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Abstract

We consider a directed random walk on the backbone of the infinite cluster gener-
ated by supercritical oriented percolation, or equivalently the space-time embedding
of the “ancestral lineage” of an individual in the stationary discrete-time contact pro-
cess. We prove a law of large numbers and an annealed central limit theorem (i.e.,
averaged over the realisations of the cluster) using a regeneration approach. Fur-
thermore, we obtain a quenched central limit theorem (i.e. for almost any realisation
of the cluster) via an analysis of joint renewals of two independent walks on the same
cluster.
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1 Introduction and main results

In mathematical population genetics it is often important to understand the ances-
tral relationship of individuals to deduce information about the genetic variability in
the population, see e.g. [8]. In spatial population models the ancestry of a collection of
individuals can in general be described by a collection of coalescing random walks in
a random environment. Depending on the forwards in time evolution of the population
such random environments can be rather complicated.

In the present paper we study the ancestral line, that is, the evolution of the positions
of the parents, of a single individual in a simple model allowing for locally varying
population sizes. More precisely we consider a discrete-time variant of the contact
process: a {0, 1}Zd -valued Markov chain (ηn)n (see below for precise definitions) where
ηn(x) = 1 is interpreted as the event that the site x ∈ Zd is inhabited by a particle in
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Directed random walk on oriented percolation cluster

generation n. We can view this contact process as a “toy example” of a spatial stochastic
population model with fluctuating population sizes and local dispersal: Sites x can have
carrying capacity 0 or 1 in a given generation n, and in order for a particle at site x to be
present not only must the corresponding site be open (i.e. have the carrying capacity 1)
but there must also have been a particle in the neighbourhood of x in the previous
generation n − 1 who put her offspring there. If there was more than one particle in
the neighbourhood of x in generation n − 1, we think of randomly assigning one of
them to put an offspring to site x. Note that this implicitly models a density-dependent
population regulation because particles in sparsely-populated regions will now have a
higher chance of actually leaving an offspring.

We will let the carrying capacities be i.i.d. Bernoulli random variables, and consider
the process η in the stationary regime. In this regime every living particle at genera-
tion 0, say, has an infinite line of ancestors. The question of interest is the distribution
of the spatial location of distant-in-time ancestors.

One can of course interpret the discrete-time contact process as a process describ-
ing spread of an infection and interpret the carrying capacities as susceptible for the
infection or immune if the Bernoulli random variable at the corresponding site is 1 re-
spectively 0. Then our question of interest is the spatial location of the distant-in-time
carriers of the infection from which the infection propagated to a given individual.

By reversing the time direction, the problem has the following equivalent descrip-
tion. We consider a simple directed random walk on the “backbone” of the infinite
cluster of the oriented percolation on Zd × Z. The backbone of the cluster, we denote
it by C, is a collection of all sites in Zd × Z that are connected to infinity by an open
path. The “time-slices” of the cluster C can be seen to be equal in distribution to the
time-reversal of the (non-trivial) stationary discrete-time contact process (ηn)n, and the
directed walk on C can be interpreted as the spatial embedding of the ancestral lineage
of one individual drawn from the equilibrium population. The question posed in the pre-
vious paragraph thus amounts to understanding the long time behaviour of this random
walk.

In this formulation, the model is of independent interest in the context of the theory
of random media: The directed random walk on an oriented percolation cluster can be
viewed as a random walk in a Markovian dynamical random environment. The investi-
gation of such random walks is an active research area with a lot of recent progress.
The random walk we consider however does not satisfy the usual independence or mix-
ing conditions that appear in the literature; see Remark 1.7 below. In fact, in our case
the evolution of the environment as a process in time is rather complicated.

On the other hand, as a random walk on a random cluster, the model is very natural.
The investigation of random walks on percolation clusters is a very active research area
as well. An important difference to our model is that usually, the walk can move in all
(open) directions, whereas we consider a directed random walk.

We now give a precise definition of the model. Let ω := {ω(x, n) : (x, n) ∈ Zd×Z} be a
family of independent Bernoulli random variables (representing the carrying capacities)
with parameter p > 0 on some probability space (Ω,A,P). We call a site (x, n) open if
ω(x, n) = 1 and closed if ω(x, n) = 0. We say that there is an open path from (y,m) to
(x, n) for m ≤ n if there is a sequence xm, . . . , xn such that xm = y, xn = x, ‖xk−xk−1‖ ≤
1 for k = m + 1, . . . , n and ω(xk, k) = 1 for all k = m, . . . , n. In this case we write
(x,m)→ (y, n). Here ‖·‖ denotes the sup-norm.

Given a set A ⊂ Zd we define the discrete time contact process (ηAn )n≥m starting at
time m ∈ Z from the set A as

ηAm(y) = 1A(y), y ∈ Zd,
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and for n ≥ m

ηAn+1(x) =

{
1 if ω(x, n+ 1) = 1 and ηAn (y) = 1 for some y ∈ Zd with ‖x− y‖ ≤ 1,

0 otherwise.

In other words, ηAn (y) = 1 if and only if there is an open path from (x,m) to (y, n)

for some x ∈ A (where we use in this definition the convention that ω(x,m) = 1A(x)

while for k > m the ω(x, k) are i.i.d. Bernoulli as above). Often we will identify the
configuration ηAn with the set {x ∈ Zd : ηAn (x) = 1}. Taking m = 0, we set

τA := inf{n ≥ 0 : ηAn = ∅}, (1.1)

and in the case A = {0} we write τ0.
It is well known, see e.g. Theorem 1 in [10], that there is a critical value pc ∈ (0, 1)

such that P(τ0 = ∞) = 0 for p ≤ pc and P(τ0 = ∞) > 0 for p > pc. In the following we

consider only the supercritical case p > pc. In this case the law of ηZ
d

n converges weakly
to the upper invariant measure which is the unique non-trivial extremal invariant mea-
sure of the discrete-time contact process. By taking m → −∞ while keeping A = Zd

one obtains the stationary process

η := (ηn)n∈Z := (ηZ
d

n )n∈Z. (1.2)

We interpret the process η as a population process, where ηn(x) = 1 means that
the position x is occupied by an individual in generation n. We are interested in the
behaviour of the “ancestral lines” of individuals. Note that because of the discrete time,
there can in principle be several individuals alive in the previous generation that could
be ancestors of a given individual at site y, namely all those at some y′ with ‖y′−y‖ ≤ 1.
In that case, we stipulate that one of these potential ancestors is chosen uniformly at
random to be the actual ancestor, independently of everything else in the model.

Due to time stationarity, we can focus on ancestral lines of individuals living at time
0. It will be notationally convenient to time-reverse the stationary process η and con-
sider the process ξ := (ξn)n∈Z defined by ξn(x) = 1 if (x, n) → ∞ (i.e. there is an
infinite directed open path starting at (x, n)) and ξn(x) = 0 otherwise. Note that indeed
L((ξn)n∈Z) = L((η−n)n∈Z). We will from now on consider the forwards evolution of ξ as
the “positive” time direction.

On the event B0 := {ξ0(0) = 1} there is an infinite path starting at (0, 0). We define
the oriented cluster by

C := {(x, n) ∈ Zd ×Z : ξn(x) = 1}

and let
U(x, n) := {(y, n+ 1) : ‖x− y‖ ≤ 1} (1.3)

be the neighbourhood of the site (x, n) in the next generation. On the event B0 we may
define a Zd-valued random walk X := (Xn)n≥0 starting from X0 = 0 with transition
probabilities

P(Xn+1 = y|Xn = x, ξ) =

{
|U(x, n) ∩ C|−1 when (y, n+ 1) ∈ U(x, n) ∩ C,
0 otherwise.

(1.4)

Note that (Xn, n)n≥0 is a directed random walk on the percolation cluster C, and X

can be also viewed as a random walk in a (dynamical) random environment, where the
environment is given by the process ξ. As the environment ξ is the time-reversal of the
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stationary Markov process η, it is itself Markovian and stationary, the invariant measure
being the upper invariant measure of the discrete-time contact process η. While the
evolution of η is easy to describe forwards in time by local rules, η is not reversible, and
the time evolution of its reversal ξ seems complicated. The transition probabilities for
ξ cannot be described by local functions: For example, when viewed as a function of
a = (ax)x∈Zd ∈ {0, 1}Z

d

, f(a) := P(ξn+1(0) = 1|ξn = a), there will be no finite set K ⊂ Zd
such that f depends only on (ax)x∈K (this can for example be seen by considering
various a’s that have a “sea of 0’s around the origin”). Presently it is not at all clear
to us how to describe the forwards in time evolution of ξ in a more tangible way. Note
however, that the process ξ does form a finite-range Markov field in the larger space
Zd × Z because this is true for η, but it is unclear at the moment what use we could
make of that fact.

The complicated nature of ξ disallows checking many of the usual conditions that
appear in the literature on random walks in dynamical random environment. Some of
such conditions (like e.g. ellipticity) are obviously violated by our model. To our best
knowledge, the random walk in a (dynamic) random environment that we consider here
is not contained in one of the classes studied in the literature so far; see Remark 1.7
below.

Our first result shows the law of large numbers, and a central limit theorem for
X when averaging over both the randomness of the walk’s steps and the environment
ω. We write Pω for the conditional law of P, given ω, and Eω for the corresponding
expectation. With this notation we have P(Xn+1 = y|Xn = x, ξ) = Pω(Xn+1 = y|Xn = x).

Theorem 1.1 (LLN & annealed CLT). For any d ≥ 1 we have

Pω

( 1

n
Xn → 0

)
= 1 for P( · |B0)-a.a. ω, (1.5)

and for any f ∈ Cb(Rd)

E
[
f
(
Xn/
√
n
) ∣∣∣B0

]
n→∞−−−−→ Φ(f), (1.6)

where Φ(f) :=
∫
f(x) Φ(dx) with Φ a non-trivial centred isotropic d-dimensional normal

law.

We prove this theorem by exhibiting a regeneration structure for X and ξ, and then
showing that the second moments of temporary and spatial increments of X at regen-
eration times are finite (in fact we will prove existence of exponential moments).

Remark 1.2. The covariance matrix of Φ in (1.6) is σ2 times the d-dimensional identity
matrix. It is clear from the construction below (see Subsection 2.2) that

σ2 = σ2(p) =
E
[
Y 2

1,1

]
E[τ1]

∈ (0,∞) (1.7)

where τ1 is the first regeneration time (see (2.10)) of the random walk X and Y1,1 is
the first coordinate of Xτ1 , the position of the random walk at this regeneration time. A
simple truncation and coupling argument shows that p 7→ σ2(p) is continuous on (pc, 1];
see Remark 2.6. The behaviour of σ2(p) as p ↓ pc appears to be an interesting problem
that merits further research.

It is natural to study also two (or even more) walkers on the same cluster. On
the one hand, this allows to obtain information on the long-time behaviour in a multi-
type situation. Neuhauser in [17] and more recently Valesin in [23] employed this for
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the (continuous-time) contact process. It is also very natural from the modelling of
ancestral lineages point of view, where it corresponds to jointly describing the space-
time embedding of the ancestry of a sample of size two (or more) individuals when the
walks start from different sites. On the other hand, good control of the behaviour of
two or more “replicas” of X on the same cluster allows us to strengthen the annealed
CLT (1.6) to the quenched version.

Theorem 1.3 (Quenched CLT). For any d ≥ 1 and f ∈ Cb(Rd)

Eω

[
f
(
Xn/
√
n
) ] n→∞−−−−→ Φ(f) for P( · |B0)-a.a. ω, (1.8)

where Φ is the same non-trivial centred isotropic d-dimensional normal law as in (1.6).

Let us conclude the introduction by mentioning some generalisations of the random
walk that we consider here.

Remark 1.4 (More general neighbourhoods). For simplicity, we defined U(x, n) as in
(1.3), but the proofs go through for any finite, symmetric neighbourhood (by “symmet-
ric” we mean that y ∈ U(x, n) if and only if −y ∈ U(x, n)). In this case the resulting law
Φ will in general not be isotropic, see the end of the proof of Theorem 1.1.

Note also, that for sake of clarity, all figures in this paper are drawn with U(x, n) set
to {(x+ 1, n+ 1), (x− 1, n+ 1)} for d = 1.

Remark 1.5 (Functional central limit theorem). For the random walk X one can also
deduce corresponding annealed and quenched functional limit theorems; see also Re-
mark 3.11.

Remark 1.6 (Contact process with fluctuating population size). Let K(x, n), (x, n) ∈
Zd × Z be i.i.d. N = {1, 2, . . . }-valued random variables and let us define the discrete
time contact process with fluctuating population size, η̂ := (η̂n)n∈Z, by

η̂n(x) := ηn(x)K(x, n), (1.9)

and its reversal ξ̂ := (ξ̂n)n∈Z by

ξ̂n(x) := ξn(x)K(x, n). (1.10)

One can interpret K(x, n) as a random “carrying capacity” of the site (x, n). Now con-
ditioned on ξ̂0(0) ≥ 1 the ancestral random walk, we call it X as before, can be defined
by X0 = 0 and

P
(
Xn+1 = y|Xn = x, ξ̂

)
=


ξ̂n+1(y)∑

(y′,n+1)∈U(x,n) ξ̂n+1(y′)
if (y, n+ 1) ∈ U(x, n),

0 otherwise.

(1.11)

For such random walks in random environments our arguments can also be adapted
and the same results as above can be obtained; see also Remark 2.4.

Remark 1.7 (Relation to other approaches to RWDRE in the literature). Random walks
in dynamic random environments (RWDRE) are currently an active area of research
(they can of course by explicitly including the “time” coordinate in principle be ex-
pressed in the context of random walk in random (non-dynamic) environments, but the
often more complicated structure of the law of the environment does make them some-
what special inside this general class). To the best of our knowledge, the walk (1.4) and
our results in Theorems 1.1 and 1.3 are not covered by approaches in the literature.
Here is a list of corresponding results so far together with a very brief discussion:
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• Dolgopyat et al. [5] obtain a CLT under “abstract” conditions on the environment
process, that appear very hard to verify explicitly for ξ, in particular the absolute
continuity condition for ξ viewed relative to the walk w.r.t. the a priori law on ξ.

• Joseph and Rassoul-Agha consider in [13] environments that are “refreshed in
each step” (i.e. time-slices are i.i.d.), this does not apply to (ξn).

• Individual coordinates (ξn(x))n∈N with x ∈ Zd fixed are not (independent) Markov
chains, in contrast to the set-up in [6] by Dolgopyat and Liverani.

• (ξn) does not fulfil the required uniform coupling conditions employed by Redig
and Völlering in [19].

• (ξn) does not fulfil the cone mixing condition considered in Avena et al. [1]. In-
tuitively, this stems from the fact that the supercritical contact process has two
extremal invariant distributions, the upper invariant measure (which we consider
here) and the trivial measure (which concentrates on ξ ≡ 0). Thus, at an arbitrarily
large level n an atypically high density of zeros around the origin can be achieved
by conditioning on large enough islands of zeros below at level 0, an event with
positive probability.

• den Hollander et al. [4] weaken the cone-mixing condition from [1] to a conditional
cone-mixing condition and obtain a LLN for a class of (continuous-time) random
walks in dynamic random environments with this (and some further technical) as-
sumptions. Further research is required to investigate whether a similar condition
can be established for ξ but note that presently, the approach in [4] does not yield
a CLT.

The rest of the paper is organised as follows. In Section 2, we define the regen-
eration structure for a single walk. To define the regeneration times, we first give an
alternative construction of the walk, using some “external randomness”. Theorem 1.1
then follows by standard arguments, once we show that the regeneration times have fi-
nite exponential moments, see Lemma 2.5. In Section 3, we define a joint regeneration
structure for two walks on the same cluster, and we compare their joint distribution
with the distribution of two walks in two independent copies of the environment, which
allows us to prove Theorem 1.3. Finally, in Appendix A we prove a “folklore” result (that
we could not find in this form in the literature), namely that the height of a finite cluster
in the oriented percolation has, for all supercritical parameters, an exponential tail.

2 Regeneration structure for a single random walk

In this section we describe and study a regeneration structure of the random walk
X conditioned on the event B0. We adapt arguments from [14] and [17] and show that
the regeneration times have some exponential moments and consequently finite second
moments. From that Theorem 1.1 follows by standard arguments. The corresponding
proof is given after Lemma 2.5.

The construction of the regeneration structure is lengthy but not difficult. Its goal
is to build a trajectory of X using rules that are “local”, i.e. which use only local ω’s
(and some additional local randomness), but not ξ’s, as to know ξ’s we need to know
the “whole future” of the environment ω. Of course, this is not possible in general, but
the regeneration times which we will construct are exactly the times when the locally
constructed trajectory coincides with the trajectory of X. We note that a similar but
non-randomised construction was used in [20] to analyse the collection of rightmost
paths in a directed percolation cluster.
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2.1 Local construction of random walk on C
We will need some additional randomness for the construction: For every (x, n) ∈

Zd × Z let ω̃(x, n) be a uniformly chosen permutation of U(x, n), independently dis-
tributed for all (x, n)’s, defined also on the probability space (Ω,A,P). We denote the
whole family of these permutations by ω̃.

For every (x, n) ∈ Zd × Z let `(x, n) = `∞(x, n) be the length of the longest directed
open path starting at (x, n); we set `(x, n) = −1 when (x, n) is closed. (Recall that a path
(x0, n), (x1, n + 1), . . . , (xk, n + k) of length k with ‖xi − xi−1‖ ≤ 1 is open if ω(x0, n) =

ω(x1, n + 1) = · · · = ω(xk, n + k) = 1.) For every k ∈ {0, 1, . . . } let `k(x, n) := `(x, n) ∧ k
be the length of the longest directed open path of length at most k starting from (x, n).
Observe that `k(x, n) is measurable with respect to the σ-algebra Gn+k+1

n , where

Gmn := σ
(
ω(y, i), ω̃(y, i) : y ∈ Zd, n ≤ i < m

)
, n < m. (2.1)

For k ∈ {0, . . . ,∞}, we define Mk(x, n) ⊆ U(x, n) to be the set of sites which maximise
`k over U(x, n), i.e.

Mk(x, n) :=
{
y ∈ U(x, n) : `k(y) = max

z∈U(x,n)
`k(z)

}
, (2.2)

and for convenience we set M−1(x, n) = U(x, n). Observe that we have

M0(x, n) = {y ∈ U(x, n) : y is open}, (2.3)

M∞(x, n) = U(x, n) ∩ C, (2.4)

Mk(x, n) ⊇Mk+1(x, n), k ≥ −1. (2.5)

Let mk(x, n) ∈ Mk(x, n) be the element of Mk(x, n) that appears as the first in the
permutation ω̃(x, n).

Given (x, n), k, ω and ω̃, we define a path γk = γ
(x,n)
k of length k via

γk(0) = (x, n),

γk(j + 1) = mk−j−2(γk(j)), j = 0, . . . , k − 1.
(2.6)

In words, at every step, γk checks the neighbours of its present position and picks
randomly (using the random permutation ω̃) one of those where it can go further on
open sites, but inspecting only the state of sites in the time-layers {n, . . . , n + k − 1}.
Consequently, the construction of γ(x,n)

k is measurable with respect to the σ-algebra
Gn+k
n (recall (2.1)). See Figure 1 for an illustration.

The paths γ(x,n)
k have the following properties.

Lemma 2.1. Assume that ω and (x, n) ∈ C are fixed.

(a) The law of (γ
(x,n)
∞ (j))j≥0 is the same as the law of the random walk (Xj , n + j)j≥0

on C started from (x, n).

If in addition ω̃ is fixed, then

(b) ω(γk(m)) = 1 for all 0 ≤ m < k.

(c) (stability in k) If the end point of γk is open, i.e. ω(γk(k)) = 1, then the path γk+1

restricted to the first k steps equals γk.

(d) (fixation on C) Assume that γk(j) ∈ C for some k ≥ 0, j ≤ k. Then, γm(j) = γk(j)

for all m > k.
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(x, n)

ω̃(x,n)(1)ω̃(x,n)(2)

k = 1 k = 2 k = 3 k = 4

Figure 1: The paths γ(x,n)
k from (2.6) based on ω’s and ω̃’s. Black and white circles

represent open sites, i.e. ω(site) = 1, and closed sites, i.e. ω(site) = 0, respectively. Solid
arrows from a site point to ω̃(site)(1) and dotted to ω̃(site)(2). On the right the sequence

of paths γ
(x,n)
k (·) for k = 1, 2, 3, 4 is shown. For sake of clarity, we used U(x, n) =

{(x+ 1, n+ 1), (x− 1, n+ 1)}, cf. Remark 1.4.

(e) (exploration of finite branches) If γk(k − 1) ∈ C and γk(k) /∈ C for some k, then
γj(k) = γk(k) for all k ≤ j ≤ k + `(γk(k)) + 1 and γk+`(γk(k))+2(k) 6= γk(k).

Proof. Claim (a) follows directly from (2.4), the fact that m∞(·) is a uniformly chosen
element of M∞(·), and the definition of the path γ∞. For claim (b), it is sufficient to
observe that when (x, n) ∈ C, there is an open path of length k − 1 starting at (x, n)

which γk will follow. For (c), if γk(k) is open, then mk−j−2(γk(j)) ∈ Mk−j−1(γk(j)) for
every 0 ≤ j < k, and thus, using the inclusion (2.5), mk−j−1(γk(j)) = mk−j−2(γk(j)),
for 0 ≤ j < k. For (d), if γk(j) is on C, then γk(j) ∈ Mm(γk(j − 1)) for every m > k

by (2.4), and thus γk(j) = γm(j). Finally, (e) follows by observing that when γk(k) =

m−1(γk(k − 1)) /∈ C, that is `(γk(k)) <∞, then γk(k) = mj(γk(k − 1)) ∈Mj(γk(k − 1)) for
all 0 ≤ j ≤ `(γk(k)) but γk(k) /∈M`(γk(k))+1(γk(k − 1)).

Remark 2.2. Lemma 2.1(a) allows to couple the random variables ω, ω̃ with the random
walk (Xk, k) started from (0, 0) by setting

(Xk, k) = γ(0,0)
∞ (k) = lim

j→∞
γ

(0,0)
j (k). (2.7)

(Note that the limit on the right-hand side exists by Lemma 2.1(d).) From now on, we
will assume that this coupling is in place.

Remark 2.3. 1. This construction can a priori be used to extend the definition of the
random walk X for starting points that are not on the infinite cluster C. It is sufficient
to use similar arguments as in the previous lemma to show that for every (x, n), ω,

and ω̃, (Xk, n+k) = limj→∞ γ
(x,n)
j (k) exists a.s. for every k and is a directed path, which

remains on C once it hits it. Actually, in this way we obtain a coalescing flow on Zd ×Z.

2. In analogy with the construction in Section 2 from [17] we can think of the path γk
defined in (2.6) as leading to γk(k), the first potential ancestor k generations ago of the
particle at (x, n). The construction of γk can easily be extended to a random ordering of
all paths of length k, thus yielding an ordered sequence of all potential ancestors.

We will not need these extensions in the present paper.

Remark 2.4 (The construction in the case of fluctuating local population size). In the
case of fluctuating local population size as in Remark 1.6, the same construction can be
performed. To this end it is only necessary to replace the uniform random permutation
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ω̃(x, n) by a “weighted” random permutation with distribution

P
(
ω̃(x, n) = (y1, . . . , y|U(x,n)|)|K

)
=

1

Z(x, n)

|U(x,n)|∏
`=1

K(y`), (2.8)

where (y1, . . . , y|U(x,n)|) run over all permutations of U(x, n) and Z(x, n) is the normali-
sation factor.

2.2 Regeneration times

We can now introduce the regeneration times which will be used to show all main
results of the present paper. We consider the random walk (Xn, n) started at (0, 0) as

defined in (2.7) and write γk for γ(0,0)
k . We define a sequence Tj , j ≥ 0, by

T0 := 0 and Tj := inf {k > Tj−1 : ξ(γk(k)) = 1} , j ≥ 1. (2.9)

(Here and later we use the notation ξ(y) := ξn(x) when y = (x, n) ∈ Zd ×Z.)
At times Tj the local construction of the path finds a “real ancestor” of (0, 0) in the

sense that for any m > Tj , γm(Tj) = γTj (Tj), by Lemma 2.1(d). Therefore, the local
construction “discovers the trajectory of X up to time Tj”. More precisely we know that
(Xm,m) = γTj (m) for all 0 ≤ m ≤ Tj , cf. Lemma 2.1(a) and Remark 2.2.

For i = 1, 2, . . . we set

τi := Ti − Ti−1 and Yi := XTi −XTi−1 . (2.10)

The strong law of large numbers as well as the (averaged) central limit theorem are
consequences of the following lemma.

Lemma 2.5 (Independence and exponential tails for regeneration increments). Condi-
tioned on B0 the sequence

(
(Yi, τi)

)
i≥1

is i.i.d. and Y1 is symmetrically distributed. Fur-

thermore, there exist constants C, c ∈ (0,∞), such that

P(‖Y1‖ > n|B0) ≤ Ce−cn and P(τ1 > n|B0) ≤ Ce−cn. (2.11)

Proof of Theorem 1.1. By symmetry and (2.11), we have E[Y1|B0] = 0. Non-triviality of
Φ follows since T1 and Y1 are not deterministic multiples of each other and Y1 is not
concentrated on a subspace which follows from the fact that P(Y1 = x, τ1 = n|B0) > 0

for all x ∈ Zd and n ≥ ‖x‖. To see this we observe that the configuration of the ω’s in a
space-time box of side-length n around the origin consisting only of closed sites except
for the origin itself and two disjoint “rays” of open sites, the first connecting (0, 0) to
(−x, n − 1) and ending there, the second connecting (0, 0) up to (x, n), has positive
probability.

The rest of the proof is standard, see e.g. the proof of Corollary 1 in [14], or the
proof of Theorem 4.1. in [22].

Note that since the “basic neighbourhood” U(·, ·) is symmetric, Φ is isotropic, i.e. its
covariance matrix (Σij) is a multiple of the d-dimensional identity matrix: Because Φ

is invariant under permutation of coordinates, we must have Σii = Σjj = σ2 ∈ (0,∞),
Σij = s ∈ R for all 1 ≤ i 6= j ≤ d. Furthermore, the law Φ then also inherits invariance
under sign flips of individual coordinates, hence we must have s = −s = 0.

2.3 Proof of Lemma 2.5

Symmetry of the law of Y1 follows from the symmetry of the construction. Note that
‖Y1‖ ≤ τ1 a.s. Thus, the first bound in (2.11) follows from the second, which we prove
now.
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The value of T1 can be obtained by gradually constructing γk and checking whether
ξ(γk(k)) = 1 for k = 1, 2, . . . . We abbreviate P̃(·) := P(·|B0). Let σ be a (Gk0 )k∈N-stopping
time, denote the σ-past by Gσ0 , let W be a Gσ0 -measurable Zd-valued random variable.
An application of the FKG inequality yields

P̃
(
ξ((W,σ)) = 1

∣∣Gσ0 ) ≥ P(B0), (2.12)

as follows: For any n ∈ N, B0 can be written as the finite disjoint union

B0 =
⋃

S⊂Bn(0)

({
(0, 0)⇒ S × {n}

}
∩
( ⋃
y∈S
{(y, n)→∞}

))
where Bn(0) denotes the ‖·‖-ball of radius n around 0 in Zd and

{
(0, 0)⇒ S×{n}

}
∈ Gn0

denotes the event that the set of sites y ∈ Zd with the property that (y, n) can be reached
from (0, 0) via a directed nearest neighbour path whose steps begin on open sites equals
exactly S.

Now pick A ∈ Gσ0 . We have

P
(
{ξ((W,σ)) = 1} ∩A ∩B0

)
=
∑
w,n

P
(
{σ = n,W = w} ∩A ∩ {(w, n)→∞} ∩B0

)
=
∑
w,n

∑
S⊂Bn(0)

P
(
{σ = n,W = w} ∩A ∩

{
(0, 0)⇒ S × {n}

}
∩ {(w, n)→∞} ∩

⋃
y∈S
{(y, n)→∞}

)
=
∑
w,n

∑
S⊂Bn(0)

P
(
{σ = n,W = w} ∩A ∩

{
(0, 0)⇒ S × {n}

})
× P

(
{(w, n)→∞} ∩

⋃
y∈S
{(y, n)→∞}

)
≥
∑
w,n

∑
S⊂Bn(0)

P
(
{σ = n,W = w} ∩A ∩

{
(0, 0)⇒ S × {n}

})
× P

(⋃
y∈S
{(y, n)→∞}

)
× P

(
{(w, n)→∞}

)
=
∑
w,n

∑
S⊂Bn(0)

P
(
{σ = n,W = w} ∩A ∩

{
(0, 0)⇒ S × {n}

}
∩
⋃
y∈S
{(y, n)→∞}

)
P(B0)

= P
(
A ∩B0

)
P(B0)

where we used the FKG inequality in the fourth line and the fact that Gn0 and G∞n are
independent in the third and the fifth lines. Since A ∈ Gσ0 is arbitrary, this proves (2.12).

Applying (2.12) with σ = σ0 := 1 and W = γσ0
(σ0) yields

P̃ (T1 = 1) = P̃
(
T1 = 1|G1

0

)
= P̃

(
ξ(γ1(1)) = 1|G1

0

)
≥ P(B0). (2.13)

When γ1(1) /∈ C, we should wait for the local construction to discover this fact, i.e.
for the finite directed cluster starting at γ1(1) to die out. More precisely, on the event
B1 = {γ1(1) /∈ C}, `(γ1(1)), the length of the longest directed open path starting at γ1(1)

is finite and the local construction discovers this fact at time `(γ1(1)) + σ0 + 1 when
the longest paths gets stuck, i.e. when it runs into a “dead end” produced by closed
sites. Thus, σ1, defined by σ1 = `(γ1(1)) + 2 + σ0 is a stopping time w.r.t. the filtration
(Gm0 )m=1,2,... and B1 ∈ Gσ1

0 . On B1, by Lemma 2.1(e) with k = 1, ξ(γm(1)) = 0 and hence
also ξ(γm(m)) = 0 for all m < σ1. Thus, we have

B1 = B1 ∩ {ξ(γm(m)) = 0,∀ 1 ≤ m < σ1} ∈ Gσ1
0

and

1B1P̃
(
T1 = σ1|Gσ1

0

)
= 1B1P̃

(
ξ(γσ1(σ1)) = 1|Gσ1

0

)
≥ 1B1P(B0) (2.14)
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T0

T1

T2

T3

T6

σ1

σ2 = T1

Figure 2: “Discovering” of the trajectory of X between the regeneration times T0 and
T6 in case U = {−1, 1} is shown on the left-hand side of the figure. On the right-hand
side we zoom into the evolution between T0 and T1. On the two “relevant sites” we
show the realisation of ω̃’s using the same conventions as in Figure 1 (in particular,
U(x, n) = {(x+ 1, n+ 1), (x− 1, n+ 1)}, cf. Remark 1.4).

by (2.12).

Let B2 = {γσ1
(σ1) /∈ C}. On B1 ∩ Bc2 we know that T1 = σ1, otherwise we define the

stopping time σ2 = σ1 + `(γσ1
(σ1)) + 2. By a similar reasoning as before, noting that

B2 ∈ Gσ2
0 , we find

1B1∩B2P̃(T1 = σ2|Gσ2
0 ) ≥ 1B1∩B2P(B0). (2.15)

By repeating the same argument, setting recursively

Bk+1 = {γσk(σk) /∈ C}, σk+1 = σk + `(γσk(σk)) + 2 on B1 ∩ B2 ∩ · · · ∩ Bk+1, (2.16)

we then get

1B1∩B2∩···∩Bk+1
P
(
T1 = σk+1

∣∣Gσk+1

0

)
≥ 1B1∩B2∩···∩Bk+1

P(B0). (2.17)

The number of repetitions needed to find the value of T1 is thus dominated by a geo-
metric random variable with success probability P(B0) > 0. Moreover, by Lemma A.1,
the random variables σk+1 − σk = `(γσk(σk)) + 2 have exponential tails. By elementary
considerations, this implies that T1 satisfies the desired second inequality in (2.11). See
Figure 2 for an illustration of the construction of the Ti.

Finally we should prove that
(
(τi, Yi)

)
i≥1

is an i.i.d. sequence. Let θx, x ∈ Zd × Z
be the standard shift operator on Ω, (θxω)(y) = ω(x + y). We will show that the only
information we have about the future of the environment after T1 (that is about ω(x, n),
x ∈ Zd, n ≥ T1) at the instant when we discover T1 is that ξ(γT1(T1)) = 1.

To formalise this let Fk, k ≥ 0, be the sigma-algebra generated by Gk0 and the ran-
dom variables ξ(γj(j)), 0 ≤ j ≤ k, in particular, Fk contains the information about the
environments ω and ω̃ that the construction discovers by the time of checking whether
T1 = k. Note that T1 is a stopping time w.r.t. the filtration (Fk), write FT1

for the T1-past.
We check that for any event A ∈ G∞0 ,

P̃(θγT1 (T1)(A)|FT1
) = P̃(A). (2.18)

Indeed, if this is the case, then (τ2, Y2) have the same distribution as (τ1, Y1) and they
are independent. Proceeding by induction then implies the i.i.d. property.
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To prove (2.18) one argues similarly as before: Pick A′ ∈ FT1
, w.l.o.g. assume A′ ⊂

B0 (otherwise consider A′ ∩B0). Fix (z, n) ∈ Zd ×N. When n ≥ 2, by construction,

{
γT1(T1) = (z, n)

}
=

bn/2c⋃
k=1

{
T1 = σk = n, γn(n) = (z, n)

}
=

bn/2c⋃
k=1

(
B1 ∩ · · · ∩ Bk ∩

{
σk = n, γn(n) = (z, n)

}
∩ {(z, n)→∞}

)
;

for n = 1,
{
γT1

(T1) = (z, 1)
}

= {γ1(1) = (z, 1)} ∩ {(z, 1)→∞}. In particular, there exists
A′(z,n) ∈ G

n
0 such that

A′ ∩
{
γT1

(T1) = (z, n)
}

= A′(z,n) ∩ {(z, n)→∞}
(
⊂ B0

)
.

Thus

P
(
θγT1 (T1)(A) ∩A′ ∩B0

)
=
∑
(z,n)

P
(
θ(z,n)(A) ∩A′ ∩ {γT1

(T1) = (z, n)}
)

=
∑
(z,n)

P
(
θ(z,n)(A) ∩ {(z, n)→∞} ∩A′(z,n)

)
=
∑
(z,n)

P
(
θ(z,n)(A) ∩ {(z, n)→∞}

)
P
(
A′(z,n)

)
=
∑
(z,n)

P
(
θ(z,n)(A) | {(z, n)→∞}

)
P
(
A′(z,n)

)
P
(
(z, n)→∞

)
= P̃(A)

∑
(z,n)

P
(
A′(z,n) ∩ {(z, n)→∞}

)
= P̃(A)P(A′) = P̃(A)P(A′ ∩B0),

(2.19)

i.e. P̃
(
θγT1 (T1)(A) ∩A′

)
= P̃(A)P̃(A′), where we used the independence of Gn0 and G∞n in

the third and in the fifth lines and translation invariance in the fifth line. Since A′ ∈ FT1

is arbitrary, this proves (2.18) and concludes the proof of Lemma 2.5.

Remark 2.6 (Continuity of σ(p), cf. Remark 1.2). The construction in the proof of
Lemma 2.5 also shows that the functions

p 7→ Ep
[
Y 2

1,1

]
, p 7→ Ep[τ1] and in particular p 7→ σ2(p) (2.20)

are continuous on (pc, 1].

Proof. For fixed z ∈ Z, n ∈ N note that by construction {Y1,1 = z, τ1 = n} = Dz,n ∩
{(z, n) → ∞} where Dz,n ∈ σ

(
ω(x,m), ω̃(x,m), (x,m) ∈ Bn

)
⊂ Gn0 (with Bn := {(x,m) :

‖x‖ ≤ n, 0 ≤ m < n}) can be expressed as a finite union

Dz,n =
⋃

ω∈C(z,n)

({
ω(x,m) = ω(x,m) for ‖x‖ ≤ n,m < n

}
∩
{

(ω̃(x,m) : ‖x‖ ≤ n,m < n) ∈ C̃(z, n, ω)
})

for certain C(z, n) ⊂ {0, 1}Bn and C̃(z, n, ω) ⊂ {permutations of 1, . . . , n}Bn . Thus,

p 7→ Pp
(
Y1,1 = z, τ1 = n

)
= Pp(Dz,n)Pp

(
(z, n)→∞

)
= Pp(Dz,n)Pp

(
(0, 0)→∞

)
is continuous on (pc, 1] for any (z, n) ∈ Z × N : Since Dz,n depends only on finitely
many coordinates of ω and ω̃, continuity of p 7→ Pp(Dz,n) is obvious e.g. from a simple
coupling argument; continuity of p 7→ Pp

(
(0, 0)→∞

)
is guaranteed by Theorem 2 from

[10]. Combining this with exponential tail bounds for |Y1,1| ≤ τ1 that can be chosen
uniform in p ∈ [pc + δ, 1] for any δ > 0 (cf. Lemma A.1 and Remark A.3 below) proves
(2.20).
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3 Joint dynamics of two walks on the same realisation of the clus-
ter and the quenched CLT

In this section we study the joint dynamics of two walks on the same realisation of
the cluster C, in order to show the quenched CLT, Theorem 1.3.

For x, x′ ∈ Zd, let Bx,x′ be the event {ξ0(x) = ξ0(x′) = 1}. Conditioned on ω and
Bx,x′ , let X := (Xn)n and X ′ := (X ′n)n be two independent random walks with transition
probabilities (1.4) started on (x, 0) and (x′, 0) respectively. Observe that X and X ′ take
their steps independently but in the same environment. Note also that, unlike true
ancestral lines, the random walks X, X ′ can meet and then separate again.

We now extend the local construction of the random walk from Subsection 2.1 to the
two-walk case. Assume that in addition, a collection of independent random permuta-
tions ω̃′ = (ω̃′(x, n))(x,n)∈Zd×Z with the same distribution as ω̃ on the same probability

space (Ω,A,P) is given, and define paths γ′(x,n)
k analogously as γ(x,n)

k using ω̃′ instead

of ω̃ but the same ω. Note that for given n and k, the construction of γ(x,n)
k and γ′(x,n)

k is
measurable with respect to

Ĝn+k
n := σ

(
ω(y, i), ω̃(y, i), ω̃′(y, i) : y ∈ Zd, n ≤ i < n+ k

)
. (3.1)

On Bx,x′ , using the same reasoning as in the previous section, we may couple the
random walks X, X ′ started from x, x′ with ω, ω̃ and ω̃′ by

(Xk, k) = lim
n→∞

γ(x,0)
n (k), (X ′k, k) = lim

n→∞
γ′(x

′,0)
n (k). (3.2)

3.1 Joint regeneration structure of two random walks

The individual regeneration sequences are defined as in Section 2. We now define a
joint regeneration sequence for the pair X, X ′. We set T0 := 0, T ′0 := 0 and for r ∈ Z+

put

Tr+1 := inf{n > Tr : ξ(γ(x,0)
n (n)) = 1}, (3.3)

T ′r+1 := inf{n > T ′r : ξ(γ′(x
′,0)

n (n)) = 1}. (3.4)

Note that if (X0, X
′
0) = (x, x), then under P(·|Bx,x), (XTr+1

−XTr , Tr+1 − Tr)r is an i.i.d.
sequence and (X ′T ′r+1

− X ′T ′r , T
′
r+1 − T ′r)r has the same law but the two objects are of

course not independent because both build on the same cluster given by the same ξ.
Now we define the sequence of simultaneous regeneration times. We set J0 := 0,

J ′0 := 0 and for m ∈ Z+ let

Jm+1 := min
{
j > Jm : Tj = T ′j′ for some j′ > J ′m

}
, (3.5)

J ′m+1 := min
{
j′ > J ′m : T ′j′ = Tj for some j > Jm

}
, (3.6)

then

T sim
m := TJm = T ′J′m , m = 0, 1, 2, . . . (3.7)

is the sequence of simultaneous regeneration times. Note that

T sim
m = min

(
{Tj : Tj > T sim

m−1} ∩ {T ′j : T ′j > T sim
m−1}

)
. (3.8)

As in the one walk case we write for the increments Yk := XTk − XTk−1
, τk := Tk −

Tk−1, Y ′k := X ′T ′k
−X ′T ′k−1

, τ ′k := T ′k − T ′k−1 and furthermore we define

X̃m := XTm , X̃ ′m := X ′T ′m , m ∈ Z+, (3.9)

X̂` := XT sim
`

= X̃J` = XTJ`
, X̂ ′` := X ′T sim

`
= X̃ ′J′`

= X ′T ′
J′
`

, ` ∈ Z+. (3.10)
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Note that X̃m, X̃ ′m will typically refer to the two walks X and X ′ at different real-time
instants.

Let us denote the “pieces between simultaneous regenerations” by

Ξm :=
((
Yk, τk

)Jm
k=Jm−1+1

,
(
Y ′k, τ

′
k

)J′m
k=J′m−1+1

, X̂m, X̂
′
m

)
, m = 1, 2, . . . . (3.11)

Note that Ξm takes values in F×F×Zd ×Zd, where F := ∪∞n=1(Zd ×N)n.

The following result is the “joint” version of bound (2.11) in Lemma 2.5. Heuristi-
cally, since the individual regeneration times have exponential tails and immediate joint
regeneration has “positive” probability one can use a “restart”-argument to construct
joint regenerations. Because of the dependence of the two walks the proof that we
actually give is somewhat more complicated than these heuristics.

Lemma 3.1 (Exponential tail bounds for joint regeneration times). There exist con-
stants C, c ∈ (0,∞) such that

P
(
T sim

1 ≥ k
∣∣X0 = x,X ′0 = x′, Bx,x′

)
≤ Ce−ck, ∀k ∈ N, x, x′ ∈ Zd. (3.12)

Proof. Let γk = γ
(x,0)
k and γ′k = γ

′(x′,0)
k . The proof is a variant of the proof of Lemma 2.5,

but one should be a little bit more careful not to “discover too many sites where ξ is
zero”. More precisely one must not check whether ξ(γk(k)) = 1 and ξ(γ′k(k)) = 1 for
all k. We proceed as follows. We first check whether ξ(γ1(1)) = 1. If this is not the
case, then we do not check ξ(γ′1(1)), set σ1 = `(γ1(1)) + 3. When ξ(γ1(1)) = 1, we
check ξ(γ′1(1)). When it is 1, then we are done and T sim

1 = 1. When it is 0, we set
σ1 = `(γ′1(1)) + 3.

If we are not done, we proceed with the local construction of γk and γ′k, but do not
check any other value of ξ until reaching time σ1 (as it is useless, we need first “discover
locally” the fact that one of the ξ’s we checked before was zero). At time σ1 we have this
information, so we check ξ(γσ1

(σ1)) first. If it is zero, we set σ2 = σ1 + `(γσ1
(σ1)) + 2. If

it is one, we check also ξ(γ′σ1
(σ1)). When also this value is one, we are done, T sim

1 = σ1.
Otherwise we set σ2 = σ1 + `(γ′σ1

(σ1)) + 2. If we are not done, we continue the local
construction up to the time σ2 without checking any ξ’s. At time σ2 we check two end
points of γ’s as before, eventually defining σ3, etc.

Let, similarly as before, F̂k be the σ-algebra generated by Ĝk0 and all the additional
information about ξ’s discovered by this algorithm (strictly) before time k. To estimate
how many steps of the algorithm are necessary, we claim that when σk is defined

P
(
ξ(γσk(σk)) = 1 = ξ(γ′σk(σk))|F̂σk , Bx,x′

)
≥ P(B0)2. (3.13)

Indeed, this follows again by the FKG inequality, one should only observe that any
negative information contained in the conditioning (that is the knowledge ξ(z) = 0 for
some z) is contained in Gσk0 and can thus be removed from the conditioning, similarly to
(2.17).

The number of steps of the algorithm is thus dominated by a geometric random
variable. Moreover, as the random variables σi − σi−1 have exponential tails, the claim
of the lemma follows as before.

We next show that (Ξm)m∈Z+ defined in (3.11) form a (discrete) Markov chain.

Lemma 3.2. Let x, x′ ∈ Zd, X0 = x, X ′0 = x′, put Ξ0 := (α, α′, x, x′) with arbitrary
α, α′ ∈ F. Then under P(·|Bx,x′), (Ξm)m∈Z+

is a (discrete) Markov chain, its transition
probability function

Ψjoint
(
(α, α′, x, x′), (β, β′, y, y′)

)
=: Ψjoint

(
(x, x′), (β, β′, y, y′)

)
(3.14)
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depends in its first argument only on the last two coordinates (x, x′), not on (α, α′), and
has a spatial homogeneity property:

Ψjoint
(
(x, x′), (β, β′, y, y′)

)
= Ψjoint

(
(x+ z, x′ + z), (β, β′, y + z, y′ + z)

)
. (3.15)

Proof. The proof is a straightforward adaptation of arguments given around (2.18)–
(2.19) in the proof of Lemma 2.5. Therefore we do not repeat it here.

Remark 3.3. 1. In particular, (X̂`, X̂
′
`)` is in itself a Markov chain on Zd × Zd with

transition probability

Ψ̂joint
(
(x, x′), (y, y′)

)
:= Ψjoint

(
(x, x′),F×F× {(y, y′)}

)
. (3.16)

2. The full path (Ξm)m contains the same amount of information as the pair of se-
quences

(
(Yi, τi)i, (Y

′
i , τ
′
i)i
)

since these can be reconstructed from a full Ξ-path.

We want to compare the joint distribution of (X,X ′) run in the same environment
with the distribution of two walks run in two independent copies of the environment.
To this end we consider the same construction as above, except that now we let X ′ use
ξ′ built on ω′, an independent copy of ω. That is, the sequences (XTi+1

−XTi , Ti+1− Ti)i
and (X ′T ′i+1

− X ′T ′i , T
′
i+1 − T ′i )i are now independent copies since they use independent

realisations of the medium. Obviously, then (Ξm)m∈Z+
as defined in (3.11) is a Markov

chain and we denote its transition probability function by

Ψind
(
(α, α′, x, x′), (β, β′, y, y′)

)
=: Ψind

(
(x, x′), (β, β′, y, y′)

)
. (3.17)

It again only depends on the last two coordinates (x, x′), not on (α, α′), and has the
same spatial homogeneity as Ψjoint. Under Ψind, the sequence (T sim

` − T sim
`−1)` is i.i.d.,

the law of T sim
1 does not depend on the spatial separation (it is simply the law of the

first joint renewal of two independent copies of a renewal process whose waiting time
distribution is aperiodic and has exponential tails). Finally, similarly as in (3.16) we
define

Ψ̂ind
(
(x, x′), (y, y′)

)
:= Ψind

(
(x, x′),F×F× {(y, y′)}

)
. (3.18)

The next lemma allows us to compare Ψjoint and Ψind.

Lemma 3.4 (Total variation distance of Ψjoint and Ψind). There exist constants c, C > 0

such that

‖Ψjoint
(
(x, x′), ·

)
−Ψind

(
(x, x′), ·

)
‖TV ≤ Ce−c‖x−x

′‖, for all x, x′ ∈ Zd, (3.19)

where ‖·‖TV denotes the total variation norm.

Proof. The proof is an adaptation of the proof of Lemma 3.2(i) in [23]. We give it in the
case x ∈ Zd of the form x = (x1, 0, . . . , 0) for some positive x1 and x′ = 0. The general
case has more complicated notation but the same arguments.

Let

Ωi =
{

(ωi(z, n), ω̃i(z, n)) : (z, n) ∈ Zd ×Z+

}
, i = 1, 2 (3.20)

be two independent families of independent collections of random variables, where the
random variables ωi(z, n) are i.i.d. Bernoulli distributed with parameter p > pc (where
pc is the critical parameter for oriented percolation) and the random variables ω̃i(z, n)

are i.i.d. random permutations of the sets U(z, n) (defined in (1.3)).
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Furthermore define Ω3 =
{

(ω3(z, n), ω̃3(z, n)) : (z, n) ∈ Zd ×Z
}

by setting for z =

(z1, . . . , zd)

(ω3(z, n), ω̃3(z, n)) :=

{
(ω1(z, n), ω̃1(z, n)) : z1 ≤ x1/2,

(ω2(z, n), ω̃2(z, n)) : z1 > x1/2.

Then of course Ω1,Ω2 and Ω3 have the same distribution and on each of the families we
can define the random walks by the local construction of Section 2. To distinguish these
walks throughout the proof we will need to denote several variables that we introduced
earlier as functions of the Ωi’s. In particular we write

ξn(x; Ωi) for ξn(x) constructed using Ωi,

`(x, n; Ωi) for `(x, n) constructed using Ωi,

γ
(x,n)
k (m; Ωi) for the path γ(x,n)

k (m) obtained using Ωi.

Furthermore for i, j ∈ {1, 2, 3} (we will consider the two cases i = j = 3 or i = 1 and
j = 2) we set

Bx,x′(Ωi,Ωj) := {ξ0(x; Ωi) = 1 = ξ0(x′; Ωj)},

T sim
i,j := T sim(Ωi,Ωj) := inf

{
n ≥ 1 : ξn

(
γ(x,n)
n (n; Ωi); Ωi

)
= ξn

(
γ(x′,n)
n (n; Ωj); Ωj

)
= 1
}
.

Note that on Bx,x′(Ω3,Ω3) the regeneration time T sim
3,3 is the simultaneous regeneration

time T sim
1 defined as in (3.7) using Ω3 and T sim

1,2 is the first simultaneous regeneration
time of two independent walks defined on Ω1 and Ω2. In keeping with (3.5–3.6) we will
write J1(Ωi,Ωj) and J ′1(Ωi,Ωj) for the number of individual renewals until the first joint
renewal of the first, respectively, the second walk when the first walk uses Ωi and the
second Ωj .

Note also that there are constants c, C ∈ (0,∞) such that, ∀i, j ∈ {1, 2, 3},

P
(
T sim
i,j > r|Bx,x′(Ωi,Ωj)

)
≤ Ce−cr. (3.21)

For i = j = 3 this assertion was shown in Lemma 3.1. For i = 1 and j = 2 the inequality
is true since the individual regeneration times of two independent random walks are
aperiodic and by Lemma 2.5 have exponentially decaying tails.

Recall the definition of Ξm in (3.11) and define for i, j ∈ {1, 2, 3}

Ξ1(Ωi,Ωj) :=
(
(Yk(Ωi), τk(Ωi))

J1(Ωi,Ωj)
k=1 , (Y ′k(Ωj), τ

′
k(Ωj))

J′1(Ωi,Ωj)
k=1 , XT sim

i,j
(Ωi), X

′
T sim
i,j

(Ωj)
)
.

Furthermore define, with some cemetery state ∆,

Ξjoint
x,x′ :=

{
Ξ1(Ω3,Ω3), if ξ0(x; Ω3) = ξ0(x′; Ω3) = 1,

∆, otherwise,

and

Ξind
x,x′ :=

{
Ξ1(Ω1,Ω2), if ξ0(x; Ω1) = ξ0(x′; Ω2) = 1,

∆, otherwise.

Recall that we are considering the supercritical case p > pc, hence the percolation
probability p∞ := P(ξ0(0) = 1) is strictly positive. Because of positive correlations, we
have

P
(

Ξjoint
x,x′ 6= ∆

)
,P
(
Ξind
x,x′ 6= ∆

)
≥ p2
∞ (3.22)
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uniformly in x, x′. Furthermore we have

Ψjoint
(
(x, x′), ·

)
= P

(
Ξjoint
x,x′ = · |Ξjoint

x,x′ 6= ∆
)

and

Ψind
(
(x, x′), ·

)
= P

(
Ξind
x,x′ = · |Ξind

x,x′ 6= ∆
)
.

Define n∗ = [x1/2] and set

L1 = {`(x, 0; Ω1) ∨ `(x′, 0; Ω2) ≤ n∗}
L2 = {ξ0(x; Ω1) = ξ0(x′; Ω2) = ξ0(x; Ω3) = ξ0(x′; Ω3) = 1, T sim

3,3 ≤ n∗, T sim
1,2 ≤ n∗}.

By definition of Ω3 and n∗ we have

γ(x′,0)
n (n; Ω1) = γ(x′,0)

n (n; Ω3) and γ(x,0)
n (n; Ω2) = γ(x,0)

n (n; Ω3) for all n ∈ {0, . . . , n∗}.
(3.23)

Furthermore on L1 ∪ L2 we have Ξjoint
x,x′ = Ξind

x,x′ . To see this note that on L1 we have

Ξjoint
x,x′ = Ξind

x,x′ = ∆. On L2 we have T sim
1,2 = T sim

3,3 and since this is smaller than n∗ we

obtain by (3.23) that Ξjoint
x,x′ = Ξind

x,x′ .
The complement of L1 ∪ L2 is contained in the union of the events

{n∗ < `(x, 0; Ω1) <∞}, {n∗ < `(x, 0; Ω3) <∞},
{n∗ < `(x′, 0; Ω2) <∞}, {n∗ < `(x′, 0; Ω3) <∞},

{ξ0(x; Ω1) = ξ0(x′; Ω2) = 1, T sim
1,2 > n∗},

{ξ0(x; Ω3) = ξ0(x′; Ω3) = 1, T sim
3,3 > n∗},

each of which is exponentially decreasing in ‖x − x′‖ = x1. For the events in the first
two lines this follows by Lemma A.1, whereas for the events in the last two lines this is
a consequence of (3.21). Thus, there are c, C ∈ (0,∞) such that∑

w∈W∪{∆}

∣∣∣P(Ξjoint
x,x′ = w

)
− P

(
Ξind
x,x′ = w

)∣∣∣ = P
(

Ξjoint
x,x′ 6= Ξind

x,x′

)
≤ Ce−cx1 ,

where W := F × F × Zd × Zd. Now, as in [23] in the display after (3.9) on p. 2236, it
follows that

‖Ψjoint
(
(x, x′), ·

)
−Ψind

(
(x, x′), ·

)
‖TV

=
1

2

∑
w∈W

∣∣∣∣∣∣
P
(

Ξjoint
x,x′ = w

)
P
(

Ξjoint
x,x′ 6= ∆

) − P
(
Ξind
x,x′ = w

)
P
(

Ξind
x,x′ 6= ∆

)
∣∣∣∣∣∣

≤ 1

2P
(

Ξjoint
x,x′ 6= ∆

) ∑
w∈W

∣∣∣P(Ξjoint
x,x′ = w

)
− P

(
Ξind
x,x′ = w

)∣∣∣
+

1

2

∣∣∣∣∣∣ 1

P
(

Ξjoint
x,x′ 6= ∆

) − 1

P
(

Ξind
x,x′ 6= ∆

)
∣∣∣∣∣∣
∑
w∈W

P
(
Ξind
x,x′ = w

)

≤ Ce−c‖x−x
′‖

P
(

Ξjoint
x,x′ 6= ∆

) +
1

2

∣∣∣P (Ξind
x,x′ 6= ∆

)
− P

(
Ξjoint
x,x′ 6= ∆

)∣∣∣
P
(

Ξjoint
x,x′ 6= ∆

)
P
(

Ξind
x,x′ 6= ∆

)
≤ Ce−c‖x−x

′‖

P
(

Ξjoint
x,x′ 6= ∆

) +
Ce−c‖x−x

′‖

P
(

Ξjoint
x,x′ 6= ∆

)
P
(

Ξind
x,x′ 6= ∆

) .
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By (3.22) both denominators in the last line of the above display are bounded away from
zero uniformly in x, x′. Thus, for suitably chosen C, c the assertion of the lemma follows
in the case x = (x1, 0, . . . , 0).

3.2 Coupling of Ψjoint and Ψind

The following lemma is our “target lemma”, which forms the core of the proof of
Theorem 1.3.

Lemma 3.5. There exists b > 0 and a non-trivial centred d-dimensional normal law Φ̃

such that for f : Rd → R bounded and Lipschitz we have

E

[(
Eω
[
f
(
X̃m/

√
m
)]
− Φ̃(f)

)2
]
≤ Cf m−b. (3.24)

We will show this lemma by coupling two Markov chains with transition matrices
Ψjoint and Ψind, using Lemma 3.4. We need a few technical lemmata beforehand. The
first one gives standard estimates on exit distribution from an annulus.

Lemma 3.6. Write for r > 0

h(r) := inf{k ∈ Z+ : ‖X̂k − X̂ ′k‖2 ≤ r},

H(r) := inf{k ∈ Z+ : ‖X̂k − X̂ ′k‖2 ≥ r},
(3.25)

where ‖·‖2 denotes the Euclidean norm on Zd, and set for r1 < r < r2

fd(r; r1, r2) =


r2−d1 −r2−d

r2−d1 −r2−d2

, when d ≥ 3,

log r−log r1
log r2−log r1

, when d = 2,

r−r1
r2−r1 , when d = 1.

(3.26)

For every ε > 0 there are (large) R and R̃ such that for all r2 > r1 > R with r2 − r1 > R̃

and x, y ∈ Zd satisfying r1 < r = ‖x− y‖2 < r2

(1− ε)fd(r; r1, r2) ≤ Pind
x,y

(
H(r2) < h(r1)

)
≤ (1 + ε)fd(r; r1, r2). (3.27)

Remark 3.7. We use for simplicity the sup-norm ‖x‖ = max1≤i≤d |xi| instead of the
Euclidean norm ‖x‖2 in the rest of the paper. Since all norms on Rd are equivalent, we
can and shall translate between them by an appropriate adjustments of constants. We
will assume this implicitly below when applying Lemma 3.6.

Proof of Lemma 3.6. From the construction of the transition probability Ψind it follows
that under Pind the Markov chain (X̂n − X̂ ′n)n is a random walk on Zd with i.i.d. incre-
ments whose distribution is symmetric (and thus centred) and has a finite variance. The
claim is then a direct consequence of the usual invariance principle and exit probabil-
ities from an annulus by a d-dimensional Brownian motion, see e.g. Thmeorem 3.18 in
[16].

We use Pjoint
x,y to denote the distribution of the canonical Markov chain Ξ with tran-

sition probabilities Ψjoint started from Ξ0 = (α, α′, x, y). Note that by (3.14) this dis-
tribution does not depend on α, α′. Similarly, Pind

x,y denotes the law of the chain with

the transition matrix Ψind. In both cases, with a slight abuse of notation, X̃, X̃ ′, X̂, X̂ ′

denote the corresponding underlying chains which can be read from Ξ, see Remark 3.3.
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In particular, under Pind, (X̂n, X̂
′
n)n is a Markov chain with transition probability Ψ̂ind,

given in (3.18).
From now on, we assume in this section that d ≥ 2 and complete the proof of

Lemma 3.5 under this assumption. The case d = 1 requires different arguments that
are postponed to Section 3.4.

As we do not have a good control on the difference between Ψind((x, x′), ·) and
Ψjoint((x, x′), ·) when ‖x− x′‖ is small, we need to ensure that X̂ and X̂ ′ separate suffi-
ciently quickly under Pjoint. This is shown in the next lemma:

Lemma 3.8 (Separation lemma). Let d ≥ 2 and let H(r) be as in (3.25). There are
b1, b2 ∈ (0, 1/2), b3 > 0, b4 ∈ (0, 1) such that for n large enough,

P
joint
0,0

(
H(nb1) ≥ nb2

)
≤ e−b3n

b4
. (3.28)

Proof. We split the proof in six steps.

Step 1. We first observe that there exists a (small) ε1 > 0 and b4 ∈ (0, 1/2), b5 > 0 such
that

Pjoint
x,y

(
H(ε1 log n) > nb4

)
≤ n−b5 for n large enough, (3.29)

uniformly in x, y ∈ Zd. To see this we use the definition of (X̂n, X̂
′
n) via the joint law of

the cluster and two walkers on it to construct suitable “corridors” in opposite directions
in the random environment, and force the two walks to walk along these corridors.
Namely, denoting r = bε1 log nc, and assuming without loss of generality that x·e1 ≤ y·e1,
we require that ω(x − ke1, k) = ω(y + ke1, k) = 1 for all k = 1, . . . , r, that ξ(x − re1, r) =

ξ(y + re1, r) = 1, and that the permutations ω̃, ω̃′ are such ω̃(x − ke1, k)[1] = (x −
(k + 1)e1, k + 1), ω̃′(y + ke1, k)[1] = (y + (k + 1)e1, k + 1), for all k = 0, . . . , r − 1. The
probability that these requirements are satisfied can be easily bounded from below by
δr1 for some δ1 = δ1(p, U) ∈ (0, 1). If the requirements are satisfied, then T sim

k = k and
thus X̂k = x − ke1, X̂ ′k = y + ke1 for all k = 1, . . . , r. Therefore, we see that uniformly
over x, y ∈ Zd

Pjoint
x,y

(
‖X̂j − X̂ ′j‖ ≥ j

)
≥ δj1. (3.30)

Thus, the probability that (X̂n) and (X̂ ′n) have distance ε1 log n after the first ε1 log n

steps is at least n−ε1 log(1/δ1). If this happens, we are done, otherwise, we can try again
by the Markov property. By the uniformity of the bound in (3.30), we have

Pjoint
x,y

(
H(ε1 log n) > mε1 log n

)
≤ (1− n−ε1 log(1/δ1))m ≤ exp(−mn−ε1 log(1/δ1)). (3.31)

Now let ε1 be so small that −ε1 log δ1 ∈ (0, 1/2), pick b4 ∈ (−ε1 log δ1, 1/2), b5 > 0 and set
m = b5n

ε1 log(1/δ1) log n in (3.31).

Step 2. Next we claim that for any K2 > 0 we can pick a δ2 ∈ (0, 1) such that for all
x, y ∈ Zd with ε1 log n ≤ ‖x− y‖ < K2 log n and n large enough

Pjoint
x,y

(
H(K2 log n) < h( 1

2ε1 log n) ∧ (K2 log n)3
)
≥ δ2, (3.32)

where h is the stopping time defined in (3.25). To this end we couple Pjoint
x,y with Pind

x,y

using Lemma 3.4, in a standard way. This coupling implies that the left-hand side of
(3.32) is bounded from below by

Pind
x,y

(
H(K2 log n) < h( 1

2ε1 log n) ∧ (K2 log n)3
)
− C(K2 log n)3n−cε1/2, (3.33)

where the second term is an upper bound on the probability that the coupling fails
before the time min{H(K2 log n), h( 1

2ε1 log n), (K2 log n)3}. This bound follows from the
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fact that before this time the distance between X̂, X̂ ′ is at least 1
2ε1 log n and thus the

probability that the coupling fails in one step is at most exp{− c
2ε1 log n} = n−cε1/2.

The first term in (3.33) is bounded from below by a small constant δ′, uniformly
in n, as follows from Lemma 3.6 (with r1 = 1

2ε1 log n, r2 = K2 log n) and the fact that

Pind
x,y(inf{k : ‖X̂k − X̂ ′k‖ ≥ K2 log n} > (K2 log n)3) → 0 as n → ∞. The latter assertion

holds because by the invariance principle we have for a d-dimensional Brownian motion

Pind
x,y

(
inf
{
k : ‖X̂k − X̂ ′k‖ ≥ K2 log n

}
> (K2 log n)3

)
≈ P

(
inf

{
t : ‖Bt‖ ≥

K2 log n√
2n

}
>

(K2 log n)3

n

)
≤ n

(K2 log n)3

(K2 log n)2

√
2dn

,

where the last inequality follows from the Markov inequality and the fact that the ex-
pected exit time of a d-dimensional Brownian from a ball of radius r is bounded by r2/d.
As the second term in (3.33) converges to 0 as n→∞, the proof of (3.32) is completed.

Step 3. By repeating the argument from Step 1 and using (3.32) from Step 2, we see
that we can choose a (large) K3, b6 ∈ (b4, 1/2) such that uniformly in x, y ∈ Zd

Pjoint
x,y

(
H(K3 log n) ≤ nb6

)
≥ δ3 > 0 for n large enough. (3.34)

The previous steps work for all d ≥ 2. In the next steps we shall treat separately the
cases d = 2 and d ≥ 3. We start with the case d ≥ 3.

Step 4 (d ≥ 3). Arguing as in Step 2, we can find b1 ∈ (0, 1/6) such that for all x, y ∈ Zd
with K3 log n ≤ ‖x− y‖ < nb1 and n large enough

Pjoint
x,y

(
H(nb1) < h( 1

2K3 log n) ∧ n3b1
)
≥ δ4 > 0. (3.35)

Step 5 (d ≥ 3). Now we recycle the argument from Step 1 as follows: Wait until (X̂n)

and (X̂ ′n) have reached distance at least K3 log n or stop if the waiting time exceeds
nb6 . Then, let (X̂n, X̂

′
n) run until they have either reached distance nb1 or have taken

(another) n3b1 steps without reaching that distance. Note that by construction, such an
attempt takes at most nb6 + n3b1 time steps, and by (3.34) and (3.35), with probability
at least δ3δ4 leads to a separation of nb1 , as required. If it does not, we start afresh,
using the Markov property and the uniformity of (3.34, 3.35) in their respective initial
conditions.

Pick b2, b7 such that b6 ∨ 3b1 < b7 < b2 < 1/2 (in particular, nb7 ≥ nb6 + n3b1 for n
large enough), put b4 := b2 − b7, b3 := − log(1 − δ3δ4). The probability that the first nb4

attempts all fail is bounded above by (1 − δ3δ4)n
b4

= exp(−b3nb4), and by construction
these first nb4 attempts take at most nb4(nb6 + n3b1) ≤ nb4+b7 = nb2 time steps, which
proves the lemma for d ≥ 3.

Step 6 (d = 2). In d = 2, the relation (3.35) should be replaced by

Pjoint
x,y

(
H(nb1) < h( 1

2K3 log n) ∧ n3b1
)
≥ log 2

b1 log n
, (3.36)

which can be shown using the same argument as in Step 2, together with Lemma 3.6.
The argument in Step 5 is then analogous: The probability that the walks separate by
distance nb1 in the first nb6 + n3b1 steps is bounded from below by δ3 log 2/(b1 log n).
Fixing b4 = (b2 − b7)/2, we see that the probability that the first n2b4 attempts fail is

smaller than (1 − δ3 log 2/(b1 log n))n
2b4 ≤ exp(−b3nb4), for some small b3 and n large

enough. These first n2b4 attempts take at most n2b4(nb4 + n3b1) ≤ nb2 time steps, as
required.
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Using the above separation lemma, we now construct a coupling of Pjoint
0,0 and Pind

0,0

so that the increments differ only in few steps.

Lemma 3.9 (Coupling of dependent and independent Ξ-chains). For any d ≥ 2 there is
a Markov chain (Ξjoint

n ,Ξind
n )n with state space (F×F×Zd×Zd)2 such that Ξjoint is Pjoint

0,0 -

and Ξind is Pind
0,0-distributed. Furthermore, writing Ξjoint

n = (αjoint
n , α′joint

n , X̂ joint
n , X̂ ′joint

n )

and Ξind
n = (αind

n , α′ind
n , X̂ ind

n , X̂ ′ind
n ), there exist b6 > 0 and b5 ∈ (0, 1/2) so that for all N

large enough,

P
(
#{k ≤ N : (αjoint

k , α′joint
k ) 6= (αind

k , α′ind
k )} ≥ N b5

)
≤ N−b6 . (3.37)

Proof. First observe that under Pind
0,0 the sequences αind and α′ind are independent and

i.i.d., as the law of the increments up to the next regeneration do not depend on the
positions X̂ ind, X̂ ′ind.

Using this observation, the construction of the coupling in d ≥ 3 is easy. We first run
the Markov chains Ξind, Ξjoint independently according to their prescribed laws up to
the first time T when ‖X̂ joint

T − X̂ ′joint
T ‖ ≥ N b1 , for b1 as in Lemma 3.8. Let A1 be the

event A1 = {T ≤ N b2}. According to Lemma 3.8, P(A1) ≥ 1− e−b3Nb4 .
Let, for some large K, A2 be the event

A2 := {‖X̂ joint
k − X̂ ′joint

k ‖ ≥ K logN for all T ≤ k ≤ N}. (3.38)

By comparing X̂ joint with X̂ ind, as in the proof of Lemma 3.8, and using elementary
properties of the random walk and the fact ‖X̂ joint

T − X̂ ′joint
T ‖ ≥ N b1 , it is easy to see that

P[Ac2] ≤ N−c for some c > 0

On A1 ∩A2, couple Ξind and Ξjoint so that (αjoint
k , α′joint

k ) = (αind
k , α′ind

k ) when possible
for all k ∈ [T,N ]. Using Lemma 3.4 and the observation in the first paragraph of this
proof, the probability that this does not occur is at most Ne−cK logN . On Ac1 ∪ Ac2, run
Ξind, Ξjoint independently up to time N . Obviously, this coupling satisfies (3.37).

In dimension d = 2 the situation is slightly more complicated, as the event A2 has
a small probability. We need to decompose the trajectory of Ξjoint into excursions. For
large constants K,K ′, we define stopping times Ri, Di, U by R0 = 0, and for i ≥ 1

Di = inf{k ≥ Ri−1 : ‖X̂ joint
k − X̂ ′joint

k ‖ ≥ N b1},

Ri = inf{k ≥ Di : ‖X̂ joint
k − X̂ ′joint

k ‖ ≤ K logN},

U = inf{k ≥ 0 : ‖X̂ joint
k − X̂ ′joint

k ‖ ≥ K ′N}.

(3.39)

We set J to be the unique integer such that DJ ≤ U ≤ RJ . The random variable J

has a geometric distribution with parameter converging to b1 as N → ∞, as can be
easily shown by comparing Ξjoint with Ξind as in the proof of Lemma 3.8 and applying
Lemma 3.6. Therefore, P(J ≥ logN) ≤ N−c for a c > 0. Applying Lemma 3.8, we get

P(Di −Ri−1 ≥ N b2) ≤ e−b3N
b4
. (3.40)

Combining these two facts we obtain

P
( J∑
i=1

Di −Ri−1 ≥ N b2 logN
)
≤ N−c. (3.41)

On the other hand, comparing again Ξjoint with Ξind, and using simple random walk
large deviation estimates, for K ′ large enough,

P(U ≤ N) ≤ e−cN ≤ N−c. (3.42)
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Inequalities (3.41) and (3.42) yield

P
(

#{k ≤ N : ‖X̂ joint
k − X̂ ′joint

k ‖ ≤ K logN} ≥ N b2 logN
)

≤ P

 ∑
i:Ri−1≤N

Di −Ri−1 ≥ N b2 logN

 ≤ N−c. (3.43)

If the event on the left-hand side of the last display does not occur, we can with proba-
bility at least 1−N−c couple Ξjoint and Ξind so that (αjoint

k , α′joint
k ) = (αind

k , α′ind
k ) for all k

satisfying Di ≤ k ≤ Ri for some i, using Lemma 3.4 (and noting that under Ψind, the law
of (αind

1 , α′ind
1 ) does not depend on the starting point). Taking b5 satisfying b2 < b5 < 1/2,

(3.37) is proved for d = 2.

Lemma 3.10. Let d ≥ 2. Recall that X̃, X̃ ′ are read from Ξ as in Remark 3.3. Then,
there exist b, C > 0 such that for every pair of bounded Lipschitz functions f, g : Rd → R∣∣∣Ejoint

0,0

[
f(X̃n/

√
n)g(X̃ ′n/

√
n)
]
− Eind

0,0

[
f(X̃n/

√
n)g(X̃ ′n/

√
n)
]∣∣∣

≤ C
(
1 + ‖f‖∞ + Lf

)(
1 + ‖g‖∞ + Lg

)
n−b,

(3.44)

where Lf := supx 6=y |f(y)− f(x)|/‖y − x‖ and Lg are the Lipschitz constants of f and g.

Proof. We use the coupling constructed in the last lemma. Let I be the complement of
the set of indices appearing in (3.37),

I = {k ≤ n : (αjoint
k , α′joint

k ) = (αind
k , α′ind

k )}, (3.45)

and set Ic = {0, . . . , n} \ I. By the last lemma,

P
(
|Ic| ≥ nb5

)
≤ n−b6 . (3.46)

We now read the processes X̃ joint, X̃ ′joint, X̃ ind, X̃ ′ind out of Ξjoint, Ξind. Recall
notation (3.3)–(3.10). We use the additional superscript ·ind or ·joint in this notation in
the obvious way, and write T joint, T ind for T sim corresponding to those processes.

By Lemma 3.1, and standard large deviation estimates, there is a large constant K
so that

P(T joint
n ≥ Kn) ≤ e−cn (3.47)

and, using (3.46) as well,

P

(∑
i∈Ic

(
T joint
i − T joint

i−1

)
≥ Knb5

)
≤ n−b6 , (3.48)

and similarly for T ind.
We now consider the process X̃ ind and define two sets

Gind := {1 ≤ k ≤ J ind
n : [Tk−1, Tk] ⊂ [T ind

j−1, T
ind
j ] for some j ∈ I}

Bind := {1, . . . , J ind
n } \ Gind.

(3.49)

We define G′ind, Gjoint, . . . analogously. Note that G’s are the sets of indices of those
increments that ‘occur during coupled periods of Ξ’s’. More precisely, by the coupling
construction, there is an order-preserving bijection φ of Gind and Gjoint so that for every
j ∈ Gind (using the notation introduced before (3.9)),

Y ind
j = X̃ ind

j − X̃ ind
j−1 = X̃ joint

φ(j) − X̃
joint
φ(j)−1 = Y joint

φ(j) . (3.50)
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Therefore, setting [n] := {1, . . . , n}, and R[n] := R∩ [n] for any set R, we can write

X̃ ind
n =

n∑
i=1

Y ind
i =

∑
i∈Gind

[n]

Y ind
i +

∑
i∈Bind

[n]

Y ind
i

=
∑

j∈φ(Gind
[n]

)

Y joint
j +

∑
i∈Bind

[n]

Y ind
i

= X̃ joint
n +

∑
j∈φ(Gind

[n]
)\[n]

Y joint
j −

∑
j∈Gjoint

[n]
\φ(Gind

[n]
)

Y joint
j +

∑
i∈Bind

[n]

Y ind
i −

∑
i∈Bjoint

[n]

Y joint
i .

(3.51)

Similar claims hold for the processes with primes.
Inequality (3.48) implies that

P
(
|Bind| ∨ |B′ind| ∨ |Bjoint| ∨ |B′joint| ≥ Knb5

)
≤ n−b6 . (3.52)

When the complement of event in (3.52) holds, then all four sums on the right-hand
side of (3.51) have length at most 2Knb5 . Since all relevant increments have (uniformly
bounded) exponential tails, by standard large deviation estimates we can choose K ′

large so that the probability that the absolute value of these four sums exceed K ′nb5 is
at most e−cn

b5 , for all n large enough.
Putting all these claims together we see that there is an event A satisfying P(Ac) ≤

n−b
′

with b′ > 0, so that on A

|X̃ ind
n − X̃ joint

n | ≤ K ′nb5 and |X̃ ′ind
n − X̃ ′joint

n | ≤ K ′nb5 . (3.53)

Therefore,∣∣∣Ejoint
0,0

[
f(X̃n/

√
n)g(X̃ ′n/

√
n)
]
− Eind

0,0

[
f(X̃n/

√
n)g(X̃ ′n/

√
n)
]∣∣∣

=
∣∣∣E[f(X̃ joint

n /
√
n)g(X̃ ′joint

n /
√
n)− f(X̃ ind

n /
√
n)g(X̃ ′ind

n /
√
n)
]∣∣∣

≤ 2P(Ac)‖f‖∞‖g‖∞

+ E
[
1A

∣∣f(X̃ joint
n /

√
n)g(X̃ ′joint

n /
√
n)− f(X̃ ind

n /
√
n)g(X̃ ′ind

n /
√
n)
∣∣].

(3.54)

Observing that∣∣f(x)g(y)− f(x′)g(y′)
∣∣ ≤ ‖g‖∞Lf‖x− x′‖+ ‖f‖∞Lg‖y − y′‖, (3.55)

and b5 < 1/2, using (3.53), this implies the claim with b := b′ ∧ (1/2− b5).

Remark 3.11 (Functional limit theorem). For the quenched functional limit theorem in
the case d ≥ 2 we need also a functional version of the above theorem. The proof above
can be adapted to show the analogue of (3.53), i.e. that on some event Ã, satisfying
P(Ãc) ≤ n−b′ with b′ > 0, we have

sup
t∈[0,1]

|X̃ ind
[nt] − X̃

joint
[nt] | ≤ K̃n

b5 and sup
t∈[0,1]

|X̃ ′ind
[nt] − X̃

′joint
[nt] | ≤ K̃n

b5 .

Proof of Lemma 3.5, case d ≥ 2. Lemma 3.5 follows now easily from Lemma 3.10 to-
gether with standard Berry-Esseen type estimates for the term E

[
f(X̃n/

√
n)g(X̃ ′n/

√
n)
]

appearing in (3.44) there.

The case d = 1 requires a somewhat different approach and is given in Section 3.4.
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Lemma 3.12. Assume that for some b > 1, and any bounded Lipschitz function f :

Rd → R

Eω
[
f(X̃kb/k

b/2)
]
−→
k→∞

Φ̃(f) for P( · |B0)-a.a. ω, (3.56)

where Φ̃ is some non-trivial centred d-dimensional normal law. Then we have for any
bounded Lipschitz function f

Eω
[
f(X̃m/m

1/2)
]
−→
m→∞

Φ̃(f) for P( · |B0)-a.a. ω. (3.57)

Proof. Note that under P(·|B0), the increments Yi = X̃i − X̃i−1 are i.i.d., centred and
satisfy E[exp(λ·Y1)|B0] <∞ for all λ in some neighbourhood of the origin. Let (2−b)∨0 <

ε < 1. By a moderate deviation principle (e.g. Thmeorem 3.7.1 in [3] where we set
n = bkb−1, an = bk−1+ε, then an → 0, nan → ∞,

√
an/n = k−(b−ε)/2), we have for any

δ > 0

P
(

max
1≤i≤bkb−1

|X̃i|
k(b−ε)/2 ≥ δ

∣∣∣B0

)
≤ Ckb−1 exp(−ckη) (3.58)

for some C, c, η > 0 (η can be chosen in (0, 1−ε)) and all k ∈ N. Since the right-hand side
of (3.58) is summable in k, noting that kb− (k− 1)b ≤ bkb−1, we obtain by Borel-Cantelli

lim sup
k→∞

max
(k−1)b≤`≤kb

|X̃` − X̃(k−1)b |
kb/2

≤ lim sup
k→∞

max
(k−1)b≤`≤kb

|X̃` − X̃(k−1)b |
k(b−ε)/2 = 0 (3.59)

for P( · |B0)-a.a. ω.

3.3 Proof of Theorem 1.3

The idea is to use the control of variance provided by Lemma 3.10 to obtain the
quenched CLT. This approach seems to have appeared in the literature on random walk
in random environments for the first time in [2]. Let f : Rd → R be bounded and

Lipschitz, b′ > 1/b ∨ 1 with b from Lemma 3.5. By (3.24) and Markov’s inequality,

P

(∣∣∣Eω[f(X̃[nb′ ]/
√

[nb′ ]
)]
− Φ̃(f)

∣∣∣ > ε

)
≤ Cfε−2n−b

′b, (3.60)

which is summable, hence

Eω
[
f
(
X̃[nb′ ]/

√
[nb′ ]

)]
→ Φ̃(f) a.s. as n→∞ (3.61)

by Borel-Cantelli. Now Lemma 3.12 yields

Eω
[
f(X̃m/m

1/2)
]
−→
m→∞

Φ̃(f) for P( · |B0)-a.a. ω. (3.62)

Put

Vn := max{m ∈ Z+ : Tm ≤ n}. (3.63)

We have Vn/n→ 1/E[τ1] a.s. as n→∞ by classical renewal theory, in fact

lim sup
n→∞

∣∣Vn − n/E[τ1]
∣∣

√
n log log n

<∞ a.s. (3.64)
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(see, e.g. Theorem III.11.1 in [11]). Since the differences of the Tm are i.i.d. with
exponential tail bounds,

lim sup
n→∞

maxj≤n{j − TVj}
log n

<∞ a.s. (3.65)

Recall that XTVn
= X̃Vn . Now

Pω
(
‖Xn − X̃Vn‖ ≥ log2 n

)
→ 0 a.s. (3.66)

by (3.65) and the fact that X has bounded increments. Furthermore, for any ε > 0

Pω
(
|Vn − n/E[τ1]| ≥ n1/2+ε

)
→ 0 a.s. (3.67)

by (3.64).

Moreover, there exist β ∈ (1/2, 1) and γ ∈ (β/2, 1/2) such that for any θ ≥ 0,

lim sup
n→∞

sup
|k−θn|≤nβ

∣∣X̃k − X̃[θn]

∣∣
nγ

→ 0 a.s. (3.68)

To prove (3.68) note that we can take w.l.o.g. θ = 0. By Doob’s L6-inequality, for any
ε > 0

P
(

sup
k≤nβ

∣∣X̃k − X̃0

∣∣ > εnγ
)
≤ ε−6n−6γE

[
‖X̃nβ − X̃0‖6

]
≤ Const. ε−6n3β−6γ (3.69)

(note that E0[‖Sk‖6] ≤ Ck3 for a random walk (Sk) whose increments are centred and
have bounded 6th moments), thus we can choose β > 1/2 > γ and both sufficiently close
to 1/2 that 3β − 6γ < −1 and the right-hand side of (3.69) becomes summable in n. The
usual Borel-Cantelli argument allows to conclude (3.68).

Now write

Xn√
n

=
Xn − X̃Vn√

n
+
X̃Vn − X̃[n/E[τ1]]√

n
+
X̃[n/E[τ1]]√
n/E[τ1]

√
1/E[τ1] (3.70)

and let Φ be defined by Φ(f) := Φ̃
(
f((E[τ1])−1/2 ·)

)
, i.e. Φ is the image measure of Φ̃

under x 7→ x/
√
E[τ1]. Then∣∣∣Eω[f(Xn/n

1/2)
]
− Φ(f)

∣∣∣
≤ 2‖f‖∞

(
Pω
(
‖Xn − X̃Vn‖ ≥ log2 n

)
+ Pω

(
|Vn − n/E[τ1]| ≥ nβ

)
+ Pω

(
sup|k−n/E[τ1]|≤nβ

∣∣X̃k − X̃[n/E[τ1]]

∣∣ > nγ
))

+ Lf
(

log2 n/
√
n+ nγ−1/2

)
+
∣∣∣Eω[f((E[τ1])−1/2 × X̃[n/E[τ1]]/

√
n/E[τ1]

)]
− Φ̃

(
f((E[τ1])−1/2 ·)

)∣∣∣
−→ 0 a.s. as n→∞.

This proves (1.8) for bounded Lipschitz functions f , which in particular implies that
the laws of (Xn/

√
n) under Pω are tight, for almost all ω. Finally, note that a general

continuous bounded f can be approximated by bounded Lipschitz functions in a locally
uniform way.
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3.4 Proof of Lemma 3.5, case d = 1

Here we prove Lemma 3.5 in the case d = 1. In the cases d ≥ 2 our proof made
substantial use of the fact that two d-dimensional random walks typically do not spend
much time near each other: The “approximate collision time” during the first n steps is
typically O(log n) in d = 2 and O(1) in d ≥ 3. Thus, we could couple two walks on the
same cluster with two walks on independent copies of the cluster and the error incurred
becomes negligible when dividing by

√
n in the CLT (see the proofs of Lemmas 3.9 and

3.10). An analogous strategy can not be “naïvely” implemented in d = 1 because now
we expect typically O(

√
n) hits of the two walks, so using simple “worst case bounds”

in the region where the two walkers are close would yield an (overly pessimistic) er-
ror term that does not vanish upon dividing by

√
n. Instead, we now use a martingale

decomposition for the dynamics of (X̂n, X̂
′
n)n under Ψ̂joint, combined with a quantita-

tive martingale CLT from [18] to estimate the Kantorovich distance from the bivariate
normal.

Consider as a toy example a Markov chain on Z that behaves as a symmetric simple
random walk as long as Xn 6= 0. Upon hitting 0 the chain stays there for some random
time and leaves this state symmetrically. If the distribution of the time the chain spends
in 0 is suitably controlled, one can prove a central limit theorem with non-trivial limit
by using a martingale central limit theorem. A similar argument works for our two
random walks (observed along joint renewal times) where in this case “being at zero”
corresponds to the event that the two walks are closer together than K log n for some
appropriate constant K. This is the “black box” region in which we cannot couple the
two walks to independent copies. If they are more than nb for small b away from each
other then we can couple with very good control of the error (cf. Lemma 3.4). Then we
make use of the symmetries of the model and the fact that in d = 1, the walks X̂ and X̂ ′

have many overcrossings to verify that the error terms stemming from times inside the
black box up to time n are in fact o(

√
n) (in a suitably quantitative sense).

Let (X̂n, X̂
′
n)n be a pair of walks in d = 1 on the same cluster observed along joint

renewal times as in (3.10), which is in itself a Markov chain when averaging over the
cluster, and let Ψ̂joint((x, x′), (y, y′)) be its transition probability, as defined in (3.16) in
Remark 3.3. We write F̂n := σ

(
X̂i, X̂

′
i, 0 ≤ i ≤ n

)
for the canonical filtration of this

chain.

Furthermore set

φ1(x, x′) :=
∑
y,y′

(y − x)Ψ̂joint((x, x′), (y, y′)),

φ2(x, x′) :=
∑
y,y′

(y′ − x′)Ψ̂joint((x, x′), (y, y′)),

φ11(x, x′) :=
∑
y,y′

(
y − x− φ1(x, x′)

)2
Ψ̂joint((x, x′), (y, y′)),

φ22(x, x′) :=
∑
y,y′

(
y′ − x′ − φ2(x, x′)

)2
Ψ̂joint((x, x′), (y, y′)),

φ12(x, x′) :=
∑
y,y′

(
y − x− φ1(x, x′)

)(
y′ − x′ − φ2(x, x′)

)
Ψ̂joint((x, x′), (y, y′)).

Note that by Lemma 3.1 these are uniformly bounded, i.e.

Cφ := ‖φ1‖∞ ∨ ‖φ2‖∞ ∨ ‖φ11‖∞ ∨ ‖φ12‖∞ ∨ ‖φ22‖∞ <∞. (3.71)
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Define

A(1)
n :=

n−1∑
j=0

φ1(X̂j , X̂
′
j), A(2)

n :=

n−1∑
j=0

φ2(X̂j , X̂
′
j),

A(11)
n :=

n−1∑
j=0

φ11(X̂j , X̂
′
j), A(22)

n :=

n−1∑
j=0

φ22(X̂j , X̂
′
j), A(12)

n :=

n−1∑
j=0

φ12(X̂j , X̂
′
j),

Mn := X̂n −A(1)
n , M ′n := X̂ ′n −A(2)

n . (3.72)

Then, (Mn), (M ′n), (M2
n − A

(11)
n ), (M ′n

2 − A
(22)
n ) and (MnM

′
n − A

(12)
n ) are martingales

whose increments have exponential tails (by Lemma 3.1, which in particular shows that
exponential tail bounds can be chosen uniformly in n).

Write σ̂2 :=
∑
y,y′ y

2Ψ̂ind((0, 0), (y, y′)) for the variance of a single increment under

Ψ̂ind (recall (3.18)).

Lemma 3.13. There exist C > 0, b ∈ (0, 1/4) such that for all bounded Lipschitz con-
tinuous f : R2 → R ∣∣∣E[f( X̂nσ̂

√
n
,
X̂′n
σ̂
√
n

)]
− E

[
f(Z)

]∣∣∣ ≤ Lf C
nb

(3.73)

where Z is two-dimensional standard normal and Lf the Lipschitz constant of f .

By Lemma 3.4, there exist C1,K > 0 such that for x, x′ ∈ Z with |x− x′| ≥ K log n∣∣φ1(x, x′)
∣∣, ∣∣φ2(x, x′)

∣∣, ∣∣φ12(x, x′)
∣∣ ≤ C1

n2
, (3.74)∣∣φ11(x, x′)− σ̂2

∣∣, ∣∣φ22(x, x′)− σ̂2
∣∣ ≤ C1

n2
. (3.75)

Put
Rn := #

{
0 ≤ j ≤ n : |X̂j − X̂ ′j | ≤ K log n

}
. (3.76)

We expect that Rn = o(n) in probability (see below for a proof), which combined with
(3.74), (3.75) would yield

A
(11)
n

n
→ σ̂2,

A
(22)
n

n
→ σ̂2,

A
(12)
n

n
→ 0 in P(·|B0)-probability as n→∞. (3.77)

Note that (3.77) together with our (exponential) tail bounds for the differences would
already imply a two-dimensional CLT for (Mn/

√
n,M ′n/

√
n) by standard martingale CLT

results. Since we require quantitative control in the martingale CLT, we have to esti-
mate a little more carefully.

For n ∈ N, let

Qn :=

(
φ11(X̂n−1, X̂

′
n−1) φ12(X̂n−1, X̂

′
n−1)

φ12(X̂n−1, X̂
′
n−1) φ22(X̂n−1, X̂

′
n−1)

)
(3.78)

be the conditional covariance matrix given F̂n−1 of theR2-valued random variable (Mn−
Mn−1,M

′
n − M ′n−1), let λn,1 ≥ λn,2 ≥ 0 be its eigenvalues. We obtain from (3.74),

(3.75) and (3.71) together with well-known stability properties for the eigenvalues of
symmetric matrices that∣∣λj+1,1 − σ̂2

∣∣+
∣∣λj+1,2 − σ̂2

∣∣ ≤ C21{|X̂j−X̂′j |≤K logn} +
C2

n2
1{|X̂j−X̂′j |>K logn} (3.79)
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for some C2 <∞, see, e.g., §41 in [9] or Chapter IV, Theorem 3.1 in [21]. In particular,

2∑
i=1

∣∣∣nσ̂2 −
∑n

j=1
λj,i

∣∣∣ ≤ C2

n
+ C2Rn. (3.80)

Lemma 3.14. 1. There exist 0 ≤ δR < 1/2, cR <∞ such that

E
[
R3/2
n

]
≤ cRn1+δR for all n. (3.81)

2. There exist δC > 0, cC <∞ such that

E

[
|A(1)
n |√
n

]
, E

[
|A(2)
n |√
n

]
≤ cC
nδC

for all n. (3.82)

Now we have all ingredients for the

Proof of Lemma 3.13. Let f : R2 → R be bounded Lipschitz continuous with Lipschitz
constant Lf and Z two-dimensional standard normal. We obtain from (3.80), (3.81) and
Corollary 1.3 in [18] that∣∣∣E[f( Mn

σ̂
√
n
,
M ′n
σ̂
√
n

)]
− E

[
f(Z)

]∣∣∣ ≤ Lf C
nb′

for all n (3.83)

for some C < ∞ and b′ = ( 1
2 − δR)/3. (Read Xk =

(
(Mk − Mk−1)/

√
σ̂2n, (M ′k −

M ′k−1)/
√
σ̂2n

)
in Corollary 1.3 in [18], note that supk E

[
‖(Mk−Mk−1,M

′
k−M ′k−1)‖3

]
<∞

by the uniform exponential tail bounds from Lemma 3.1.)
Combining (3.83) and (3.82) yields∣∣∣E[f( X̂nσ̂

√
n
,
X̂′n
σ̂
√
n

)]
− E

[
f(Z)

]∣∣∣ ≤ Lf C
nb′

+ Lf
cC
σ̂nδC

. (3.84)

To prepare the proof of Lemma 3.14 we need some further notation: Put (with suit-
able b ∈ (0, 1/2) and K � 1, see below) for n ∈ N Rn,0 := 0 and for i ∈ N

Dn,i = min{m > Rn,i−1 : |X̂m − X̂ ′m| ≥ nb},

Rn,i = min{m > Dn,i : |X̂m − X̂ ′m| ≤ K log n},

then [Rn,i−1,Dn,i) is the ith “black box interval” on “coarse-graining level” n (note that
for m ∈ ∪i[Rn,i−1,Dn,i) the coupling result, Lemma 3.4, does not help; whereas for

m ∈ ∪i[Dn,i,Rn,i), we can couple (X̂m, X̂
′
m) with a pair of walks on independent copies

of the cluster up to a small error term).
We distinguish four possible types of such black box intervals, depending on the

ordering of X̂ and X̂ ′ at the beginning and end of the interval: Set

Wn,i :=


1 if X̂Rn,i−1

> X̂ ′Rn,i−1
, X̂Dn,i < X̂ ′Dn,i ,

2 if X̂Rn,i−1
> X̂ ′Rn,i−1

, X̂Dn,i > X̂ ′Dn,i ,

3 if X̂Rn,i−1 < X̂ ′Rn,i−1
, X̂Dn,i > X̂ ′Dn,i ,

4 if X̂Rn,i−1
< X̂ ′Rn,i−1

, X̂Dn,i < X̂ ′Dn,i .

(3.85)

By construction and the strong Markov property of (X̂m, X̂
′
m)m [with a grain of salt

because at a time Rn,i, the difference may be [K log n] or [K log n]− 1, etc.] we have the
following: For each n ∈ N,

(Rn,i −Dn,i)i=1,2,... is an i.i.d. sequence, and (3.86)

(Wn,i,Dn,i −Rn,i−1)i=2,3,... is a Markov chain; (3.87)
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furthermore, the two objects are independent, the transition probabilities of the chain
(Wn,i,Dn,i − Rn,i−1)i depend only on the first (the “type”) coordinate, and a bound of
the form analogous to Lemma 3.8 holds.

Lemma 3.15 (Separation and overcrossing lemma for d = 1). We can choose 0 < b2 <

1/4, b3, b4 > 0 such that

P
(
Dn,i −Rn,i−1 ≥ nb2

∣∣Wn,i = w
)
≤ e−b3n

b4
, w ∈ {1, 2, 3, 4}, n ∈ N. (3.88)

Furthermore, there exists ε > 0 such that uniformly in n

P(Wn,2 = a′ |Wn,1 = a) ≥ ε (3.89)

for all pairs of types (a, a′) ∈ {1, 2, 3, 4}2 where a transition is “logically possible”
(cf. (3.85)).

Proof sketch. The proof of (3.88) is analogous to that of Lemma 3.8, making use of the
d = 1-case of Lemma 3.6.

For (3.89) the crucial point is to show that when X̂ and X̂ ′ have come closer than
K log n at time m = Rn,i with X̂m > X̂ ′m, say, there is a chance of at least δ > 0

(uniformly in n) that they reverse their roles before reaching a distance of nb, i.e. there
is j < Dn,i+1 such that X̂j ≤ X̂ ′j .

To see this, write Dj := X̂j − X̂ ′j , pick 0 < ε � K (to be tuned later). When the
process D starts from K log n, there is a chance ≥ δ′ > 0 that it reaches ε log n before
2K log n within less than log3 n steps (use the coupling from Lemma 3.4 and analogous
results for simple random walk on Z1, note that the probability that the coupling fails
is at most Ce−cεn log3 n); once Dj ≤ ε log n there is a chance of at least exp(−c′ε log n) =

n−c
′ε thatD hits (−∞, 0] with the next (ε log n)/2 steps (construct suitable “corridors” as

in Step 1 of the proof of Lemma 3.8). When D does not hit (−∞, 0] but instead reaches
2K log n observe that

P
(
D hits K log n before nb

∣∣D0 = 2K log n
)
≈ nb − 2K log n

nb −K log n
= 1− K log n

nb −K log n
.

By the Markov property, we will thus have a geometric number of excursions from
2K log n that reach K log n but not nb, and each of these has a chance ≥ δ′n−c

′ε to hit
(−∞, 0]. Thus, if ε is chosen so small that c′ε < b there is a substantial chance that one
of them will be successful.

Note that (3.89) guarantees that the chain (Wn,i)i is uniformly in n (exponentially)
mixing. By symmetry of the construction,

P(Wn,j = 1) = P(Wn,j = 3) and P(Wn,j = 2) = P(Wn,j = 4) for all j, n, (3.90)

and the same holds for the stationary distribution πW,n of (Wn,j)j .

Proof of Lemma 3.14. Let Y have distribution

P(Y ≥ `) = Ψ̂ind
(

inf{m ≥ 0 : X̂m < X̂ ′m} ≥ `
∣∣∣ (X̂0, X̂

′
0) = (1, 0)

)
, ` ∈ N

and let V be an independent, Bernoulli(1 − 1/n)-distributed random variable. A simple
coupling construction based on Lemma 3.4 shows that Rn,1 − Dn,1 is stochastically
larger than (

(1− V ) + V Y
)
∧ n (3.91)
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(by choosing K appropriately, we can ensure that the probability that the relevant cou-
pling between Ψ̂ind and Ψ̂joint fails during the first n steps is less than 1/n). In particu-
lar, by well-known tail probability estimates for ladder times of one-dimensional random
walks, there exist c > 0 and cY > 0 such that uniformly in n,

E
[
e−λ((1−V )+V Y )

]
≤ exp

(
− cY

√
λ
)
, λ ≥ 0 and (3.92)

P(Rn,1 −Dn,1 ≥ `) ≥
c√
`
, ` = 1, . . . , n. (3.93)

Let In := max{i : Ti ≤ n} be the number of “black boxes” that we see up to time n.
We have In = O(

√
n) in probability and in fact

E[I2
n] ≤ Cn (3.94)

as can be seen from (3.93) by comparison with a renewal process with inter-arrival law
given by the return times of a (fixed) one-dimensional random walk.

More quantitatively, there is c > 0 such that for 1 ≤ k ≤ n,

P(In ≥ k) ≤ exp
(
− ck2/n

)
, (3.95)

so in particular

E
[
In1{In≥n3/4}

]
=

n∑
k=dn3/4e

P(In ≥ k) ≤ ne−c
√
n. (3.96)

((3.95) is a standard result for lower deviations of a heavy-tailed renewal process. For complete-
ness’ sake (and lack of a point reference), here are some details: Let Y ′1 , Y

′
2 , . . . be i.i.d. copies of(

(1− V ) + V Y
)

from (3.91), then for 1 ≤ k ≤ n

P(In ≥ k) =P
(
(Y ′1 ∧ n) + · · ·+ (Y ′k ∧ n) ≤ n

)
= P

(
Y ′1 + · · ·+ Y ′k ≤ n

)
≤ eλn

(
E
[
exp(−λY1)

])k
≤ exp

(
λn− kcY

√
λ
)

(3.97)

for any λ > 0 by (3.92), now put λ := (cY k/n)
2.)

Note that

Rn ≤
In+1∑
j=1

(Dn,j −Rn,j−1), (3.98)

thus, using (3.88), indeed Rn = o(n) in probability, and (3.94) together with (3.98),
(3.88) implies (3.81):

E
[
R2
n

]
≤ n2P

(
∃ j ≤ n : Dn,j+1 −Rn,j ≥ nb2

)
+ n2b2E[I2

n+1] ≤ Cn1+2b2 ,

and E
[
R

3/2
n

]
≤
(
E
[
R2
n

])3/4
.

For (3.82) we must make use of cancellations in the increments of A(1)
n , A

(2)
n , making

use of the fact that “opposite” types of crossings of X̂ and X̂ ′ appear asymptotically
with the same frequency. Let

Dn,m := A
(1)
Dn,m −A

(1)
Rn,m−1

, D′n,m := A
(2)
Dn,m −A

(2)
Rn,m−1

.

By symmetry,

E
[
Dn,j

]
= 0, E

[
Dn,j

∣∣Wn,j = 1
]

= −E
[
Dn,j

∣∣Wn,j = 3
]
,

E
[
Dn,j

∣∣Wn,j = 2
]

= −E
[
Dn,j

∣∣Wn,j = 4
]
, (3.99)
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(3.88) and (3.71) together show that for some C < ∞, b > 0 uniformly in j, n ∈ N,
w ∈ {1, 2, 3, 4}

E
[
|Dn,j |

∣∣Wn,j = w
]
≤ Cnb (3.100)

and analogously for D′n,j . Put Gj := F̂Dn,j (the σ-field of the Dn,j-past) for j ∈ N, for
j ≤ 0 let Gj be the trivial σ-algebra. Dn,j , D

′
n,j are Gj-adapted for j ∈ N. Since for k < m

E [Dn,m| Gk] = E
[
E[Dn,m |Wn,m]

∣∣Gk]
by construction and (Wn,j)j is (uniformly in n) exponentially mixing we have, observing
(3.99), (3.90), and (3.100)

E
[(
E [Dn,m| Gm−j ]

)2] ≤ Ce−cj , m, j ∈ N, n ∈ N (3.101)

for some C, c ∈ (0,∞) and analogous bounds for D′n,m. Let Sn,m :=
∑m
j=1Dn,j , S′n,m :=∑m

j=1D
′
n,j then for each n ∈ N, (Sn,m)m is a mixingale with uniformly (in n) controlled

mixing rate (see [12], p. 19).
Thus, using McLeish’s analogue of Doobs L2-inequality for mixingales (e.g. [12],

Lemma 2.1), we have

E

[
max

m=1,...,n3/4
S2
n,m

]
≤ Kn3/4, (3.102)

hence

E

[
|Sn,In |√

n
1{In≤n3/4}

]
≤ 1√

n

(
E

[
max

m=1,...,n3/4
S2
n,m

])1/2

≤ K1/2

n1/8
. (3.103)

By (3.74) we have A(1)
n =

∑In
j=1Dn,j +O(1), so

E

[
|A(1)
n |√
n

]
≤ c√

n
+

1√
n
E

[
|Sn,In |√

n
1{In≤n3/4}

]
+

1√
n
Cn1+b2E

[
In1{In≥n3/4}

]
+

1√
n
cnP

(
∃ j ≤ n : Dn,j −Rn,j−1 ≥ nb2

)
. (3.104)

Using (3.103), (3.96) and (3.88), respectively on the last three terms on the right hand
side (and analogous bounds for A(2)

n ) yields (3.82).

Remark 3.16. The arguments used in the proof of Lemma 3.14 can be used to show
that there exists C <∞ such that for all n ∈ N

sup
`∈N0

E

[
sup

0≤k≤n2/3

(
X̂`+k − X̂`

)2
]
≤ Cn2/3 (3.105)

and analogously for X̂ ′.

Sketch of proof. Decompose X̂n = Mn+A
(1)
n (recall (3.72)). The analogue of (3.105) for

the martingale (Mn) holds by Doob’s L2-inequality (note that by the uniform exponential
tail bounds we have supn∈NE

[
(Mn −Mn−1)2

]
<∞).

To obtain the analogue of (3.105) for the process (A
(1)
n ) note that by the Markov

property of (X̂, X̂ ′) it suffices to verify that uniformly in x0, x
′
0 ∈ Z

E

[
sup

0≤k≤n2/3

(
A

(1)
k −A

(1)
0

)2
∣∣∣∣∣ (X̂0, X̂

′
0) = (x0, x

′
0)

]
≤ Cn2/3 (3.106)

for some C < ∞. This can be proved by expressing A
(1)
k as a sum of mixingale in-

crements as in the proof of Lemma 3.14 and suitably adapting the argument around
(3.102)–(3.104).
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3.4.1 Transferring from X̂ to X̃ and completion of the proof
of Lemma 3.5, for the case d = 1

Note that Lemma 3.13 gives almost the required result except that it speaks about
(X̂, X̂ ′), a pair of walks observed along joint regeneration times, rather than two walks
each observed along its individual sequence of regeneration times. Here, we indicate
how to remedy this.

Let (with regeneration times Tm, T ′m as in (3.3–3.4) and T sim
m from (3.7))

Ln := max
{
m ≤ n : Tm ∈ {T ′0, T ′1, . . . }

}
,

L′n := max
{
m ≤ n : T ′m ∈ {T0, T1, . . . }

}
,

L̂n := max
{
m ≤ n : T sim

m ≤ Tn
}
,

L̂′n := max
{
m ≤ n : T sim

m ≤ T ′n
}
,

i.e., Ln and L′n are the indices of the last joint regeneration time before the n-th with
respect to the walks X respectively X ′ and L̂n respectively L̂′n is the corresponding
number of joint regeneration times, in particular(

X̃Ln , TLn
)

=
(
X̂L̂n

, T sim
L̂n

)
and

(
X̃ ′L′n , T

′
L′n

)
=
(
X̂ ′
L̂′n
, T sim
L̂′n

)
. (3.107)

Lemma 3.17. There exist C <∞, q ∈ (0, 1] such that for all n ∈ N

E
joint
0,0

[
(n− Ln)

2
]
≤ C, (3.108)

E
joint
0,0

[(
L̂n − nq

)2
]
≤ Cn, (3.109)

and analogously for L′n and L̂′n.

Sketch of proof. Note that under Ψind, when the two walks use independent copies of
the cluster, (Tn) and (T ′n) are two independent renewal processes (whose waiting times
have exponential tail bounds), hence Tn/n → µ, T sim

n /n → µ̂ a.s. and in L2 with some
0 < µ < µ̂ <∞, and (3.108), (3.109) hold (with q = µ/µ̂).

By suitably “enriching” the coupling arguments used above, i.e. using Ψjoint instead
of Ψ̂joint, and then reading off the number of individual renewals between joint renewals
we see that (3.108), (3.109) also hold for two walks on the same cluster.

Now write

(X̃n, X̃
′
n) =

(
X̂[nq], X̂

′
[nq]

)
+
(
X̂L̂n

− X̂[nq], X̂
′
L̂′n
− X̂ ′[nq]

)
+
(
X̃n − X̃Ln , X̃

′
n − X̃ ′L′n

)
,

(3.110)

hence

E
[∣∣X̃n − X̂[nq]

∣∣+
∣∣X̃ ′n − X̂ ′[nq]∣∣]

≤ E
[∣∣X̂L̂n

− X̂[nq]

∣∣+
∣∣X̂ ′

L̂′n
− X̂ ′[nq]

∣∣]+ E
[∣∣X̃n − X̃Ln

∣∣+
∣∣X̃ ′n − X̃ ′L′n∣∣] ≤ C

nb
(3.111)

for some C <∞, b > 0, using Lemma 3.17 and the fact that the increments of X̃, X̃ ′, X̂,
and X̂ ′ have uniformly exponentially bounded tails, and Chebyshev’s inequality. (3.111)
together with Lemma 3.13 implies Lemma 3.5 for d = 1.
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A An auxiliary result

Recall the definition of τ0 in (and after) equation (1.1). The following result is “folk-
lore” but we did not find a suitable reference (only for the corresponding contact pro-
cess version of the result or for a special case; see Remark A.2 below).

Lemma A.1. For p > pc there exist C, γ ∈ (0,∞) such that

Pp(n ≤ τ0 <∞) ≤ Ce−γn. (A.1)

Remark A.2. The above result is proven in [7] for the “conventional oriented percola-
tion” on Z×Z+ with critical value p(1)

c . Dominating the “conventional oriented percola-

tion” it is easy to see that the above result is true for any d ≥ 1 and p > p
(1)
c where p(1)

c

is the critical value for the “conventional oriented percolation” on Z×Z+ considered in

[7]. It is also clear that for d ≥ 1 we have pc ≤ p(1)
c . Our task here is to extend the result

to p ∈ (pc, p
(1)
c ].

Proof. We will adapt arguments from p. 57-58 in [15], where this result was proven for
the contact process.

According to [10] (see p. 7 in arXiv version) there exist r (large enough) such that

P(τ [−r,r]d <∞) < ε.

Furthermore, by standard arguments, on a coarse grained grid one can construct a
percolation structure with probability of open sites pcoarse > p

(1)
c , such that it is dom-

inated by the process of suitably defined space-time blocks of the original percolation
(see [10]), where the blocks are such that on the “bottom” of the block all sites in some
space-time translate of [−r, r]d × {0} are open.

Now the idea is to show that for large n on the event {τA > n} it is likely that the
“domination” described above has started.

We set

δ := P(η0
r = [−r, r]d).

Now we define a random variable N (measurable w.r.t. to σ(Ωp)) such that

P(N = k) = δ(1− δ)k, k ≥ 0,

and

either η0
Nr = ∅, or x+ [−r, r]d ⊂ η0

(N+1)r for some x ∈ Zd.

Set N = 0 if η0
r = [−r, r]d. If η0

r 6= [−r, r]d, i.e. on {N > 0} we have either η0
r = ∅ or

η0
r 6= ∅. In the first case η0

n = ∅ for all n ≥ r and therefore N ≥ 1. In the second case,
restart (a subprocess) in some x ∈ η0

r , and let N = 1 if

rη
x
2r ⊂ x+ [−r, r]d.

Here, for m ≤ n we use mη
x
n to denote the discrete time contact process at time n

starting in {x} at time m. Again on the complement {N = 1} either rη
x
2r = ∅, in which

case N ≥ 2, or rηx2r 6= ∅, in which case we can proceed as before.
If x + [−r, r]d ⊂ η0

(N+1)r for some x ∈ Zd then we can start the coupling with perco-
lation on a coarse grained grid described at the beginning of the proof.

Let (N + 1)r +M be the extinction time of this block percolation process. Note that
(N + 1)r is the time at which the comparison starts and M is the extinction time of the
discrete contact process with probability of open sites given by pcoarse.
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As noted in Remark A.2 we have P(M > n|M <∞) ≤ Ce−γn for suitable C, γ > 0. If
M =∞ then τ0 =∞. If M <∞ then at time M + (N + 1)r the configuration ηM+(N+1)r

is empty or not. If it is not empty then we repeat the procedure and obtain an i.i.d.
sequence of independent random variables Ni with the same law as N and independent
random variables Mi with the same law as M conditioned on M < ∞. Let L be such
that at time

σ =

L∑
i=1

((Ni + 1)r +Mi)

either η0
σ = ∅ or τ0 =∞. Thus, σ > τ0 on {τ0 <∞} and we obtain

P(n < τ0 <∞) ≤ P(σ > n) ≤ Ce−γn

for suitable C, γ > 0.

Remark A.3. Inspection of the proof of Lemma A.1 shows that the constants γ and C

in (A.1) can be chosen to apply uniformly in p ∈ [pc + δ, 1] for any δ > 0.
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