial one. It is natural that γ < 0 cannot be considered, since in this case the
number of steps ξn of the simple walk is larger than 22n(log 2n)1+ε, ε > 0. Therefore, its
occupation probabilities are very close to the uniform measure on the torus, that is the
process is almost in equilibrium. The other bound, γ = 1/6, comes from the techniques
that we use. We do not believe it to be meaningful since we expect the theorem to hold
for all γ > 0. Actually, the result for γ > 1 follows easily from the result of [BČM06] for
the whole lattice. In this case the size of the torus is much larger than ξ2

n. So that, the
process has no time to discover the difference between the torus and Z2. We also know
that Theorem 4.1 holds also in the window [1/6, 1] since it can be proved by the same
methods as for Z2, [BČM06]. However, to keep the presentation in this paper compact
and to avoid the more complicated coarse-graining techniques of [BČM06], we prefer to
stick to γ ∈ (0, 1/6).

To show our conditions we need again a little bit of the potential theory for the simple
random walk Yn on the torus Gn.

4.1. Potential theory on the torus. The following proposition is an equivalent of
Proposition 3.2.

Proposition 4.2. Let An ⊂ Vn be such that |An| = ρn22n with the “density” ρn satisfying
limn→∞ 22nn−γρn = ρ for some γ ∈ (0, 1/6) and ρ ∈ (0,∞). Let further An satisfy the
minimal distance condition

min{d(x, y) : x, y ∈ An} ≥ 2nn−κ =: rmin, (4.4)

for some κ > 0. Then, for Kr = π(2 log 2)−1,

lim
n→∞

max
x∈An

∣∣∣∣Ex

[
exp

(
− s

22nn1−γ
H(An \ {x})

)]
− Krρ

s+Krρ

∣∣∣∣ = 0. (4.5)

Proof. To proof this proposition we use again the methods from [Mat88], namely the
formula (3.20). To apply it, we need to get precise estimates of the following functions
(we use translation invariance of the torus and the minimal distance condition to simplify
the definitions)

f+
n (s) = sup

x∈Vout
n

Ex

[
exp

(
− s

22nn1−γ
H(0)

)]
f−n (s) = inf

x∈Vout
n

Ex

[
exp

(
− s

22nn1−γ
H(0)

)]
,

(4.6)

where Vout
n = {x ∈ Vn : d(0, x) ≥ rmin}, and 0 = (0, 0). Using the same reasoning as

between (3.20) and (3.29) it is easy to show that Proposition 4.2 follows from

lim
n→∞

1

nγf±n (s)
= K−1

r s, (4.7)

lim
n→∞

( 1

f−n (s)
− 1

f+
n (s)

)
= 0. (4.8)
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To estimate the functions f+
n and f−n we use methods developed in [Cox89, CD02].

Following these papers we denote by qk(x, y) for the (smoothed) probability that a simple
random walk on Z2 started at x is at y after k steps, more precisely we define

qk(x, y) :=
{
Px[Y (k) = y] + Px[Y (k + 1) = y]

}
/2 x, y ∈ Z2, (4.9)

where Y is a simple random walk on Z2. Let L := 2n. We use

qn
k (x, y) :=

∑
z∈Z2

qk(x, y + zL), x, y ∈ Vn, (4.10)

to denote the transition probability of the simple random walk on the torus Vn. Let

Gn(x; s) =
∞∑

k=0

e−sk/h(n)qn
k (0, x) (4.11)

with h = h(n) = 22nn1−γ. As is shown e.g. in [Cox89], p. 1339,

f±n (s) = sup
x∈Vout

n

( inf
x∈Vout

n

)
Gn(x; s)

Gn(0; s)
. (4.12)

Adapting slightly the calculation in [Cox89], p. 1340, we find that the common denom-
inator in the previous formula satisfies as n→∞

Gn(0; s) =
2n

π
log 2(1 + o(1)). (4.13)

In view of this, (4.7), (4.8) are equivalent to

sup
x∈Vout

n

( inf
x∈Vout

n

)Gn(x; s) =
n1−γ

s
(1 + o(1)), (4.14)

sup
x∈Vout

n

Gn(x; s)− inf
x∈Vout

n

Gn(x; s) = o(n1−2γ). (4.15)

To verify these two claims we need very precise estimates on qn
k (0, x). Fortunately, the

estimates from [CD02] could be used with a small refinement:

Lemma 4.3 ([CD02] Lemma 3.1). (a) Let εn = 1/
√

logL. There is a finite constant C
such that

sup
k≥εnL2

sup
x∈Vn

εnL
2ρn

k(0, x) ≤ C. (4.16)

(b) If sn →∞ as n→∞, then

sup
k≥snL2

sup
x∈Vn

L2|ρn
k(0, x)− L−2| = o(s−1

n ). (4.17)

(c) If un →∞ as L→∞, then

sup
x∈Vn

sup
un(1+|x|)2≤k≤εnL2

|πkρn
k(0, x)− 1| → 0. (4.18)

(d) There is a finite constant C such that

sup
k≥0, x∈Vn

(1 + |x|2)ρn
k(0, x) ≤ C. (4.19)
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Proof. The claims (a), (c) and (d) are proved in [CD02]. The claim (b) is a refinement
of [CD02], where the same expression was proved to be o(1). As in [Cox89] we use a
very precise expansion of qk(0, x) from [BRR76], Corollary 22.3, to prove (b). As stated
there

qk(0, x) = φk(x) + ψk(x). (4.20)

Here φk(x) = (πk)−1 exp(−|x|2/k) with

|x| = min{
√

(x1 + z1L)2 + (x2 + z2L)2 : z ∈ Z2}, (4.21)

and

ψk(x) = φn(x)
w∑

r=1

k−r/2Br(x/
√
k) + ew(x, k), (4.22)

where w is an integer larger than 2, each Br(x) is a polynomial of degree at most 3r,
and ∑

x∈Z2

|ew(x, k)| = o(k−w/2) (n→∞). (4.23)

To get (b), it is sufficient to improve estimates (i), (ii) on page 1373 of [CD02], namely
to show

L2
∑

z∈Z2 φ[snL2](x+ Lz)− L2 = o(s−1
n ), (4.24)

L2
∑

z∈Z2 ψ[snL2](x+ Lz) = o(s−1
n ). (4.25)

Let x′ = x/L, then the left-hand side of (4.24) can be written as∑
z∈Z2

1

snπ
exp

{
− |x′ + z|2

sn

}
−

∫
R2

1

snπ
exp

{
− |x′ + y|2

sn

}
dy

=
1

π

∑
z∈Z2/

√
sn

∫
I
s
−1/2
n

e−|x
′′+z|2 − e−|x

′′+z+y|2 dy, (4.26)

where x′′ = x′/
√
sn and Iδ = [−δ/2, δ/2]2. Let h(u) = e−|u|

2
. It is easy to show using

Taylor expansion up to forth order and eliminating the odd terms that∫
Iδ

h(u+ v)− h(v) dv =

∫
Iδ

[1

2

(
∂11h(u)v

2
1 + ∂22h(u)v

2
2

)
+R(u)

(δ
2

)4]
dv,

=
δ4

8
(∂11h(u) + ∂22h(u)) +R(u)δ6.dv

(4.27)

where the reminder R(u) is bounded by the sum of suprema of all derivatives of forth
order over the set u+ Iδ. Since∑

z∈Z2/
√

sn

∂11h(z) + ∂22h(z) +R(z) <∞ (4.28)

we get that (4.26) is bounded from above by C(
√
sn)−4 = Cs−2

n uniformly in x ∈ Vn.
This proves (4.24).

To show (4.25) is much simpler. It follows from the calculation at page 1343 of
[Cox89] that the contribution of the first part of ψ (see (4.22)) is actually bounded by
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CL−1 � s−1
n . Similarly, (4.23) yields that the contribution of the second part of ψ is

bounded by

L2
∑
z∈Z2

|ew(x+ zL, snL
2)| ≤ L2

∑
z∈Z2

|ew(z, snL
2)| = L2o(L−2s−w/2

n ). (4.29)

It is now sufficient to take w = 3 to finish the proof of (4.25) and therefore of Lemma 4.3.
�

We can now finish the proof of (4.14) and (4.15). Choose sn such that nγ � sn �
n1/2−2γ � n1−γ, which is possible for all γ ∈ (0, 1/6). Then, first, by Lemma 4.3(b),
uniformly in x,

∞∑
k=snL2

e−sk/hρL
k (0, x) =

∞∑
k=snL2

e−sk/hL−2(1 + o(s−1
n ))

= L−2e−ssn/n1−γ

(1− e−s/h)−1(1 + o(s−1
n ))

=
n1−γ

s
(1 + o(n−γ)).

(4.30)

Second, by Lemma 4.3(a), uniformly in x ∈ Vout
n (recall h = 22nn1−γ),

snL2∑
k=εnL2

e−sk/hρL
k (0, x) ≤ Ce−sk/h C

εLL2
≤ Csn

εns
= o(n1−2γ). (4.31)

Third, by Lemma 4.3(c),

εnL2∑
k=un(1+|x|)2

e−sk/hρL
k (0, x) ≤

εnL2∑
k=un(1+|x|)2

C

k
≤ C

[
log

εn

un

− 2 log
1 + |x|
L

]
. (4.32)

Since 1 ≥ (1 + |x|)/L > n−κ for x ∈ Vout
n , choosing un = n1−3γ, the last expression is

bounded by C ′ log n� n1−2γ. Finally,

un(1+|x|)2∑
k=0

e−sk/hρL
k (0, x) ≤

un(1+|x|)2∑
k=0

C(1 + |x|2)−1 ≤ Cun � n1−2γ. (4.33)

Putting together (4.30)–(4.33) we get that for all x ∈ Vout
n

Gn(x; s) =
n1−γ

s
(1 + ō(1)) + o(n1−2γ), (4.34)

which is equivalent to (4.14), (4.15). (Here again ō denotes an error that is independent
of x ∈ Vout

n .) This finishes the proof of Proposition 4.2. �

As in the case of the REM, the assumptions of Proposition 4.2 are verified for a
Poisson cloud on the torus:

Lemma 4.4. Let An be Poisson clouds with densities ρn satisfying limn→∞ ρn22nn−γ =
ρ ∈ (0,∞) for some γ ∈ (0, 1). Then

(i) P-a.s. n−γ|An| ∈ (ρ− δ, ρ+ δ) for any δ > 0 and n large enough.
(ii) Let γ ∈ (0, 1). Then for any κ > 1 + γ, P-a.s. for n large enough

dmin := min{d(x, y) : x, y ∈ An} ≥ 2nn−κ. (4.35)
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(iii) If γ ∈ (0, 1/6), then the set An satisfies P-a.s. the assumptions of Proposition 4.2
for all n large enough.

(iv) The claims (ii), (iii) stay valid if the set An is replaced by An ∪ {0}.

Proof. The proof follows the same lines as the proof of Proposition 3.2 and is left to the
reader. �

Corollary 4.5. If γ ∈ (0, 1/6) then Condition (C) holds for r(n), ρ(n) from (4.3).

4.2. Proof of Theorem 4.1. It remains to verify Conditions (B), (D), 5 and 6 for
objects in (4.3). The condition (A) follows trivially from (4.1).

Condition (D). We need first an estimate on the Green’s function Gn
ξn

(0, x). Since
(up to a very small error due to smoothing (4.9) that we can ignore) Gn

ξn
(0, x) =∑ξn

k=0 q
n
k (0, x), we use Lemma 4.3. First, by (b) of this lemma,

ξn∑
k=snL2

qn
k (0, x) ≤

ξn∑
k=snL2

CL−2 ≤ CξnL
−2 ≤ Cmn1−γ. (4.36)

Second, by (a),

snL2∑
k=εnL2

qn
k (0, x) ≤ (sn − εn)L2 C

εnL2
≤ Csnε

−1
n � n1−γ (4.37)

if sn is such that sn →∞ and sn � n1/2−γ. Further, by (c),

εnL2∑
k=un(1+|x|)2

qn
k (0, x) ≤

εnL2∑
k=un(1+|x|)2

C

k
≤ C log

L2εn

un(1 + |x|)2
, (4.38)

and by (d)

un(1+|x|)2∑
k=0

qn
k (0, x) ≤ un. (4.39)

Taking un = n1−γ and putting together (4.36)–(4.39) we get that for all x ∈ Vn

Gn
ξn

(0, x) ≤ C1mn
1−γ + C2 log

L2εn

un(1 + |x|)2
. (4.40)

We can now prove Condition (D) for λn = nδ−1 with 0 < δ < γ. We first treat
x ∈ Vn with d(0, x) ≥ 2nn−κ, κ > 1. In this case Gn

ξn
(0, x) ≤ C1mn

1−γ and thus
λnG

n
ξn

(0, x) � 1. Therefore∑
x∈Vn:|x|≥2nn−κ

(eλnGn
ξ(n)

(0,x) − 1) ≤
∑

x∈Vn:|x|≥2nn−κ

2λnG
n
ξ(n)(0, x) ≤ 2λnmr(n). (4.41)
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The rest of the sum is negligible. Indeed,∑
x∈Vn:|x|≤2nn−κ

eλnGn
ξ(n)

(0,x) ≤ eC1mnδ−γ
∑

|x|≤2nn−κ

(c22nn1/2−γ

(1 + |x|2)

)C2λn

≤ (c22nn1/2−γ)C2λn

∫ 2nn−κ

1

z1−2C2λn dz

≤ C(c22nn1/2−γ)C2λn(2nn−κ)2−2C2λn ≤ C22nn−2κ � λnr(n).

(4.42)

Condition (B). This condition follows from the next lemma.

Lemma 4.6. Uniformly for x ∈ TM
ε

lim
n→∞

n−1Gn
T M

ε \{x}(x, x) =
2 log 2

π
. (4.43)

Proof. By Lemma 4.4 there is no point of the top in the disk Dx(2
nn−κ) with radius

2nn−κ around x ∈ TM
ε . Therefore, by e.g. Theorem 1.6.6 of [Law91],

Gn
T M

ε \{x}(x, x) ≥ Gn
Dx(2nn−κ)c(x, x) =

2

π
log(2nn−κ) +O(1) =

2 log 2

π
n+ o(n). (4.44)

Further, after hitting the boundary of Dx(2
nn−κ) the simple random walk Yn has prob-

ability of order n−γ to return back to x before hitting TM
ε \ {x}. Therefore

Gn
T M

ε \{x}(x, x) ≤
∞∑

k=0

n−γkGn
Dx(2nn−κ)c(x, x) ≤

2 log 2

π
n+ o(n). (4.45)

This finishes the proof. �

Condition 6. This condition can be easily verified as in the REM case using Lemma 4.4
and Proposition 4.2.

Condition 5. The proof of the last condition is slightly more complicated, it follows
the lines of the proof of Lemma 7.4 in [BČM06]. For any δ > 0 we have defined event
An(δ) by (see (2.13))

∃1 < jn < ζn : Sn(rn(jn)) ≤ t′n ≤ Sn(rn(jn + 1))− δt(n), (4.46)

where t(n)/2 ≤ t′n ≤ (1 + θ)t(n) is a deterministic time sequence.
We want to show that P[Xn(t′n) = Un(jn)|An(δ), τ ] > 1 − δ for all n large enough.

To simplify the notation we define y = Un(jn), un = Sn(rn(jn)). We further fix ω =
(γ + 7)/(1− α) (this value has no particular importance, any larger value would work),
and λ = γ + ωα/2 + 1.

By Condition 1 it is possible to choose ε small enough such that the mean time spent
in T ε before ξn is smaller than δ3t(n). This implies (using Chebyshev inequality) that

P
[
∃vn ∈ [Sn(rn(jn + 1))− δt(n), Sn(rn(jn + 1))] :

Xn(sn) = y|An(δ), τ
]
≥ 1− cδ2. (4.47)
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It is easy to show that conditionally on the event in the last display, the probability that
the process Xn leaves disk D := Dy(2

nn−λ) between times un and vn tends to 0 as n
increases. Therefore,

P
[
Xn(t′) ∈ D ∀t′ ∈ [un, vn]|An(δ), τ

]
≥ 1− cδ2. (4.48)

We use Bn to denote the event in the last display. To finish the proof of Condition 5 it
is sufficient to show that for all n large

P[Xn(t′n) = y|τ , Bn, un, y] ≥ 1− δ/2. (4.49)

The Markov process (Xn(un + s) : s ∈ [0, vn− un]), given τ , Bn, un, y is equal in law
to the process (V (s) : s ∈ [0, vn − un]) conditioned on the event {T > vn − un} where V
and T are constructed as follows:

(i) V stays at site y for an exponential, mean τy, amount of time, then
(ii) with probability p(n), the probability that a random walk starting at y escapes D

before returning to site y, the process terminates and T is the termination time. With
probability 1− p(n) the process V performs an excursion away from y conditioned not
to leave D. At the end of the excursion it returns to y and step (i) resumes and so on.

The important point is that the number p(n) is of order 1/n while (recall y ∈ TM
ε )

the mean time spent at y per visit exceeds ε22n/αn−γ/α. Thus the conditioning event has
probability bounded below by C(ε, θ). Hence it will suffice to show that P[V̄ (t′n− un) 6=
y|τ ] tends to zero as n tends to infinity τ -a.s. where process (V̄ (u) : u ≥ 0) is a Markov
process that alternates staying at site y an exponential amount of time with mean τy
and performing excursions away from y conditioned to stay within D (again staying at
each site a time according to τ ).

We first show that τ -a.s. for n sufficiently large, the expected duration of a conditioned
excursion from y is very small compared to τy uniformly over possible y ∈ TM

ε . It is
easy to prove that in D there are only traps shallower than εn−ω22n/αn−γ/α. Indeed, let
B(y) be the event

B(y) =
{
y ∈ TM

ε ,∃x ∈ D, τx ≥ εn−ω22n/αn−γ/α
}
. (4.50)

Then,

P[
⋃

y∈Vn

B(y)] ≤ C22n(2−2nnγ)2nωα22nn−2λ = Cn−2 (4.51)

and the claim follows easily by the Borel-Cantelli lemma.
It was proved, e.g. in [BČM06], that the expected number of visits to z ∈ D \ {y}

during an excursion that does not leave the disk is smaller than 2. The expected duration
of the i-th excursion, Vi, thus satisfies

E[Vi|τ ] ≤ 2
∑

z∈D\{y}

τz ≤ 2
∑
z∈Vn

τz1l{τz ≤ n−ωε22n/αn−γ/α}. (4.52)

It follows from (4.1) that

E[τx1l{τ(x) ≤ u}] = O(u1−α) (u→∞). (4.53)

Therefore, by Chebyshev inequality,

P
[ ∑

z∈Vn

τz1l{τz ≤ n−ωε22n/αn−γ/α} ≥ 22n/αn−γ/αn−5
]
≤ Cn−2. (4.54)
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Hence, for a.e. τ and n large enough

E[Vi|τ ] ≤ C22n/αn−γ/αn−5. (4.55)

The expected number of excursions of V̄ before time vn − un = O(t(n)) is bounded
by a multiple of n, the mean of the total time spent by V̄ during the interval [0, vn−un]
away from y is easily bounded by C22n/αn−γ/αn−4 for C depending on ε but not on n.

We claim that (for n sufficiently large) for any s ∈ [0, vn − un], P[V̄ (s) 6= y] ≤ 2C/n2.
Suppose not. Then for some s′, P[Y (s′) 6= y] ≥ 2C/n2. We have that the expected
total time spent by V̄ away from y in interval [s′, s′ + 22n/αn−γ/αn−2] is bounded by
C22n/αn−γ/αn−4, so there exists s′′ ∈ [s′, s′+22n/αn−γ/αn−2] so that P[V̄ (s′′) 6= y] ≤ C/n2.
On the other hand, by the Markov property for V̄ , if ν is the time of the first jump from
y,

P[V̄ (s′′) 6= y] ≥ P[V̄ (s′′) 6= y ∩ {ν > s′′ − s′}] > 1

2
P[V̄ (s′) 6= y] ≥ C/n2. (4.56)

for n sufficiently large. This contradiction gives the desired result.
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Féderale de Lausanne, 1015 Lausanne, Switzerland

E-mail address: gerard.benarous@epfl.ch
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