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Abstract

We study the simple random walk on the configuration model with given degree
sequence (dn1 , . . . , d

n
n) and investigate the connected components of its vacant set at

level u > 0. We show that the size of the maximal connected component exhibits
a phase transition at level u∗ which can be related with the critical parameter of
random interlacements on a certain Galton-Watson tree. We further show that
there is a critical window of size n−1/3 around u∗ in which the largest connected
components of the vacant set have a metric space scaling limit resembling the one
of the critical Erdős-Rényi random graph.

1 Introduction

We consider the vacant set of the random walk on the configuration model and study its
percolative properties. The main goal is to understand the maximal connected compo-
nents of this set in the vicinity of the critical threshold. We will show that the model
belongs to the Erdős-Rényi universality class, that is its behaviour is similar to the clas-
sical critical Erdős-Rényi graph. In particular we show the conjecture of [BS20] about
the scaling limit for the metric space structure of the maximal connected components of
the vacant set in the critical regime.

We start with a precise definition of the model. For every n ∈ N, let dn = (dn1 , . . . , d
n
n)

be a degree sequence such that the total degree Ln =
∑

x∈[n] d
n
x is even. We use Gdn

to denote the set of all multigraphs with the vertex set [n] = {1, 2, . . . , n} such that
the degree of every x ∈ [n] is dnx (loops are counted twice), and write Pdn for the law
on Gdn of the configuration model with the degree sequence dn, that is of the random
multigraph Gn = ([n], En) obtained by the usual pairing construction (see Section 2.2
for the details). For an arbitrary finite multigraph G, let λG denote its spectral gap
(see (2.7) for the definition). In addition, let ni(dn) be the number of vertices x ∈ [n]
with dnx = i, i ∈ N. Through the paper we assume that the degree sequence dn has the
following properties:

Assumption 1.1. There exist finite positive constants ∆ ≥ 3, c, C, ε1, ε2 and l ≥ 0,
and a probability mass function p = (pi)1≤i≤∆ on {1, . . . ,∆} with p1 = p2 = 0 such that
the following three conditions are satisfied:

(a) 1 ≤ dnx ≤ ∆ for all x ∈ [n],

(b)
∣∣ni(dn)− npi

∣∣ ≤ Cn 1
3
−ε1 for all i ∈ {1, 2, . . . ,∆},
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(c) Pdn [λGn ≥ c log−l n] ≥ 1− Cn−
2
3
−ε2 .

Given a fixed realisation of Gn ∈ Gd
n , let PGn be the distribution on [n]N of the

canonical lazy discrete-time simple random walk X = (Xk)k≥0 on Gn, which is started
from its stationary distribution πGn , where πGn(x) = dnx/Ln for x ∈ [n]. We endow [n]N

with the product σ-algebra Fn. We further write Pn for the joint distribution of (Gn, X)
on Gdn × [n]N given by

Pn[Gn ∈ A,X ∈ B] =

∫
Gn∈A

PGn [X ∈ B]Pdn [dGn] A ⊂ Gdn , B ∈ Fn. (1.1)

The vacant set of the random walk on Gn at the level u ≥ 0 is the set of vertices not
visited by the simple random walk up to time 2umpn,

VuGn = [n] \ {Xk : 0 ≤ k ≤ 2umpn}, (1.2)

where mp =
∑∆

i=3 ipi is the expectation of p. The scaling factor 2mp is chosen for
convenience to match the critical points of various models appearing below, we refer to
Remark 1.7 for more details.

Our goal is to investigate the connectivity properties of of the subgraph of Gn induced
by VnGn . To this end, let Cuj (n) denote the j-th largest connected component of this
subgraph and let |Cuj (n)| be the number of its vertices. Our first main result is the
following theorem implying the phase transition in the behaviour of |Cu1 (n)|.

Theorem 1.2. For every degree sequence dn satisfying Assumption 1.1, there is a con-
stant u∗ ∈ (0,∞), such that the following holds:

(a) (Supercritical regime) For u < u∗, there exists a constant ρ = ρ(u, p) ∈ (0, 1),
characterised in Remark 5.2 below, such that for every ε > 0

lim
n→∞

Pn

[∣∣∣ |Cu1 (n)|
n

− ρ
∣∣∣ ≤ ε] = 1. (1.3)

(b) (Subcritical regime) For u > u∗, there exists a constant A = A(u,∆), such that

lim
n→∞

Pn

[
|Cu1 (n)| ≤ A log n

]
= 1. (1.4)

(c) (Critical regime) Let (un)n≥0 be a sequence such that for some η <∞

|n1/3(un − u∗)| ≤ η. (1.5)

Then for every ε > 0 there exists A = A(η, ε, p) such that for all n large enough

Pn[A−1n
2
3 ≤ |Cun1 (n)| ≤ An

2
3 ] ≥ 1− ε. (1.6)

(d) The constant u∗ agrees with the critical parameter of random interlacements on the
Galton-Watson tree T ′ with offspring distribution p∗ given by

p∗i = (i+ 1)pi+1m
−1
p , i ∈ {0, 1, . . . ,∆− 1}. (1.7)

(See Section 2.4 for the definition of random interlacements)

Our second main result confirms the conjecture of Bhamidi and Sen (see [BS20,
Conjecture 2.7]) about the convergence of the connected components (Cunj (n))j≥1, viewed
as metric-measure spaces, in the critical window.
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Theorem 1.3 (Scaling limit). Let Assumption 1.1 hold and let (un)n≥0 be a sequence
such that there is η ∈ R satisfying

un = u∗ + ηn−1/3 + o(n−1/3) as n→∞. (1.8)

Endow every component Cunj (n) with its graph distance and the uniform probability mea-
sure on its vertices. Then there exists a sequence Mp(η) = (Mp

1 (η),Mp
2 (η), . . . ) of (ran-

dom) compact metric-measure spaces such that under the measure Pn

1

n1/3
(Cun1 (n), Cun2 (n), . . . )

n→∞−−−→Mp(η) (1.9)

with respect to the product topology induced by the Gromov-Hausdorff-Prokhorov distance
on each coordinate. For a complete description of the limiting spaces we refer to [BS20,
Construction 5.6].

Statements similar to Theorems 1.2, 1.3 are known to hold for several different se-
quences of quickly mixing graphs with locally tree-like structure. First, the phase tran-
sition for the vacant set of the random walk was proved for (possibly deterministic)
d-regular large girth expanders by Černý, Teixeira and Windisch [ČTW11]. Later, in
[CF13], Cooper and Frieze made the key observation that randomness of the graph
greatly simplifies studying of the behaviour of the vacant set, and proved the phase
transition for the vacant set of the random walk on connected Erdős-Rényi graphs and
on d-regular random graphs. Their technique was later extended to every supercritical
Erdős-Rényi graph by Wassmer [Was15]. Moreover, [ČTW11] and [Was15] show that
the critical parameter for the phase transition coincides with the critical parameter of
random interlacements on the corresponding infinite volume limit, that the d-regular tree
or a particular Galton-Watson tree, respectively.

The behaviour of the vacant set in the vicinity of the critical point u∗ has been
previously studied for the d-regular random graphs only. In this case, Černý and Teixeira
[ČT13] showed the existence of a critical window of width n−1/3 around u∗ where the
size of the largest connected component is of order n2/3. Later, Bhamidi and Sen [BS20]
described precisely the scaling limit for all connected components, by combining their
results on the behaviour of critical random graphs with a given degree sequence with the
controls of the degree sequence of the vacant set obtained in [ČT13]. The scaling limit
resembles the scaling limit of the components of the critical Erdős-Rényi graph given in
[ABG12].

The results of Theorems 1.2 and 1.3 naturally extend [ČT13] and [BS20]. In particular
Theorem 1.3 proves and makes more precise Conjecture 2.7 of [BS20].

The proofs of the two main theorems broadly follows the strategy of [ČT13] and
[BS20]: We first extend the observation of Cooper and Frieze [CF13] to our case (see
Proposition 2.1) which allows us to view the vacant set of the random walk as a random
graph with a random degree sequence dn,u. As consequence, we can apply the extensive
theory about such random graphs, summarized in Theorem 2.2. The main body of the
paper (Sections 3 and 4) then deals with providing sufficiently strong estimates on the
distribution of the sequence dn,u. Here we mainly follow the techniques from [ČT13]:
We first investigate the local behaviour of the random walk, concentrating on how it
visits the neighbours of a given vertex (Proposition 3.1). Then, we construct a suitable
coupling of the random walk on Gn with a random walk on the unimodular Galton-
Watson tree (see Lemma 4.1), to estimate the expected degree distribution of the vacant
set VuGn (Theorem 4.4). Finally, we use the mixing properties of the random walk on Gn
to prove a corresponding concentration result for the degree distribution (Theorem 4.6).
The main theorems are then proved in Section 5. The challenge in all these steps is to
obtain sharp enough estimates that are useful also in the critical regime.
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Compared to the d-regular random graph case, considered in [ČT13], we have to deal
with two additional difficulties. First, although the configuration model looks locally like
a tree, this tree is a Galton-Watson tree, and not a d-regular tree like in [ČT13], which
considerably complicates the necessary random walk estimates in Section 3. Second,
since we allow the vertices of the graph to have degree 1 or 2, our graphs are not as
robust as the d-regular random graph, d ≥ 3, under deletion of small number of vertices,
which requires some additional arguments (e.g., in Lemmas 3.2, 3.3).

We close this introduction with remarks about the assumptions of our main results,
their possible generalisations and the appearance of the scaling factor in definition (1.2).

Remark 1.4. (a) Assumption 1.1(b) and p1 = p2 = 0 imply that Gn satisfies the assump-
tions of [FvdH17, Theorem 2.2], and is thus connected Pdn-a.a.s. With more technical
effort it would, in principle, be possible to treat the regime when Gn is disconnected but
has a giant component Pdn-a.a.s., as was done for the vacant set of the random walk on
the largest connected component on the Erdős-Rényi graph in [Was15].

(b) If the degree sequence is constant, that is dnx = d ≥ 3, for all x ∈ [n], Assump-
tion 1.1 is always satisfied. Here (c) follows from [Fri91, Theorem 1.1] with l = 0. Note
that (c) is not very restrictive. Moreover, results about the mixing time of random walks
on random graphs suggest, that (c) could be proved from assumptions (a) and (b) (see
[BLPS18]). We do not investigate this issue in detail here.

Remark 1.5. The assumptions of Theorem 1.3 are stronger than the assumptions that
appear in Conjecture 2.7 of [BS20]. Besides assuming that the maximal degree of Gn
is bounded (cf. Assumption 1.1(a)), which is purely for technical reasons, we need some
control of the speed of convergence of the degree distribution to the probability mass
function p, see Assumption 1.1(b). We believe that the conjecture does not hold without
this additional assumption.

Remark 1.6. Instead of the law Pdn (on the set of multigraphs Gdn) of the configuration
model, it would be possible to consider the uniform measure P̄dn on the set of all simple
graphs Ḡdn ⊂ Gdn . Under Assumption 1.1, all statements of Theorem 1.2 continue to
hold for this model as well, since a Pdn distributed multigraph Gn conditioned on being
simple has distribution P̄dn (see e.g. [vdH17a, Proposition 7.15]),

Pdn [Gn ∈ · |Gn ∈ Ḡd
n
] = P̄dn [Gn ∈ · ], (1.10)

and the probability of a multigraph Gn being simple has a positive limit (see e.g. [vdH17a,
Theorem 7.12]),

lim
n→∞

Pdn [Gn ∈ Ḡd
n
] = c > 0. (1.11)

Extending Theorem 1.3 to this case is not so straightforward and would require additional
arguments.

Remark 1.7. Recall the scaling factor 2mp in the definition (1.2) of the vacant set. The
purpose of this choice is to force the critical values u∗ of Theorem 1.2 and the critical value
u∗ of random interlacements on the unimodular Galton-Watson tree in Proposition 2.3
below to be equal. In fact, the definition of random interlacements on this tree contains
a free scaling parameter, which can be interpreted as a weight of the edges of the tree.
In (2.27) we endow every edge with weight one (similarly as in [Tas10]). We could
alternatively define the capacity as

capT (K) =
∑
x∈K

(2mp)
−1dxP

T
x [H̃K =∞], (1.12)

corresponding to a weighting by (2mp)
−1, which would eliminate the scaling factor 2mp

in (1.2).
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2 Definitions and preliminaries

In this section we introduce the notation used through the paper and recall some known
results. We use c, c′, etc. to denote finite positive constants whose value might change
during the computations. For every set A, we write |A| for its cardinality, and use the
standard o( · ) and O( · ) notation. For a sequence of probability measures Pn and events
An, we say An holds Pn-a.a.s, if limn→∞ Pn[An] = 1.

2.1 Graphs and random walk

Let G = (V,E) be a multigraph. We always endow it with the usual graph distance
distG(·, ·), and denote diam(G) its diameter. The ball in G centred at x ∈ V with radius
r is denoted by B(x, r). If (x, y) is an edge of G, then we write x ∼ y. dx stands for
the degree of x ∈ V in G, that is dx =

∑
y∈V nxy, where nxy is the number of edges

connecting x and y in G (the loops are counted twice in nxx). The set

∂eA = {(x, y) ∈ E : x ∈ A, y ∈ Ac} (2.1)

is called the edge boundary of the set A. When no confusion can arise, we identify the
subset A ⊂ V with the corresponding induced subgraph of G.

For an arbitrary finite multigraph G = (V,E), we use PGx to denote the distribution
on V N of the canonical lazy discrete-time simple random walk X = (Xk)k≥0 on G started
at x ∈ V , that is of the Markov chain with generator given by

Lf(x) =
∑
y∈V

pxy(f(y)− f(x)), for f : V → R, x ∈ V, (2.2)

where

pxy =

{
nxy
2dx

, x 6= y,
1
2 +

nxy
2dx

, x = y.
(2.3)

We write EGx for the corresponding expectation. For a measure µ on V , we define

PGµ [ · ] =
∑
x∈G

µ(x)PGx [ · ]. (2.4)

For a set A ⊂ V , we denote by H̃A and HA the respective hitting and entrance time of
A,

H̃A = inf{k ≥ 1 : Xk ∈ A} and HA = inf{k ≥ 0 : Xk ∈ A}. (2.5)

For all real valued functions f, g on V , we define the Dirichlet form

D(f, g) =
1

2

∑
x,y∈V

π(x)pxy(f(x)− f(y))(g(x)− g(y)), (2.6)

where πG(x) = dx/
∑

y∈V dy is the stationary distribution of the random walk X. The
spectral gap of X is given by

λG = min{D(f, f) : πG(f2) = 1, πG(f) = 0}. (2.7)

Finally, we define the edge expansion h(G) of G by

h(G) = min
{Q(A)

π(A)
: A ⊂ V, πG(A) ≤ 1

2

}
, where Q(A) =

∑
(x,y)∈∂eA

πG(x)pxy. (2.8)
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The Cheeger inequality (see [SC97, Lemma 3.3.7]) relates the spectral gap λG to the edge
expansion h(G). For some c, c′ ∈ (0,∞),

ch(G)2 ≤ λG < c′h(G). (2.9)

We frequently use the following standard convergence result for reversible Markov chains
(see e.g. [LPW09, Theorem 12.3]). For all k ≥ 0,

sup
x,y∈V

|PGx [Xk = y]− πG(y)| ≤
(

min
x∈V

π(x)
)−1

exp(−λGk). (2.10)

2.2 Configuration model and vacant graph

In [CF13], Cooper and Frieze make the observation that, for the d-regular random graph,
the graph induced by the vacant set of random walk is distributed as a random graph
with a (random) degree sequence. This observation extends straightforwardly to our
setting. For readers convenience we provide its proof in Proposition 2.1 below.

To state this proposition it is suitable to introduce the vacant graph Vn,u. For
Gn = ([n], En), let

Vn,u = ([n], Eu), where Eu = {(x, y) ∈ En : x, y ∈ VuGn}, (2.11)

and let Qun be the distribution on {0, . . . ,∆}n of its degree sequence

dn,u = (dn,u1 , dn,u2 , . . . , dn,un ) (2.12)

under the annealed measure Pn. Note that the non-trivial connected components of the
vacant graph Vn,u (that is those having at least two vertices) coincide with the connected
components of the subgraph of Gn induced by the vacant set VuGn .

Proposition 2.1. For every u ≥ 0, the distribution of the vacant graph Vn,u under Pn

satisfies

Pn[Vn,u ∈ · ] =

∫
Pdn,u [Gn ∈ · ]Qun(ddn,u), (2.13)

where Pdn,u is the distribution of the multigraph with the degree sequence dn,u.

Before proving Proposition 2.1, let us recall in more detail the standard pairing con-
struction of the multigraph Gn with the degree sequence dn: We associate every vertex
x ∈ [n] with dnx half-edges and denote by

Hn = {(x, i| : x ∈ [n], i ∈ [dnx]} (2.14)

the set of all these half-edges. Note that |Hn| = Ln =
∑

x∈[n] d
n
x. The Pdn-distributed

multigraph Gn is obtained by sampling a random perfect matching M of Hn (that is, a
partitioning of Hn into Ln/2 disjoint pairs) uniformly from the set of all such matchings,
and by setting Gn = GMn := ([n], EM ) ∈ Gdn with

EM =
{

(x, y) : {(x, i|, (y, j|} ∈M for some i ∈ [dnx], j ∈ [dny ]
}
. (2.15)

It is well known that a uniform random matching M and so the corresponding multi-
graph GMn can be constructed sequentially. We start with the empty matching M = ∅
and repeat the following steps until we obtain a full matching: Given a partial matching
M ⊂ M and the corresponding set of half-edges HM = {(x, i| : (x, i| is matched in M},
we choose two half-edges (x, i|, (y, j| ∈ Hn \HM ; the first half-edge (x, i| can be chosen
by an arbitrary rule R, the second half-edge (y, j| is chosen uniformly from the set of all
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remaining half-edges Hn \ (HM ∪ (x, i|). As last step we match the half-edges (x, i| and
(y, j| and add {(x, i|, (y, j|} to the partial matching M .

It follows that, conditioned on the partial matching M , M \M is distributed as a
uniform perfect matching of Hn \HM . Therefore, the corresponding multigraphs satisfy

Pdn [GM\Mn ∈ · |M ⊂M ] = Pd(M)[G ∈ · ], (2.16)

where dx(M) is the number of half-edges incident to x in Hn that are not yet matched
in M , and GM\Mn is the graph corresponding to a non-perfect matching M \M .

This sequential construction will also be applied later to construct a local coupling
of the multigraph Gn with an infinite tree. In this case the random walk X will be used
to define the rule R.

Proof of Proposition 2.1. The proof follows the steps of [ČT13, Proposition 2.1]. Let M
be a uniformly distributed matching of Hn and let X be a random walk on Gn = GMn .
Define Mu ⊂M to be the set of all pairs of half-edges incident to a vertex visited by X
up to time 2umpn (cf. (1.2)), that is

Mu =
{
{(x, i|, (y, j|} ∈M : x ∈ {Xk : k ≤ 2umpn}, i ∈ [dx]

}
. (2.17)

The vacant graph Vn,u then agrees with GM\Mu . In particular, dn,ux (see (2.12)) is the
number of the half-edges incident to x not matched inMu. Denoting by Fu the σ-algebra
generated by {Mu, Xk, k ≤ 2umpn}, the above implies that dn,u is Fu-measurable. From
(2.16) it follows that, conditionally on Fu, the distribution of GM\Mu only depends on
the half-edges not matched in Mu, and is given by Pdn,u . More precisely,

Pn[Vn,u ∈ · |Fu] = Pn[GM\M
u ∈ · |dn,u] = Pdn,u [G ∈ · ]. (2.18)

Integrating this equality and using the definition of Qun then implies

Pn[Vn,u ∈ · ] = Pn

[
Pn[Vn,u ∈ · |Fu]

]
= Pn

[
Pdn,u [G ∈ · ]

]
=

∫
Pdn,u [Gn ∈ · ]Qun(ddn,u),

(2.19)

which completes the proof.

2.3 Configuration model and its connected components

In this section we summarize known results from the theory of the configuration model
with the given degree sequence dn = (dn1 , . . . , d

n
n). It turns out that their connectivity

behaviour essentially depends only on one parameter

Q(dn) =

∑
(x,i|∈Hn dnx

Ln
=

∑
x∈[n](d

n
x)2∑

x∈[n] d
n
x

. (2.20)

In the following theorem we use Cj(Gn) to denote the j-th largest connected component
of the multigraph Gn. We also recall that ni(dn) = |{x ∈ [n] : dnx = i}|, as in Section 1.

Theorem 2.2. Let (dn)n≥1 be a sequence of degree sequences, such that for all n ∈ N
max1≤x≤n{dnx} ≤ ∆ < ∞, n1(dn) ≥ ζn for some ζ > 0, and for some probability mass
function p = (pi)0≤i≤∆

lim
n→∞

ni(d
n)

n
= pi, for all 0 ≤ i ≤ ∆. (2.21)
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(a) (Supercritical regime) Let limn→∞Q(dn) = Q∞ > 2. Denote g(x) =
∑∆

i=0 pix
i the

generating function of p. Then,

|C1(Gn)|
n

Pdn

−−−→
n→∞

ρ, where ρ = 1− g(ξ), (2.22)

and ξ is the unique solution in (0, 1) to g′(ξ) = ξ
∑∆

i=0 ipi.

(b) (Subcritical regime) Let limn→∞Q(dn) = Q∞ < 2. Then there exists a constant
A(∆, Q∞), such that

|C1(Gn)| ≤ A log n, Pdn-a.a.s. (2.23)

(c) (Critical regime) Let |Q(dn) − 2| ≤ λn−
1
3 for all n ≥ 1. Then for every ε ≥ 0

there exists A = A(ζ, λ, ε,∆) such that for all n large enough

Pdn [A−1n
2
3 ≤ |C1(Gn)| ≤ An

2
3 ] ≥ 1− ε. (2.24)

(d) (Scaling limit) Let Q(dn) = 2 +λn−
1
3 +o(n−

1
3 ) as n→∞. Endow Cj(Gn) with the

graph distance and the uniform probability measure on its vertices. Then there exists
a sequence M̃p(λ) = (M̃p

1 (λ), M̃p
2 (λ), . . . ) of (random) compact metric measure

spaces such that
1

n1/3
(C1(Gn), C2(Gn), . . . )→ M̃p(λ) (2.25)

in distribution with respect to the product topology induced by Gromov-Hausdorff-
Prokhorov distance on each coordinate.

Proof. (a), (b), (c), (d) follow directly from [JL09, Theorem 2.3], [MR95, Theorem 1],
[HM12, Theorem 1.1], [BS20, Theorem 2.4], respectively.

Note that [JL09, Theorem 2.3] and [HM12, Theorem 1.1] consider only degree se-
quences with n0(dn) = 0. However, it is clear that if n0(dn) ≤ ζ ′n for some ζ ′ < 1, the
zero-degree vertices have no influence on Q(dn) and they just change the constant A in
(c). The same holds for the constant ξ in (a).

2.4 Random interlacements on the Galton-Watson tree

In this section we consider random interlacements on a particular Galton-Watson tree.
These random interlacements will provide a good local description of the vacant set of
the configuration model. It will also allow us to specify the distribution of the random
degree sequence dn,u of the vacant graph, and the critical parameter u∗ of Theorem4.
For a comprehensive introduction to random interlacements on transient weighted graphs
we refer to [Tei09].

The configuration model with a degree sequence satisfying Assumption 1.1 has a
locally tree-like nature. More precisely, let p = (pi)1≤i≤∆ be a probability mass function
as in Assumption 1.1. Consider a rooted random tree T , whose root ∅ has offspring
distribution p and all remaining vertices have offspring distribution p∗ = (p∗i )0≤i≤∆−1

defined in (1.7). By Assumption 1.1 and (1.7), p∗0 = p∗1 = 0 and thus, a.s., T is infinite
and the random walk on T is transient. In [vdH17b, Section 2.1] such random tree is
called unimodular Galton-Watson tree with offspring distribution p∗. We write PT for its
law and ET for the corresponding expectation. It is well known that the configuration
model satisfying Assumption 1.1 converges locally to the unimodular Galton-Watson tree
T , see e.g. [vdH17b, Theorem 2.11].

We now introduce random interlacements on T . Given a realization of T , let Ȳ =
(Ȳk)k≥0 be the usual (i.e. not lazy) discrete-time simple random walk on T started at
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x ∈ T and P̄ Tx its law. Random interlacements on T at level u ≥ 0 is defined as a
probability distribution PuT on the space {0, 1}T which samples a random subset VT of
T , called the vacant set of random interlacements at level u, characterized by

PuT [K ⊂ VT ] = exp
(
− u capT (K)

)
, for every finite K ⊂ T , (2.26)

where the capacity is given by

capT (K) =
∑
x∈K

dxP̄
T
x [H̃ Ȳ

K =∞], (2.27)

dx stands for the degree of x in T , and where H̃ Ȳ
K = inf{k ≥ 1 : Ȳk ∈ K} denotes the

hitting time of K by the random walk Ȳ . Let C∅ be the connected component of the
root ∅ in VT . The critical parameter u∗T of random interlacements on T is defined as

u∗T = inf
{
u ≥ 0 : PuT

[
|C∅| =∞

]
= 0
}
. (2.28)

Since T is a random tree, u∗T is, in principle, random. Proposition 2.3 below will
show that it is a.s. constant. To state the proposition we need one more definition. Let
T ′ be the usual Galton-Watson tree with offspring distribution p∗ (including the root
vertex ∅′ of T ′). Consider another tree T̃ obtained from T ′ by adding an additional
vertex ∅̃ connected to ∅′. Let

φ(u) = ET̃
[

exp
(
− uP̄ T̃∅′ [H Ȳ

∅̃ =∞]
)]
, (2.29)

where, similarly as above, P̄ T̃∅′ denotes the law of the simple random walk Ȳ on T̃ started
from ∅′, and ET̃ is the expectation over the law of T̃ .

Proposition 2.3. Let T be the unimodular Galton-Watson tree with offspring distribu-
tion p∗. Then there exists a constant u∗ ∈ (0,∞) such that

u∗T = u∗, PT -a.s., (2.30)

and u∗ is the unique solution in (0,∞) of the equation

mp =
∆∑
i=1

pii(i− 1)φ(u)i−2. (2.31)

Proof. The proof uses the results of [Tas10, Theorem 1], where random interlacements
on the (usual) Galton Watson tree were studied in detail.

Let T ′ be the usual Galton-Watson tree with offspring distribution p∗, as above. We
denote by Tx the subtree of T containing the vertex x ∈ T and all its descendants.
Observe that Tx has the same law as T ′ for every x ∼ ∅. Let PuTx be the law of random
interlacements at level u on Tx defined analogically to (2.26), and let Cx be the connected
component of the vacant set containing x. Using [Tas10, Theorem 1] we deduce the
existence of a constant u∗ ∈ (0,∞) such that a.s.

u∗ = inf{u ≥ 0 : PuT ′ [|C∅′ | =∞] = 0} = inf{u ≥ 0 : PuTx [|Cx| =∞] = 0}. (2.32)

We now show (2.30). Since PuT [∅ ∈ VT ] = e−u capT (∅) > 0 for every u ≥ 0, PT -a.s.,
we see that

PuT
[
|C∅| =∞

]
= 0 iff PuT

[
|C∅| =∞

∣∣∅ ∈ VT ] = 0, PT -a.s. (2.33)
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On the other hand, since the events {|C∅∩Tx| =∞} are conditionally independent under
PuT given ∅ ∈ VT , as can be deduced e.g. from [Tei09, Theorem 5.1],

PuT
[
|C∅| =∞

∣∣∅ ∈ VT ] = PuT
[
∃x ∼ ∅ : |C∅ ∩ Tx| =∞

∣∣∅ ∈ VT ]
= 1−

∏
x∼∅

(
1− PuT

[
|C∅ ∩ Tx| =∞

∣∣∅ ∈ VT ])
= 1−

∏
x∼∅

(
1− PuT

[
|C∅ ∩ Tx| =∞

∣∣∅, x ∈ VT ]PuT [x ∈ VT ∣∣∅ ∈ VT ]).
(2.34)

By [Tas10, (3.8),(3.9)],

PuT
[
|C∅ ∩ Tx| =∞

∣∣∅, x ∈ VT ] = PuTx
[
|Cx| =∞

∣∣x ∈ VTx]. (2.35)

Finally, since PuT
[
x ∈ VT

∣∣∅ ∈ VT ] > 0 a.s., we deduce from (2.33)–(2.35) that a.s.

u∗T = inf
{
u ≥ 0 : PuT

[
|C∅| =∞

]
= 0
}

= inf
{
u ≥ 0 : PuTx [|Cx| =∞] = 0

}
= u∗, (2.36)

by (2.32), proving (2.30).
To show (2.31), note that by [Tas10, Theorem 1], u∗ is the unique solution of the

equation (
f−1

)′
(ET

′
[exp(−u capT ′(∅′))]) = 1, (2.37)

where f is the probability generating function of p∗. Let x be an arbitrary neighbour of
the root ∅′. By (2.27) and the Markov property,

ET
′
[exp(−u capT ′(∅′))] = ET

′
[
ET
′[

exp(−ud∅′
∑
y∼∅′

1

d∅′
P̄ T

′
y [H̃ Ȳ

∅′ =∞])
∣∣d∅′]]

= ET
′
[ ∏
y∼∅′

ET
′[

exp(−uP̄ T ′y [H̃ Ȳ
∅′ =∞])

∣∣d∅′]]
= ET

′
[
φ(u)d∅′

]
= f

(
φ(u)

)
,

(2.38)

where, in the second equality we used that P̄ T ′y [H̃ Ȳ
∅′ = ∞] for y ∼ ∅′ are i.i.d. under

PT ′ [ · |d∅′ ], and in the third equality we used the equality

ET
′[

exp(−uP̄ T ′y [H̃ Ȳ
∅′ =∞])

∣∣d∅′] = φ(u), (2.39)

which follows from the fact that the probability on the left-hand side depends only on
the shape of Ty ∪ {∅′}, which has the same law as the shape of the tree T̃ introduced
above (2.29). Using (f−1)′ = 1/(f ′◦f−1) and (2.38), shows that (2.37) is equivalent with
f ′(φ(u)) = 1. Together with definition (1.7) of p∗, this finishes the proof of (2.31).

3 Random walk estimates

The aim of this section is to estimate the probability that the random walk X does not
visit certain subsets of B(x, 1) before time 2umpn (see Proposition 3.1). Those estimates
will later be used to describe the distribution of dn,u, the random degree sequence of the
vacant graph.

For a vertex x ∈ [n], we use xi ∼ x, i ∈ [dx], to denote its neighbours listed in the
increasing order. For any A ⊂ [dx], let

Bx,A = {x} ∪ {xi : i ∈ A}. (3.1)
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Observe that if B(x, 1) ⊂ Gn is a tree, then by the inclusion-exclusion formula,

PGn [dn,ux = i] =
∑

C⊂[dx]
|C|=i

PGn [VuGn ∩B(x, 1) = Bx,C ]

=
∑

C⊂[dx]
|C|=i

∑
A⊂[dx]
A⊃C

(−1)|A|−|C|PGn [HBx,A > 2umpn].
(3.2)

Thus, estimates on the probability on the right-hand side of (3.2) enable us to control
the distribution of the degree of x in the vacant graph.

These estimates are shown for deterministic graphs that are “typical” under Assump-
tion 1.1, that is on the set

Gdntyp = {Gn ∈ Gd
n

: λGn ≥ c log−l n}, (3.3)

where c > 0 and l ≥ 0 are as in Assumption 1.1. In particular, every Gn ∈ Gd
n

typ is
connected. We recall that we always assume that dn satisfies Assumption 1.1.

Proposition 3.1. For every κ > 0 there is c ∈ (0,∞) such that for every n ≥ 2,
Gn ∈ Gd

n

typ, x ∈ [n], A ⊂ [dx], with tn = log3l+3 n,∣∣∣PGn [HBx,A > κn]− exp
(
− κn

Ln

∑
y∈Bx,A

dyP
Gn
y [H̃Bx,A > tn]

)∣∣∣ ≤ ctn
n
. (3.4)

To prove Proposition 3.1 we need several preparatory lemmas. To simplify the no-
tation, we set B = Bx,A, define C1(Gn \ B) to be the largest connected component of
Gn\B, and S = B∪C1(Gn\B) (which, according to our convention, we identify with the
corresponding induced subgraph of Gn). The reason to introduce this subgraph is that
in order to understand the behaviour of HB under PGn , we need to study the random
walk on Gn \ B which might not be connected, unlike S. The two next lemmas show
that replacing Gn \B by S does not make much difference.

We denote PS the law of the lazy discrete time random walk X on S, started from
its (unique) stationary distribution πS , and write ES for the corresponding expectation.

Lemma 3.2. There are c, c′ ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, and x ∈
B ⊂ B(x, 1), ∣∣Sc| ≤ c logl n, where Sc = Gn \ S, (3.5)

sup
y∈Sc

Ey[HB] ≤ c log3l n, (3.6)

ES [HB] ≥ c′n. (3.7)

Proof. We start with the proof of (3.5). Let h(Gn) be the isoperimetric constant of Gn
defined in (2.8). By Assumption 1.1, we know that

1

∆n
≤ πGn(x) ≤ ∆

n
. (3.8)

The Cheeger inequality (2.9) then implies

λGn ≤ h(Gn) = min
A⊂[n],πGn (A)≤ 1

2

{ Q(A)

πGn(A)

}
≤ ∆2

2
min

A⊂[n],πGn (A)≤ 1
2

{ |∂eA|
|A|

}
. (3.9)
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Since Gn ∈ Gd
n

typ is connected, the graph Gn \B has at most |∂eB| ≤ ∆2 components and
at most n− |B| ≥ n− (∆ + 1) vertices. Therefore

|C1(Gn \B)| ≥ n− (∆ + 1)

∆2
. (3.10)

If, in addition, we assume that πGn(C1(G \B)) ≤ 1
2 , then by (3.9), since ∂eC1(Gn \B) ⊂

∂eB,

λGn ≤
∆2

2

∂eC1(Gn \B)|
C1(Gn \B)

≤ ∆6

2(n− (∆ + 1))
, (3.11)

which is a contradiction with Gn ∈ Gd
n

typ. Therefore, πGn(Sc) ≤ 1− πGn(C1(G \B)) < 1
2 .

Using ∂eSc ⊂ ∂eB and (3.9), we obtain

λGn ≤
∆2

2

|∂eSc|
|Sc|

≤ ∆4

2|Sc|
, (3.12)

and (3.5) follows, since Gn ∈ Gd
n

typ.
To show (3.6), first note that the expected cover time CG of any connected graph

Gn = (V,E) is bounded by c|V |3 for some universal constant c (see e.g. [AF02, Theorem
6.1]). For any x ∈ Sc, let Scx be the connected component of Sc containing x. By (3.5),

sup
x∈Sc

Ex[HB] ≤ sup
x∈Sc

CScx∪B ≤ c|S
c ∪B|3 ≤ c log3l n. (3.13)

For the proof of (3.7), note that by [AB92, Lemma 2], E[HB] ≥ c′′n, for some c′′ > 0.
In addition, the stationary measure πS on S satisfies πGn(x) ≤ πS(x) for every x ∈ S \B,
since the degrees of x in Gn and in S are the same but S ⊂ Gn. Hence, using (3.6), we
get

c′′n ≤ E[HB] =
∑
x∈S

πGn(x)Ex[HB] +
∑
x∈Sc

πGn(x)Ex[HB] ≤ ES [HB] +
∆ log4l n

n
, (3.14)

and (3.7) follows.

Lemma 3.3. There is c <∞ such that for n ≥ 2, G ∈ Gdntyp, x ∈ [n] and B ⊂ B(x, 1),

diam(S \B) ≤ c logl+1 n. (3.15)

Proof. It is well known (see e.g. [LPW09, Theorem 12.3 and (7.3)]), that one can use
the spectral gap to bound the diameter of connected graphs. Using in addition that
Gn ∈ Gd

n

typ,

diam(Gn) ≤ 2 log
( 4

minx∈[n] πGn(x)

)
λ−1
Gn
≤ c logl+1 n. (3.16)

We now claim that
diam(S) ≤ diam(Gn). (3.17)

Indeed, let γGn(x, y) for a geodesic path between x ∈ [n] and y ∈ [n] in Gn (that is a
path whose length is distG(x, y)). Let x, y ∈ S. If γG(x, y) ∩ Sc = ∅, then distS(x, y) =
distG(x, y). On the other hand, if γG(x, y) intersects Sc, then it must pass through at
least two different edges whose one vertex is in B and one in Sc. Since diam(B) ≤ 2, we
can connect the endpoints in B of those two edges by a path of length at most two lying
in B, and construct a path γ̃Gn(x, y) ⊂ S of length at most distG(x, y) connecting x, y.
Hence, distG(x, y) = distS(x, y) again and (3.17) follows.
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Finally, we claim that

diam(S \B) ≤ 4∆2 diam(Gn). (3.18)

Assume by contradiction that (3.18) does not hold. Then there are x, y ∈ S \ B with
distS\B(x, y) > 4∆2 diam(Gn). Let γ = (x = z0, z1, . . . , zM = y) be a geodesic in S \ B
linking those two points, M > 4∆2 diam(Gn). Set m = 3 diam(Gn) and ` = M/m ≥
4∆2/3. Since γ is a geodesic path in S \B,

distS\B(zim, zjm) = 3|i− j|diam(Gn), for every 0 ≤ i, j ≤ `. (3.19)

On the other hand, by (3.17), distS(z(i−1)m, zim) ≤ diam(Gn) for 1 ≤ i ≤ `. Therefore,
there is a geodesic path γi in S linking z(i−1)m, zim of length at most diamG. Every γi

has to intersect B, due to (3.19). Let ai be the first point on γi contained in ∂SB =
{y ∈ S : distG(y,B) = 1}. Since ` ≥ 4∆2/3 and |∂SB| ≤ ∆2 , by Assumption 1.1, there
exist 1 ≤ i < j ≤ ` such that ai = aj . By considering the part of γi between zi and ai
and the part of γj between zj and aj = ai, we see that there is a path in S \ B linking
zi and zj of length at most 2 diamGn, leading to contradiction with (3.19), and proving
(3.18).

For the next lemma, let σB be the quasi-stationary distribution of the random walk
on S conditioned on not hitting B, uniquely determined by (recall S \ B = C1(Gn \ B)
is connected)

PSσB [X1 = y|HB > 1] = σB(y). (3.20)

We need the following estimate on the convergence rate of the conditioned random walk
on S towards σB.

Lemma 3.4. There is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n] and
B ⊂ B(x, 1), with t′n ≥ log2l+2 n,

sup
z,y∈S\B

∣∣∣PSz [Xt′n = y|HB > t′n]− σB(y)
∣∣∣ ≤ c exp

(
− ct′n

logl n

)
. (3.21)

Proof. Let 0 < λB1 < λB2 ≤ · · · ≤ λB|S\B| be the eigenvalues of the generator of the random
walk on S killed on hitting B. By [ČT13, Lemma 4.4], the claim of the lemma follows,
if we can show that

e−t
′
n(λB2 −λB1 )|Bc|

(
sup
x∈Bc

σBc(x)

πGn(x)
1
2

)2(
inf
x∈Bc

σBc(x)

πGn(x)
1
2

)−1
≤ c exp

(
− c′tn

logl n

)
, (3.22)

Hence, we need to provide lower bounds for λB2 − λB1 and infx∈S\B σB(x).
We start with λB2 − λB1 . By the eigenvalue interlacing inequality (see e.g. [Hae95,

Corollary 2.2]) we have λB2 ≥ λG. On the other hand, by [AB92, Lemma 2 and the
paragraph following equation (12)], λB1 = ESσB [HB]−1 ≤ ES [HB]−1. Since Gn ∈ Gd

n

typ, by
(3.7),

λ2
B − λ1

B ≥ λG −
1

ES [HB]
≥ c

logl n
. (3.23)

We now estimate infx∈S\B σB(x). Let x ∈ S \ B and PSx be the law of the random
walk X on S started in x. By reversibility, for all x′ ∈ S \B and k ≥ 0,

πGn(x′)PSx′ [Xk = x|HB > k] = πGn(x)PSx [Xk = x′|HB > k]
PSx [HB > k]

PSx′ [HB > k]
. (3.24)
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In order to bound the above ratio, note that

PSx [HB > k] ≥ PSx [Hx′ < HB, HB > k] ≥ PSx [Hx′ < HB]PSx′ [HB > k]. (3.25)

Further, by Lemma 3.3, diam(S \B) ≤ c logl+1 n. Thus we can find a path of length at
most c logl+1 n, connecting x and x′ and not passing through B. By letting the random
walk to follow this path, using pxy ≥ 1/(2∆) if x ∼ y by (2.3), this yields

PSx [Hx′ < HB] ≥ (2∆)−c logl+1 n. (3.26)

Finally, by, standard properties of the quasi-stationary distribution, (see e.g. [ČT13,
Lemma A.2.]), limk→∞ P

S
x [Xk = x′|HB > k] = σB(x′) uniformly for all x, x′ ∈ S \ B.

Therefore, taking the limit k → ∞ in (3.24), using (3.8), (3.25) and (3.26), for some
c, c′ ∈ (0,∞),

σB(x) ≥ c′σB(x′)∆−c logl+1 n, for all x, x′ ∈ S \B, (3.27)

and since σB is a probability measure,

inf
x∈S\B

σB(x) ≥ c exp(−c′ logl+1 n). (3.28)

After inserting (3.8), (3.23) and (3.28) into the left-hand side of (3.22), using t′n ≥
log2l+2 n, we obtain

e−t
′
n(λ2B−λ

1
B)|Bc|

(
sup
x∈Bc

σBc(x)

πGn(x)
1
2

)2(
inf
x∈Bc

σBc(x)

πGn(x)
1
2

)−1

≤ cn
3
2 exp

(
− c′t′n

logl n
+ c′′ logl+1 n

)
≤ c exp

(
− c′t′n

logl n

)
.

(3.29)

This shows (3.22) and completes the proof.

Lemma 3.5. For every κ > 0 there is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ,
x ∈ [n] and A ⊂ [dx], with tn = log3l+3 n,∣∣∣PG[HBx,A > κn]− exp

(
− κn

ESσ [HB]

)∣∣∣ ≤ ctn
n
. (3.30)

Proof. We write B and σ for Bx,A and σBx,A , respectively. Recall that πS denotes the
stationary measure of the random walk on S. Then by Lemma 3.2, for x ∈ S \B, since
dnx agrees with the degree dSx of x in S,

πGn(x) ≤ πS(x) =
dnx∑
y∈S d

S
y

≤ dnx∑
y∈[n] d

n
y − c logl n

≤ πGn(x)
(

1 +
c logl n

n

)
. (3.31)

Then, by (3.5),

PGn [HB > κn] =
∑
x∈S

πGn(x)PGnx [HB > κn] +
∑
x∈Sc

πGn(x)PGnx [HB > κn]

= PS [HB > κn] +O
( logl n

n

)
.

(3.32)

Using the Markov property and Lemma 3.4, for Gn ∈ Gd
n

typ and some c > 0,∣∣∣PS [HB > κn]− exp
(
− κn

ESσ [HB]

)∣∣∣
=
∣∣∣PS [HB > tn]ES

[
PSXtn [HB > κn− tn]

∣∣HB > tn
]
− exp

(
− κn

ESσ [HB]

)∣∣∣
≤
∣∣∣PS [HB > tn]PSσ [HB > κn− tn]− exp

(
− κn

ESσ [HB]

)∣∣∣+ c exp
(−c′tn

logl n

)
.

(3.33)
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By, e.g., [AF02, (3.82) and below], the hitting time HB under PSσ has geometric distri-
bution with mean ESσ [HB]. Moreover, by the same arguments as above (3.23) and by
(3.7), ESσ [HB] ≥ ES [HB] ≥ cn. Thus

PSσ [HB > κn− tn] =
(

1− 1

ESσ [HB]

)κn−tn
= exp

(
− κn

ESσ [HB]

)
+O

( tn
n

)
.

(3.34)

Applying [AB92, Theorem 3],

PS [HB ≤ tn] ≤ 1−
(

1− 1

λSESσ [HB]

)
exp

(
− tn
ESσ [HB]

)
≤ ctn

n
. (3.35)

Combining (3.34) and (3.35), one shows easily that the right-hand side of (3.33) is
bounded by ctn/n. Together with (3.32) this then yields the claim of the lemma.

The final ingredient for the proof of Proposition 3.1 is the next estimate on ESσ [HBx,A ].

Lemma 3.6. There is c ∈ (0,∞) such that for every n ≥ 2, Gn ∈ Gd
n

typ, x ∈ [n] and
A ⊂ [dx], with tn = log3l+3 n,∣∣∣ 1

ESσ [HBx,A ]
−

∑
y∈Bx,A

dy
Ln

PGy [H̃Bx,A > tn]
∣∣∣ ≤ ctn

n2
. (3.36)

Proof. We write again B and σ for Bx,A and σBx,A , respectively. Let d
n
B =

∑
x∈B d

n
x and

πB(x) = dnx
dnB

for x ∈ B, and πB(x) = 0 otherwise.
We first claim that

1 = πGn(B)EGnπB [H̃B]. (3.37)

Recall that PGn is the law of the stationary lazy random walk on G. Therefore,

PGn [H̃B = k] = PGn [H̃B ≥ k]− PGn [H̃B ≥ k + 1]

= PGn [H̃B ≥ k]− PGn [HB ≥ k]

= πGn(B)PπB [H̃B ≥ k].

(3.38)

Summing over k ≥ 1, proves (3.37).
Observe that by (3.7), EπB [H̃B1{X1∈Sc}] ≤ supx∈Sc Ex[HB] ≤ c log3l n. Using this in

the third step,

1

πGn(B)
= EGnπB [H̃B]

= EGnπB [H̃B1{X1∈Sc}] + EGnπB [H̃B1{X1∈S∩H̃B≤tn}] + EGnπB [H̃B1{X1∈S∩H̃B>tn}]

= O(tn) + PGnπB [H̃B > tn]PGnπB [X1 ∈ S|H̃B > tn]EGnπB [H̃B|X1 ∈ S, H̃B ≥ tn].

(3.39)

For Sc 6= ∅, by the Markov inequality and (3.6),

PGnπB [H̃B > log3l+1 n|X1 ∈ Sc] ≤ sup
x∈Sc

PG[HB > log3l+1 n] ≤ log−1 n. (3.40)

By iterating this log2 n times, and using that the walk does not leave Scn, we obtain
PGnπB [H̃B > log3l+3 n|X1 ∈ Sc] ≤ exp(− log2 n). Therefore,

PGnπB [X1 ∈ S|H̃B > tn] = 1−
PGnπB [X1 ∈ Sc]
PGnπB [H̃B > tn]

PGnπB [H̃B > tn|X1 ∈ Sc]

≥ 1−
PGnπB [X1 ∈ Sc]
PGnπB [H̃B > tn]

exp(− log2 n).

(3.41)
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By Lemma 3.4 and (3.41), equation (3.39) reduces to

1

πGn(B)
= O(tn) +

(
PGnπB [H̃B > tn]−O(e− log2 n)

)(
ESσ [HB] +O(e−c log2 n)

)
= O(tn) +

∑
y∈B

dny
dnB
PGy [H̃B > tn]ESσ [HB].

(3.42)

Rearranging this, using Ln =
∑

x∈[n] d
n
x = O(n) and (3.7), yields

1

ESσ [HB]
=
πGn(B)O(tn)

ESσ [HB]
+
∑
y∈B

dnyπ
Gn(B)

dnB
PGny [H̃B > tn]

= O
( tn
n2

)
+
∑
y∈B

dny
Ln

PGny [H̃B > tn],

(3.43)

and (3.36) follows.

Proof of Proposition 3.1. Proposition 3.1 follows directly from Lemmas 3.5 and 3.6.

4 Degree sequence of the vacant set

The goal of this section is to control the degree sequence dn,u of the vacant graph Vn,u.
We proceed in two steps. First, in Theorem 4.4, we approximate EGn [ni(d

n,u)], the ex-
pected number of vertices with degree i ∈ {0, 1, . . . ,∆} in Vn,u. Second, in Theorem 4.7,
we give a corresponding concentration result.

4.1 Local coupling with unimodular Galton-Watson tree

Recall from Section 2.4 that T denotes the unimodular Galton-Watson tree. We write
P Tx for the law of the lazy discrete-time simple random walk Y = (Yk)k≥0 on T started
from x ∈ T (cf. with the lazy random walk Ȳ of Section 2.4).

The main ingredient of the proof of Theorem 4.4 is a local coupling of the random
multigraph Gn and the random walk X with the unimodular Galton-Watson tree T
and the random walk Y . In its construction we use the following notation. Given the
multigraph Gn, a random walk X on Gn, and some x ∈ [n], we define for t ∈ N,

GX,t = B(x, 1) ∪
⋃

0≤k≤t
B(Xk, 1), (4.1)

and identify it, as usual, with the corresponding induced subgraph of Gn. Analogously
we define

T Y,t = BT (∅, 1) ∪
⋃

0≤k≤t
BT (Yk, 1), (4.2)

where BT (x, r) denotes the ball of radius r around x in the tree T . Recall also that
tn = log3l+3 n.

Lemma 4.1. For every x ∈ [n] there exists a probability space (Ωx,Fx,Qx), where one
can construct a random graph Gn together with a process X on Gn started at y ∈ [n],
and a random tree T together with a process Y on T started at y′ ∈ T , such that

(a) Gn is Pdn distributed,

(b) X has the law PGny , where y is a uniformly chosen neighbour of x in Gn,

16



(c) T is the unimodular Galton-Watson tree with offspring distribution p∗, conditioned
on {deg(∅) = dnx},

(d) Y has the law P Ty′ , where y
′ is a uniformly chosen neighbour of ∅,

and the event

Gtn =

{
There exists a graph isomorphism φ of GX,tn and T Y,tn such
that φ(x) = ∅, φ(y) = y′, and Yk = φ(Xk) for all 0 ≤ k ≤ tn

}
(4.3)

satisfies, for some c ∈ (0,∞) and large enough n,

Qx[Gtn ] ≥ 1− cn−
2
3
− ε1

2 , (4.4)

where ε1 is as in Assumption 1.1(b).

Proof. We will construct the coupling on (Ωx,Fx,Qx) by sequentially exploring the graph
Gn along the trajectory of the random walk (Xk)0≤k≤tn . The following algorithm, which
provides the construction of Gn and X, and which has four phases, describes this explo-
ration process. In phase 1, we construct the graph induced by B(x, 1) for a given x ∈ [n].
In phase 2 and 3 we use the random walk until time tn to continue the construction. In
phase 4 we complete Gn by the usual pairing construction (see Section 2.2). During the
run of the algorithm we distinguish between paired and unpaired half-edges. Note that
all random variables in the algorithm are defined on (Ωx,Fx,Qx). We also recall that
Hn denotes the set of half-edges corresponding to dn (see (2.14)).

Algorithm 4.2. At the start, all half-edges in Hn are set unpaired and Gn = ([n], ∅).

1. For all unpaired half-edges (x, i| of the given vertex x:

(i) Choose one half-edge (y′, i′| from all unpaired half-edges except (x, i) uniformly.

(ii) Pair the half-edges (x, i| and (y′, i′|, and add the edge (x, y′) into Gn.

(iii) If all half-edges incident to x are paired, go to phase 2.

2. (i) If B(x, 1) \ {x} is empty, set X0 = x.

(ii) Otherwise, choose one vertex y uniformly in B(x, 1) \ {x}, and set X0 = y.

3. For 0 ≤ k ≤ tn:

(i) For all unpaired half-edges (Xk, i| of the vertex Xk, sequentially: Choose one
half-edge (y′, i′| from all unpaired half-edges except (Xk, i| uniformly, pair the
half-edges (Xk, i| and (y′, i′|, and add the edge (Xk, y

′) into Gn.

(ii) If all half-edges of Xk are paired, sample Xk+1 using the lazy random walk step
distribution started from Xk.

(iii) If k = tn, go to step 4.

4. Complete Gn by the usual pairing construction on still non-paired half-edges, and
continue the lazy random walk Xk for k > tn + 1 according to its law.

Obviously, Gn and X constructed on (Ωx,Fx,Qx) with help of this algorithm have
properties (a)-(b) claimed in the lemma.

We continue with an estimate of the degree distribution for all vertices discovered in
phase 1 and 3. Let

p∗n(i− 1) =
ini(d

n)∑
1≤i≤∆ ini(d

n)
(4.5)
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be the distribution of the ‘degree minus one’ of the vertex corresponding to a uniformly
chosen half-edge in Hn. By Assumption 1.1(b),

p∗n(i− 1) =
ipi +O(n−

2
3
−ε1)∑

1≤i≤∆ ipi +O(n−
2
3
−ε1)

= p∗i−1 +O(n−
2
3
−ε1), (4.6)

where p∗ is given by definition (1.7). Note that Hn
tn , the set of paired half-edges until

time tn, satisfies
|Hn

tn | ≤ 2∆ + 2tn∆, (4.7)

where the two terms correspond to the number of half-edges paired in Step 1(ii) and
Step 3(i) respectively. Thus, for all half-edges (y′, i′| chosen in Step 1(i) and Step 3(i), it
holds that

|Qx[deg(y′) = i]− p∗n(i− 1)| ≤ 2∆ + 2tn∆

|Hn|
≤ ctn

n
, 1 ≤ i ≤ ∆. (4.8)

Therefore, by (4.6),
|Qx[deg(y′) = i]− p∗i−1| ≤ cn−

2
3
−ε1 . (4.9)

We will now construct the tree T together with the process Y and the (partial) graph
isomorphism φ. We first deal with the case when the coupling succeeds, that is Gtn
occurs, and deal with the remaining cases later.

At the beginning of the construction, T is the graph containing only one vertex, the
root ∅, and we define φ(x) = ∅. Then, we add the vertices z1, . . . , zdnx into T and connect
them to ∅. If B(x, 1) is a tree, we define

φ(y) = zi, if (y, j) is paired with (x, i) for some j ∈ [dny ]. (4.10)

We then proceed iteratively along the trajectory of X up to time t∗ given by

t∗ = sup{t ≤ tn : GX,t
∗
is a tree}. (4.11)

At every time k ≤ t∗, such that Xk visits a vertex for the first time, we abbreviate
z = φ(Xk) (which is always defined at this step, by construction), and let Zz be a p∗

distributed random variable. Due to (4.9), Zz can be coupled with deg(Xk)− 1, so that

Qx[Zz = deg(Xk)− 1] ≥ 1− cn−
2
3
−ε1 , (4.12)

and we thus do so. We then add Zz new vertices into T and connect all of them to z. If
Zz = deg(Xk)− 1, we extend φ by a bijection of the neighbours of Xk and of z, which is
possible since the degrees agree. Finally, we set Yk = φ(Xk) = z.

If k > t∗, or if the coupling fails, that is there exists a k ≤ t∗, such that Zφ(Xk) 6=
deg(Xk) − 1, we continue the construction of T and the random walk Y independently
of the construction of Gn and X in Algorithm4.2. If the coupling succeeds for all k ≤ t∗
and t∗ = tn, Gn, X, T , Y satisfy the properties (a)-(d) in Lemma 4.1 and Gtn occurs, by
construction.

We thus need to estimate the probability of the event {the coupling succeeds}∩{t∗ =
tn}. The event {t∗ = tn} does not occur only if we choose a half-edge of an already
discovered vertex in Steps 1(i) or 3(i). This probability is in every step bounded by
2∆tn/|Hn| and thus

Qx[t∗ 6= tn] ≤ 2∆t2n
n

. (4.13)
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In addition, by (4.9),

Qx[{∃z ∈ T Y,t∗ : Zz 6= deg(φ−1(z))− 1}] ≤
∑

z∈T Y,t∗
Qx[Zz 6= deg(φ−1(z))− 1]

≤ ctnn−
2
3
−ε1 ≤ c′′n−

2
3
− ε1

2 .

(4.14)

These two estimates imply (4.4), which completes the proof.

Later, for a second moment estimate, we need to couple Gn and two random walks
started at different vertices x1, x2 ∈ Gn with two independent unimodular Galton-Watson
trees and random walks on them.

Lemma 4.3. For every x = (x1, x2), x1 6= x2 ∈ [n], there exists a probability space
(Ωx,Fx,Qx), where one can construct a random graph Gn, together with two processes
Xi on Gn started at yi ∈ [n], for i ∈ {1, 2}, and two independent random trees T i with
roots ∅i, together with two processes Y i on T i started at y′i ∈ [n], for i ∈ {1, 2}, such
that,

(a) Gn is Pdn distributed,

(b) for i ∈ {1, 2}, Xi has the law PGnyi , where yi is a uniformly chosen neighbour of xi,

(c) for i ∈ {1, 2}, T i is the unimodular Galton-Watson tree with offspring distribution
p∗, conditioned on {deg(∅i) = dnxi},

(d) for i ∈ {1, 2}, Y i has the law P Ty′i
, where y′i is a uniformly chosen neighbour of ∅i,

and the events

Gtni =

{
There exists a graph isomorphism φi of GXi,tn and T Y i,tn such
that φi(xi) = ∅i, φ(yi) = y′i, and Y

i
k = φ(Xi

k), for 0 ≤ k ≤ tn

}
, (4.15)

satisfy, for some c ∈ (0,∞) and large enough n,

Qx[G1
tn ∩ Gtn2 ] ≥ 1− cn−

2
3
− ε1

2 . (4.16)

Proof. The proof is similar to the proof of Lemma 4.1, so we only sketch the differences.
Note, that for fixed x1 6= x2, we can run phases 1-3 of Algorithm 4.2 twice to construct
two subgraphs GX

1,tn
n and GX

2,tn
n .

The number of paired half-edges in these steps is bounded by 4(∆ + tn∆), that is,
similarly as in (4.9), for 1 ≤ i ≤ ∆ and y′ ∈ GX

1,tn
n ∪GX

2,tn
n

|Qx[deg(y′) = i]− p∗i−1| ≤ cn−
2
3
−ε1 . (4.17)

If GX
1,tn

n , GX
2,tn

n are disjoint trees, then we can construct two independent trees T 1, T 2,
together with two random walks Y 1, Y 2, similarly to the proof of Lemma 4.1. If GX

1,tn
n ,

GX
2,tn

n are not disjoint, we construct T 1, T 2, Y 1, Y 2 independently. Since, by the same
arguments as in (4.13),

Qx[GX
1,tn

n , GX
2,tn

n are disjoint trees] ≥ 1− ct2n
n
, (4.18)

this completes the proof of the lemma.
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4.2 Expected degree sequence of the vacant graph

We now use the coupling from Section 4.1 together with Proposition 3.1, in Theorem 4.4
below, to provide a good approximation for the expectation EGn [ni(d

n,u)].
For the rooted tree T and A ⊂ [d∅], we denote by y1, . . . , yd∅ the neighbours of the

root ∅ and for A ⊂ [d∅] we define, analogously to (3.1), the set

BT∅,A = {∅} ∪ {yi : i ∈ A} ⊂ BT (∅, 1). (4.19)

We further set

pui (T ) =
∑

C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C| exp
(
− u capT (BT∅,A)

)
, (4.20)

where the capacity is defined in (2.27).

Theorem 4.4. Let ε1 be as in Assumption 1.1(b). Then for δ ∈ (0, ε1/4),∣∣∣EGn [ni(d
n,u)]− nET [pui (T )]

]∣∣∣ ≤ cn 2
3
−δ Pdn-a.a.s. (4.21)

Proof. We start estimating Edn
[
EGn [ni(d

n,u)]
]
first. Note that

EGn [ni(d
n,u)] =

∑
x∈[n]

PGn [dn,ux = i]. (4.22)

Moreover, by (3.2), if B(x, 1) is a tree, then

PGn [dn,ux = i] =
∑

C⊂[dx]
|C|=i

∑
A⊂[dx]
A⊃C

(−1)|A|−|C|PGn [HBx,A > 2umpn]. (4.23)

We thus control the probability on the right-hand side of (4.23) first. By Assump-
tion 1.1(b),

Ln =
∑
x∈[n]

dnx =
∑

1≤i≤∆

ini(d
n,u) =

∆∑
i=1

i
(
npi +O(n

1
3
−ε1)

)
= nmp +O(n

1
3
−ε1). (4.24)

By Assumption 1.1(c), Pdn [Gn ∈ Gd
n

typ] ≥ 1 − n−
2
3
−ε2 . Hence, by Proposition 3.1, for

x ∈ [n] and A ⊂ [dx],

Pdn
[∣∣∣PGn [HBx,A > 2umpn]− exp

(
− 2u

∑
y∈Bx,A

dyP
Gn
y [H̃Bx,A > tn]

)∣∣∣ ≤ cn− 2
3
−ε1
]

≥ 1− n−
2
3
−ε2 ,

(4.25)

where tn = log3l+3 n as in Proposition 3.1. Thus, using the coupling of Lemma 4.1,
(4.23), (4.25), and the fact that B(x, 1) is a tree on Gtn , we have that for every x ∈ [n]

and ε3 = min{ε2,
ε1
2 }, with Qx probability at least 1− c′n−

2
3
−ε3 ,∣∣∣PGn [dn,ux = i]−

∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C| exp
(
− 2u

∑
y∈BT∅,A

dyP
T
y [H̃Y

BT∅,A
> tn]

)∣∣∣
≤ cn−

2
3
−ε1 .

(4.26)

In order to approximate the second term in (4.26) by pui (T ) we need the following claim,
whose proof is postponed to the end of this section. We recall from Section 2.4 that P̄ Ty
denotes the law of non-lazy random walk Ȳ on T .
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Lemma 4.5. For every y ∈ B∅,A, 2P Ty [H̃Y
BT∅,A

=∞] = P̄ Ty [H̃ Ȳ
BT∅,A

=∞], and, for some

c, c′ ∈ (0,∞), ∣∣P Ty [H̃BT∅,A
> tn]− P Ty [H̃BT∅,A

=∞]
∣∣ ≤ c exp(−c′tn). (4.27)

Applying this lemma, (4.20), and (2.27) in inequality (4.26) yields

Qx
[∣∣PGn [dn,ux = i]− pui (T )

∣∣ ≤ cn− 2
3
−ε1
]
≥ 1− c′n−

2
3
−ε3 . (4.28)

Coming back to (4.20), to finish the approximation of Edn
[
E[ni(d

n,u)]
]
, we need to sum

over all x ∈ [n]. For this we denote by Wx the event in (4.28), that is

Wx =
{∣∣PGn [dn,ux = i]− pui (T )

∣∣ ≤ cn− 2
3
−ε1
}
. (4.29)

By (4.28), for all x ∈ [n],∣∣∣Edn
[
PGn [dn,ux = i]

]
− ET [pui (T )]

∣∣∣ = EQx
[∣∣PGn [dn,ux = i]− pui (T )

∣∣]
≤ EQx

[∣∣PGn [dn,ux = i]− pui (T )
∣∣1{Wx}

]
+Qx[W c

x ]

≤ cn−
2
3
−ε1 + c′n−

2
3
−ε3 ≤ cn−

2
3
−ε3 ,

(4.30)

and thus

Edn
[
EGn [ni(d

n,u)]
]

=
∑
x∈[n]

Edn
[
PGn [dn,ux = i]

]
= nET [pui (T )] +O(n

1
3
−ε3). (4.31)

In order to show (4.21), we need to prove the concentration of EGn [ni(d
n,u)] around

its mean. We first assume that for every two vertices x1 6= x2 ∈ [n]

Edn
[
PGn [dn,ux1 = i]PGn [dn,ux2 = i]

]
= Edn

[
PGn [dn,ux1 = i]

]
Edn

[
PGn [dn,ux2 = i]

]
+O

(
n−

2
3
− ε3

2
)
.

(4.32)

This implies, that

Edn
[
EGn [ni(d

n,u)]2
]

=
∑
x∈[n]

Edn
[
PGn [dn,ux = i]2

]
+
∑
x 6=y

Edn
[
PGn [dn,ux = i]PGn [dn,uy = i]

]
= O(n) +

∑
x 6=y

(
Edn

[
PGn [dn,ux = i]

]
Edn

[
PGn [dn,uy = i]

]
+O

(
n−

2
3
− ε3

2
))

=
( ∑
x∈[n]

Edn
[
PGn [dn,ux = i]

])2
+O(n

4
3
− ε3

2 )

= Edn
[
EGn [ni(d

n,u)]
]2

+O(n
4
3
− ε3

2 ),

(4.33)

for 0 < ε3 <
1
3 . Therefore, by the second moment method, for δ < ε3/4,

Pdn
[∣∣E[ni(d

n,u)]− Edn
[
E[ni(d

n,u)]
]∣∣ > n

2
3
−δ] = o(1). (4.34)

To show (4.32) consider the coupling Qx from Lemma 4.3 for x = (x1, x2) ⊂ [n], x1 6=
x2. Let T 1 and T 2 be two independent unimodular Galton-Watson trees with offspring
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distribution p∗ constructed during the coupling, and define pui (T 1), pui (T 2) similarly to
(4.20), and Wx1 ,Wx2 similarly to (4.29). By Lemma 4.3, for ε3 as above,∣∣∣EQx[PGn [dn,ux1 = i]PGn [dn,ux2 = i]

]
− EQx

[
pui (T 1)pui (T 2)

]∣∣∣
≤ EQx

[∣∣PGn [dn,ux1 = i]PGn [dn,ux2 = i]− pui (T 1)pui (T 2)
∣∣1{Wx1∩Wx2}

]
+Qx[(Wx1 ∩Wx2)c]

≤ c′n−
2
3
−ε1 + cn−

2
3
− ε3

2 ≤ cn−
2
3
− ε3

2 .

(4.35)

Using this, the independence of pui (T 1) and pui (T 2), and (4.30) in the last line, implies

Edn
[
PGn [dn,ux1 = i]PGn [dn,ux2 = i]

]
= EQx

[
pui (T 1)

]
EQx

[
pui (T 2)

]
+O

(
n−

2
3
− ε3

2
)

= Edn
[
PGn [dn,ux1 = i]

]
Edn

[
PGn [dn,ux2 = i]

]
+O

(
n−

2
3
− ε3

2
)
,

(4.36)

and (4.32) is proved. Thus (4.34) holds, and together with (4.31) this finishes the proof
of Theorem 4.4.

It remains to show Lemma 4.5 which we used in the last proof.

Proof of Lemma 4.5. The first claim of the lemma is a simple comparison of lazy and
non-lazy random walks. For the second claim we note that by the Markov property, for
y ∈ BT∅,A,

P Ty [H̃BT∅,A
> tn]− P Ty [H̃BT∅,A

=∞] = P Ty [tn < H̃BT∅,A
<∞]

≤ P Ty
[

dist(y, Ytn) ≤ tn
12

]
+ sup
x:dist(∅,x)> tn

12

P Tx [H̃∅ <∞].
(4.37)

We denote by T 3 the rooted regular tree with deg(x) = 3, for every x ∈ T 3 and root
∅′. Consider the lazy random walk Y ′ on T 3 started at x ∈ T 3, and its law P T

3

x .
Since deg(x) ≥ 3, for all x ∈ T , we can couple Y on T with Y ′ on T 3, so that, a.s.,
dist(∅, Yk) ≥ dist(∅′, Y ′k). Hence,

P Ty

[
dist(∅, Ytn) ≤ tn

12

]
≤ P T 3

y

[
dist(∅′, Y ′tn) ≤ tn

12

]
, (4.38)

sup
x:dist(∅,x)> tn

12

P Tx [H̃∅ <∞] ≤ sup
x:dist(∅,x)> tn

12

P T
3

x [H̃∅ <∞]. (4.39)

Note that dist(∅, Y ′tn) under P T 3

y is a lazy random walk on N with the expected drift
given by 1

6 . Standard large deviation estimates for this walk together with (4.38) and
(4.39) then imply the lemma.

4.3 Concentration of the degree sequence

In this section we show that ni(dn,u) concentrates around its mean.

Theorem 4.6. For every u ≥ 0 and ε > 0 there exist c, c′,∈ (0,∞) such that for every
n ≥ 2, i ∈ {0, . . . ,∆}, ε ∈ (0, 1/2) and Gn ∈ Gd

n

typ,

PGn
[
|ni(dn,u)− EGn

[
ni(d

n,u)
]
| ≥ n

1
2

+ε
]
≤ c′ exp(−cnε/2). (4.40)

The proof of of this theorem uses similar ideas as in [ČTW11] and is based on the
following well known concentration inequality.
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Lemma 4.7 (Theorem 3.7 of [McD98]). Let W = (W1, . . . ,WM ) be a family of A-valued
random variables, f : AM → R be a bounded function, and let µ = E[f(W )] be the mean
of f(W ). Define

rk(w1, . . . , wk−1)

= sup
y,y′∈Ak

∣∣E[f(W )|Wk = y,Wi = wi∀i < k]− E[f(W )|Wk = y′,Wi = wi∀i < k]
∣∣.

Then, for any t ≥ 0 and R2 = supw1,...,wM−1

∑M
k=1 r

2
k(w1, . . . , wk−1),

P
[
|f(W )− µ| ≥ t

]
≤ 2 exp

(
− t2

R2

)
.

To apply this inequality we replace the random walk X on Gn by another process
obtained by concatenating random walk bridges of length L = bnδc. Let Gn ∈ Gd

n

typ.
For x, z ∈ [n], denote by PGn,Lx the law of the random walk (Xk)0≤k≤L on Gn started
at x, and by PGn,Lx,z = PGn,Lx [ · |XL = z] the law of the corresponding random walk
bridge. Let (Zi)i≥0 be a sequence of πGn-distributed random variables defined on some
auxiliary probability space (Ω̃, Ã, P̃ ). Given (Zi)i≥0, let (X

i
)i≥1 be conditionally inde-

pendent elements of [n]L+1, defined on the same auxiliary probability space, such that
each (X

i
k)0≤k≤L is distributed according to the random walk bridge measure PGn,L

Zi−1,Zi
.

We define the concatenation of the Xi as

Xk = X
i
k−(i−1)L, for (i− 1)L ≤ k < iL. (4.41)

For κ ≥ 0, let PGn,κ be the law of (X0, . . . ,Xbκnc) on [n]bκnc+1, and write PGn,κ for the
law of the random walk (X0, . . . , Xbκnc). The next lemma shows that PGn,κ approximates
well PGn,κ.

Lemma 4.8. For every κ ≥ 0 and Gn ∈ Gd
n

typ, with L = bnδc, δ > 0, the measures PGn,κ

and PGn,κ are equivalent, and for some c, c′ > 0 independent of n∣∣∣dPGn,κ
dPGn,κ

− 1
∣∣∣ ≤ c exp(−c′n

δ
2 ). (4.42)

Proof. Let κ′ be the smallest number, such that κ′ ≥ κ and mL = κ′n for some m ∈ N.
Since PGn,κ and PGn,κ are restrictions of PGn,κ′ and PGn,κ′ , it is enough to prove (4.42)
for PGn,κ′ and PGn,κ′ . Let A be an arbitrary subset of [n]bκ

′nc+1. Then, by the Markov
property,

PGn,κ
′
[A]

=
∑

x0,...,xm∈[n]

PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]PGn,κ

′
[XkL = xk, 0 ≤ k ≤ m]

=
∑

x0,...,xm∈[n]

PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]πGn(x0)

m∏
i=1

PGnxi−1
[XL = xi].

(4.43)

On the other hand,

PGn,κ′ [A]

=
∑

x0,...,xm∈[n]

PGn,κ′ [A|XkL = xk, 0 ≤ k ≤ m]PGn,κ′ [XkL = xk, 0 ≤ k ≤ m]

=
∑

x0,...,xm∈[n]

PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]

m∏
i=0

πGn(xi).

(4.44)
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By construction,

PGn,κ′ [A|XkL = xk, 0 ≤ k ≤ m] = PGn,κ
′
[A|XkL = xk, 0 ≤ k ≤ m]. (4.45)

Moreover, by (2.10), since Gn ∈ Gd
n

typ, for every x, y ∈ [n], for n large enough,

∣∣∣PGnx [XL = y]

πGn(y)
− 1
∣∣∣ ≤ cne−λGnL ≤ cne−cL log−l n ≤ cne−cnδ/2 . (4.46)

Combining (4.43)–(4.46) then yields(
1− c′n exp(−cn

δ
2 )
)m
≤ PG,κ

′
[A]

PGn,κ′ [A]
≤
(

1 + c′n exp(−cn
δ
2 )
)m

, (4.47)

and (4.42) follows by possibly changing the constants.

Proof of Theorem 4.6. Set κ = 2ump, m = dκn/Le, and κ′ = mL/n. Denoting by EGn,κ′

the expectation corresponding to PGn,κ′ , for Gn ∈ Gd
n

typ, by Lemma 4.8 with ε = δ,∣∣EGn [ni(d
n,u)]− EGn,κ′ [ni(dn,u)]

∣∣ ≤ cn exp(−c′n
ε
2 ). (4.48)

Therefore, applying once more Lemma 4.8, for n large enough,

PGn
[∣∣|ni(dn,u)| − EGn [|ni(dn,u)]

∣∣ ≥ n 1
2

+ε
]

≤ PGn,κ′
[∣∣|ni(dn,u)| − EGn,κ′ [|ni(dn,u)]

∣∣ ≥ 2n
1
2

+ε
]

+ c exp(−c′n
ε
2 ).

(4.49)

We now apply Lemma 4.7 with M = m, A = [n]L+1, Wk = X
k and f(W ) = ni(d

n,u).
Denoting by F ji = F ji (wi, . . . , wj) the event {Xk

= wk∀i ≤ k ≤ j}, we claim that for all
k = 1, . . . ,m and w1, . . . , wk−1 ∈ A

rk(w1, . . . , wk−1)

= sup
w,w′∈A

∣∣∣EGn,κ′ [ni(dn,u)|Xk
= w,F k−1

1 ]− EGn,κ′ [ni(dn,u)|Xk
= w′, F k−1

1 ]
∣∣∣

≤ (∆ + 1)L.

(4.50)

Indeed, when conditioning additionally on Fmk+1 = {Xk+1
= wk+1, . . . , X

m
= wm}, since

X
k contains at most L different vertices and thus it can change the degree in the vacant

graph of at most (∆ + 1)L vertices,∣∣∣EGn,κ′ [ni(dn,u)|Xk
= w,F k−1

1 ∩ Fmk+1]− EGn,κ′ [ni(du
′,n)|Xk

= w′, F k−1
1 ∩ Fmk+1]

∣∣∣
≤ (∆ + 1)L.

(4.51)

Integrating over Xk+1
, . . . , X

m then implies (4.50).
Using (4.50), we can apply Lemma 4.7 with R2 ≤ m(∆ + 1)2L2 ≤ cunL L

2 = cn1+ε to
obtain

PGn,κ′
[∣∣|ni(du,n)| − EGn,κ′ [|ni(du,n)]

∣∣ ≥ cn 1
2

+ε
]
≤ 2 exp

(
− cn1+2ε

n1+ε

)
= ce−c

′nε . (4.52)

Combining (4.49) and (4.52) proves Theorem 4.6.
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5 Proofs of Theorem 1.2 and 1.3

In this section we show the main results of this paper, Theorems 1.2 and 1.3. As said
in the introduction, these theorems essentially follow from Proposition 2.1 and Theo-
rem 2.2, if we estimate the parameter Q(dn,u) sufficiently precisely; here dn,u is the
degree sequence of the vacant graph and Q is as in (2.20).

Observe that

Q(dn,u) =

∑n
x=1 d

n,u
x (x)2∑n

x=1 d
n,u
x (x)

=

∑∆
i=0 i

2ni(d
n,u)∑∆

i=0 ini(d
n,u)

. (5.1)

Moreover, by Theorems 4.4, 4.6, there exist c, δ ∈ (0,∞) such that for u > 0 and
i ∈ {0, 1, . . . ,∆}, ∣∣ni(dn,u)− nET [pui (T )]

∣∣ ≤ cn 2
3
−δ, Pn-a.a.s., (5.2)

where pui (T ) is as in (4.20).
To compute the right-hand side of (5.1), we need a last technical lemma which will

be shown at the end of this section. For its statement recall the notation of Section 2.4.

Lemma 5.1. Let u > 0 and φ(u) be as in (2.29). Then

ET [pui (T )] = E

[
φ(u)D

(
D

i

)
E
[
φ(u)D

∗−1
]i(

1− E
[
φ(u)D

∗−1
])D−i]

, (5.3)

where D and D∗ are random variables distributed according to p and p∗, respectively. In
particular, ∑∆

i=0 i
2ET [pui (T )]∑∆

i=0 iET [pui (T )]
= m−1

p

∆∑
i=3

pii(i− 1)φ(u)i−2 + 1. (5.4)

From this lemma, (5.1), and (5.2), it follows that for u > 0,∣∣∣Q(dn,u)−
(
m−1
p

∆∑
i=3

pii(i− 1)φ(u)i−2 + 1
)∣∣∣ ≤ cn−1/3−δ, Pn-a.a.s. (5.5)

We can now finally prove our main results.

Proof of Theorem 1.2. We start by proving parts (a) and (b) of the theorem which follow
essentially directly from parts (a) and (b) of Theorem 2.2. By Proposition 2.1, the vacant
graph Vn,u is distributed as the random (multi)graph with the random degree sequence
dn,u. Moreover, by (5.2), the assumptions of Theorem 2.2 are Pn-a.s.s. satisfied for the
degree sequence dn,u with pi of (2.21) being ET (pui (T )). By (5.5), there is a non-random
Qu such that Qu = limn→∞Q(dn,u), Pn-a.a.s. In addition, Qu∗ = 2 iff u∗ is the solution
of equation (2.31) and Qu > 2 iff u < u∗. Thus parts (a) and (b) of Theorem 1.2 follow
from (a) and (b) of Theorem 2.2.

We now prove the part (c). Let u∗ be the solution of equation (2.31) and recall that
un → u∗ satisfies

n1/3|u∗ − un| ≤ η <∞. (5.6)

Then, by expanding the exponential exp
(
− uP̄ T̃∅′ [H Ȳ

∅̃ = ∞]
)
appearing in the defini-

tion (2.29) of φ around u∗, and by using (2.31), we find that the first summand on the
right-hand side of (5.4) satisfies

m−1
p

∆∑
i=3

pii(i− 1)φ(un)i−2 = m−1
p

∆∑
i=3

pii(i− 1)ET̃
[

exp
(
− unP̄ T̃∅′ [H Ȳ

∅̃ =∞]
)]i−2

= 1− cp(u∗ − un) +O((u∗ − un)2),

(5.7)
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for some constant cp > 0 depending only on the distribution p. With (5.5) this yields

|Q(dun,n)− 2| ≤ 2cpηn
− 1

3 , Pn − a.a.s. (5.8)

Applying Theorem 2.2(c) together with Proposition 2.1 implies the claim (c) of Theo-
rem 1.2.

The claim (d) follows directly from the facts that the critical point of random inter-
lacements on T agrees with the critical point of random interlacements on T ′ (see the
proof of Proposition 2.3), and both of them, as well as the u∗ of the present theorem, are
given as the unique solution of (2.31).

Remark 5.2. The constant ρ of Theorem 1.2(a) can be identified semi-explicitely using
Theorem 2.2 and (5.3). Namely, letting g(x) =

∑∆
i=0 ET [pui (T )]xi to be the generating

function of the limiting distribution of the degree sequence of the vacant graph (see
(5.2)), then ρ = 1 − g(ξ) with ξ being the unique solution in (0, 1) of the equation
g′(ξ) = ξ

∑∆
i=0 iET [pui (T )].

Proof of Theorem 1.3. The proof follows essentially the same steps as the proof of The-
orem 1.2(c), with the stronger assumption

un = u∗ + ηn−
1
3 + o(n−1/3). (5.9)

Using the same steps as for (5.8), this assumption implies that

Q(dun,n) = 2 + cpηn
−1/3 + o(n−1/3). (5.10)

With this at hand, we can apply part (d) of Theorem 2.2 together with Proposition 2.1
to complete the proof of Theorem 1.3.

Proof of Lemma 5.1. We write H̃A for H̃ Ȳ
A in this proof and use notation from (4.19).

Note that, for y ∈ BT∅,A \ {∅}, there exists a j ∈ A, such that yj = y. Then, by the
Markov property,

d∅P̄
T
∅ [H̃BT∅,A

=∞] =
∑

j∈[d∅]\A

P̄ Tyj [H̃∅ =∞]. (5.11)

Using this in the second step of the next computation we obtain

capT (BT∅,A) =
∑

y∈BT∅,A

dyP̄
T
y [H̃BT∅,A

=∞]

=
∑
j∈A

dyj P̄
T
yj [H̃{∅,yj} =∞] + d∅P̄

T
∅ [H̃BT∅,A

=∞]

=
∑
j∈A

dyj P̄
T
yj [H̃{∅,yj} =∞] +

∑
j∈[d∅]\A

P̄ Tyj [H̃∅ =∞].

(5.12)

The probability P̄ Tyi [H̃∅ =∞] only depends on the subtree Tyi ⊂ T , containing the vertex
yi ∼ ∅ and all its descendants. Thus P̄ Tyi [H̃∅ = ∞], i = 1, . . . , [d∅], are conditionally
i.i.d. given d∅. The same holds for P̄ Tyi [H̃{∅,yi} = ∞]. Thus, inserting (5.12) into (4.20)
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gives

ET [pui (T )] = ET
[ ∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C| exp
(
− u capT (BT∅,A)

)]

= ET
[ ∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C|
∏
j∈A

ET
[

exp
(
− udyj P̄ Tyj [H̃{∅,yj} =∞]

)∣∣d∅]

×
∏

j∈[d∅]\A

ET
[

exp
(
− uP̄ Tyj [H̃∅ =∞]

)∣∣d∅]].
(5.13)

Since T is a unimodular Galton-Watson tree, for every y ∼ ∅, z ∼ y, z 6= ∅, the laws of
Ty ∪{∅} conditioned on d∅ and of Tz ∪{y} conditioned on d∅ and dy agree with the law
of T̃ introduced before the definition (2.29) of φ(u). Therefore, for every such y and z,

ET [exp(−uP̄ Ty [H̃∅ =∞])|d∅] = ET [exp(−uP̄ Tz [H̃y =∞])|dy, d∅] = φ(u). (5.14)

Similarly, by the Markov property, the usual independence arguments, and (5.14), for
y ∼ ∅

ET [exp(−udyP̄ Ty [H̃{∅,y} =∞])|d∅] = ET
[

exp
(
− u

∑
z∼y,z 6=∅

P̄ Tz [H̃y =∞]
)∣∣∣d∅]

= ET
[
φ(y)dy−1

∣∣d∅] = ET
[
φ(y)dy−1

]
,

(5.15)

since the degree of any y ∼ ∅ is independent of d∅. Using (5.14) and (5.15), and noting
ET [φ(u)dyi−1] = φ(u)ET [φ(u)dyi−2] since dyi ≥ 2, (5.13) simplifies to

ET [pui (T )] = ET
[ ∑
C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C|
∏
j∈A

ET [φ(u)dyj−1]
∏

j∈[d∅]\A

φ(u)

]

= ET
[ ∏
j∈[d∅]

φ(u)
∑

C⊂[d∅]
|C|=i

∑
A⊂[d∅]
A⊃C

(−1)|A|−|C|
∏
j∈A

ET
[
φ(u)dyj−2]]

= ET
[
φ(u)d∅

(
d∅
i

)
ET
[
φ(u)dy−2

]i(
1− ET

[
φ(u)dy−2

])d∅−i],
(5.16)

where in the last line y is an arbitrary neighbour of ∅. This proves (5.3), since d∅ is p-
distributed, and for y ∼ ∅, dy = 1+ ‘number of offsprings of y’ has the same distribution
as 1 +D?, with D? being p∗-distributed.

Using (5.3), writing the distribution of D explicitely, recalling that p1 = p2 = 0 by
assumption, the numerator of (5.4) can be written as

∆∑
i=0

i2ET [pui (T )] =
∆∑
k=3

pkφ(u)k
k∑
i=0

i2
(
k

i

)
E
[
φ(u)D

∗−1
]i(

1− E
[
φ(u)D

∗−1
])k−i

=
∆∑
k=3

pkφ(u)kkE
[
φ(u)D

∗−1
](

(k − 1)E
[
φ(u)D

∗−1
]

+ 1
)
,

(5.17)

where for the second equality we used the fact that the inner sum is the second mo-
ment of the binomial distribution with parameters k and E

[
φ(u)D

∗−1
]
. Similarly, the
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denominator of (5.4) can be written as

∆∑
i=0

iET [pui (T )] =

∆∑
k=3

pkφ(u)kkE
[
φ(u)D

∗−1
]
. (5.18)

Finally, using the definition (1.7) of the offspring distribution p∗, we obtain

ET
[
φ(u)D

∗−1
]

=
∆∑
k=2

p∗kφ(u)k−1 =
∆∑
k=3

kpkm
−1
p φ(u)k−2. (5.19)

Combining (5.17), (5.18) and (5.19) then yields∑∆
i=0 i

2ET [pui (T )]∑∆
i=0 iET [pui (T )]

=
ET
[
φ(u)D

∗−1
]∑∆

k=3 pkk(k − 1)φ(u)k−2∑∆
k=3 pkkφ(u)k−2

+ 1

= m−1
p

∆∑
k=3

pkk(k − 1)φ(u)k−2 + 1.

(5.20)

This completes the proof of the lemma.
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