
I declare that I did this work on my own using the bibliography stated.

I agree with using this diploma thesis for lending.

Prague, April 4, 2000

i



FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY

PRAGUE

THE EXISTENCE OF TRANSLATION NON-INVARIANT MEASURE
IN RANDOM-CLUSTER MODEL
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Introduction

The proof of existence of translation non-invariant measures in dimension d ≥ 3
has been presented in the case of the Ising model by Dobrushin [3]. His approach
was extended to a large class of models in [5]. Even though Potts model, strictly
speaking, does not belong to this class, it can be rewritten so that the approach
from [5] can be applied [11]. On the other side, the existence of translation non-
invariant Gibbs state for random-cluster model has been doubted [4]. Given the
equivalence with Potts model (at least for q integer) the existence of such a state
for random-cluster model should follow, as was already pointed in [1], applying the
methods from [5].

Our aim here is to present the details of such a proof directly for the random-
cluster model. Even for Potts model, the proof was only sketched in [11]. There are
some additional difficulties when formulating the claim directly in terms of random-
cluster model. In particular, one has to prove that resulting state is actually DLR-
state.

The outline of this diploma thesis is following. We define the Potts model in
Section 1.1. Using the FK representation we convert the Potts model partition
function into the partition function of random-cluster model defined in Section 1.2.
In Section 1.3 we introduce the contours using the definition from [2], [6] or [10],
which slightly differs from that in [9] and is more suitable for our purposes.

In Sections 1.4 and 1.5 we rewrite the partition function of random-cluster model
into partition function of two contour models, one for ordered and one for disordered
boundary condition. Following closely a procedure from [10] we get these models in
the form suitable for a use of the Pirogov-Sinai theory, as it appears in [12], to de-
scribe translation invariant (i.e. both ordered and disordered) phases in Sections 1.6
and 1.8. We restrict ourselves only to the random-cluster model transition point
where the ordered and disordered phases coexist.

In Section 1.7 we prove the uniqueness of random-cluster measure in some types
of volumes using techniques from [4]. This will be used in the proof of existence of
interface.

Chapters 2 and 3 contain the most important claims of this diploma thesis.
In the first one we closely follow the methods of the article [5]. First, we rewrite
the partition function for a special translation non-invariant boundary condition
into the contour model partition function using similar techniques as in Chapter 1.
Then we normalize it to have a possibility of rewriting it once more in terms of
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this time (d− 1)-dimensional, contour model partition function. This model we will
explore using the cluster expansion theory. As a result, we prove that there is, almost
surely, an interface between ordered and disordered phases also in an infinite volume
measure. Thus, the corresponding limiting measure is not translation invariant.

In Chapter 3 we prove that the constructed measure fulfills the DLR equation
by using theorems from [4] and adapting their proofs. For reader convenience we
recall some statements from the theory of contour models and cluster expansion in
Appendix A.



Chapter 1

Translation invariant measures

1.1 Potts model

The Potts model is a classical lattice model. These models are characterized by
random spins σi associated with sites i on hyper-cubic lattice Zd (we consider d > 2).
In Potts model we attach to each site a value from the finite set S = {1, . . . , q},
q ∈ N. For every Λ ⊂ Zd we denote ΩP

Λ = SΛ and, in particular, ΩP = SZ
d

.
Under the term configuration of Potts model we will understand one element σ of
the set ΩP . We use σΛ to denote the restriction of σ to Λ. Further, we introduce the
sets of bonds BΛ = {〈i, j〉 | i, j ∈ Λ}, BΛ = {〈i, j〉 | i ∈ Λ, j /∈ Λ} and BΛ = BΛ∪BΛ,
where 〈i, j〉 denotes pairs of the nearest neighbours. For Λ = Zd we will suppress
the index. Using these definitions we introduce the Hamiltonian of the Potts model
on a finite subset Λ ⊂ Zd under a fixed boundary condition σ̄ΛC by

HΛ(σ | σ̄) = −
∑

〈i,j〉∈BΛ

δσiσj
− λ

∑

〈i,j〉∈BΛ

δσiσ̄j
. (1.1)

We will take λ to equal to 1 or 0. The latter case will be called free boundary
condition.

If Λ ∈ Z
d is finite and nonempty, we introduce the partition function at inverse

temperature β by

ZΛ(β | σ̄) =
∑

σΛ

e−βHΛ(σ|σ̄). (1.2)

Using this we define the probability kernel µβ
Λ(· | σ̄) on ΩP

Λ , called Gibbs state
in Λ under the boundary condition σ̄, by the formula

∫
f(σ)µβ

Λ(dσ | σ̄) =
∑

σ∈XΛ

f(σΛ × σ̄ΛC )
exp(−βHΛ(σ | σ̄))

ZΛ(β | σ̄)
(1.3)

for every bounded measurable function f . We will usually skip the superscript β
and write µΛ(σ | σ̄).

3



CHAPTER 1. TRANSLATION INVARIANT MEASURES 4

Let now V ⊂ Zd be possibly infinite. We say that a probability measure µ on ΩP

(equipped with the σ-algebra generated by cylinder sets) is a Gibbs state of Potts
model in volume V and at an inverse temperature β if

µ(f) =

∫ [∫
f(σ)µβ

Λ(dσ | σ̄)

]
µ(dσ̄) (1.4)

whenever Λ ⊂ V is finite and f is a measurable bounded function.
It is well known that there are q different extremal, translation invariant Gibbs

states in Zd for Potts model at low temperatures and a unique state at high temper-
atures. The low-temperature states are usually called ordered because there exists
one “colour” from S that is characteristic for each of them. The high-temperature
state is then called disordered [8]. For q large enough there exists one temperature
Tc = 1/βc (which we will call critical) where are q + 1 equilibrium Gibbs states,
q ordered and one disordered. In this diploma thesis we will try to find a transla-
tion non-invariant state and describe its properties. In particular, we will look for
a state with an interface between an ordered and disordered state. In order be able
to find such a state we will need to work at the critical temperature βc for having
q +1 coexisting translation invariant phases stable. In this chapter we will talk only
about translation invariant states, therefore we can assume an arbitrary value of
temperature. We will use the assumption that the temperature is critical later.

We can rewrite partition function (1.2) with the help of the FK (Fortuin-Kaste-
leyn) representation. Namely, using the equality

ecδσiσj = 1 + δσiσj
(ec − 1) (1.5)

we find

ZΛ(β | σ̄) =
∑

σΛ

∏

〈i,j〉∈BΛ

[1 + δσiσj
(eβ − 1)]

∏

〈i,j〉∈BΛ

[1 + δσiσ̄j
(eλβ − 1)] = (1.6)

=
∑

X⊂BΛ

∑

X⊂BΛ

(
eβ − 1

)|X| (
eβλ − 1

)|X |
∑

σΛ

∏

〈i,j〉∈X

δσiσj

∏

〈i,j〉∈X

δσiσ̄j
. (1.7)

Here the sum runs over all subsets X (X ) of BΛ (BΛ). Alternatively we can look
at this sum as the sum over all subgraphs of the graph (V (BΛ), BΛ) (where for any
subset Y of B we introduce the set V (Y ) of all its vertices (sites)). Bonds in X ∪X
(edges of the subgraph) will be called ordered and other bonds disordered. Similarly
as for B, we use X to denote X ∪ X .

With the help of the equality

∑

σΛ

∏

〈i,j〉∈X

δσiσj

∏

〈i,j〉∈X

δσiσ̄j
= qD̄Λ(X) (1.8)

we can sum over all configurations σΛ. We denoted there D̄Λ(X) = DΛ(X) + EΛ(X),
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with DΛ(X) being the number of connected components of X (counting all compo-
nents connected to the boundary as one1) and EΛ(X) being the number of isolated
sites in Λ, i.e. EΛ(X) = |{i ∈ Λ | i /∈ V (X)}|.

Using equations (1.7) and (1.8) we get

ZΛ(β | σ̄) =
∑

X

(eβ − 1)|X|(eβλ − 1)|X |qD̄Λ(X). (1.9)

1.2 Random-cluster model

In contrast to the Potts model, the random-cluster model is a process on the edges
of a graph (lattice). To each edge of this graph we attach a value from the set {0, 1}.
The bonds, to which we attach the value 1, are called ordered, the others disordered.
We define a random cluster measure on a finite graph G = (VG, BG) as follows.

Let 0 ≤ p ≤ 1 and q > 0. In analogy with the previous section, the set X of
ordered edges of G we will be called a configuration on G. Let us observe that the set
of all subsets of B can be identified with the compact metric space ΩG = {0, 1}BG.
Due to this identification it has no importance if we speak about X as the element
of 2B or ΩB. Denoting by D̄G(X) the number of components of graph (VG, X), the
probability measure µG on ΩG will be called the random-cluster measure on G with
parameters p and q if

µG(X) =
1

ZG
p|X|(1 − p)|BG\X|qD̄G(X) (1.10)

with
ZG =

∑

X

p|X|(1 − p)|BG\X|qD̄G(X). (1.11)

The dependence on both p and q will not be denoted explicitly.
In addition, we will assume that G is a finite, connected subgraph of (Zd, B).

To be able to discuss the translation non-invariant measures, we need to define a
random-cluster measure on a G ⊂ (Zd, B) with a boundary condition. Let Y be
a subset of B. Then, the probability of a configuration X on G with boundary
condition Y outside G is defined by

µY
G(X) =

1

ZY
G

p|X|(1 − p)|BG\X|qD̄Y
G(X). (1.12)

Here D̄Y
G(X) is the number of components of the graph (Zd, XBG

◦ YB\BG
) that

intersect graph G and

ZY
G =

∑

X

p|X|(1 − p)|BG\X|qD̄Y
G(X). (1.13)

1This is not true for all boundary conditions, but it holds true for the boundary conditions we
will discuss.
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For any (possibly infinite) graph G ⊂ (Zd, B), we will write FBG
for a σ-field of

subsets of Ω = Ω(Zd ,B) generated by finite subsets of BG, so that F = FB. For any
finite graph G we will write TBG

= FB\BG
for the “external” σ-field of G, andT =

⋂

G

TBG
(1.14)

for the tail σ-field.
There are, as usually, two natural candidates for a definition of random-cluster

measure on an infinite graph. The first one is in terms of a “specification” and the
second one is as a weak limit of measures defined on finite graphs.

Definition 1.1 A probability measure µ on (Ω,F ) is called a random-cluster mea-
sure on graph G with parameters p, q if

µ(A | TBF
) = µ·

F (A), µ-a.s., for all A ∈ FBG
and any finite F ⊂ G. (1.15)

Moreover, µ is a random-cluster measure on G with a boundary condition Y if

µ(X ∈ Ω | XB\BG
= YB\BG

) = 1. (1.16)

Definition 1.2 A probability measure µ on (Ω,F ) is called a limit random-cluster
measure on graph G with parameters p, q and with boundary condition Y ,if there
exists an increasing sequence {Gn}n≥1 of finite graphs, such that Gn ր G as n → ∞
and

µY
Gn

(·)
weakly
−→ µ(·). (1.17)

We can see that the expression of partition function (1.13) is very similar to
(1.9). Namely, setting

p =
eβ − 1

eβ
(1.18)

and we multiplying2 (1.13) by e|BG| and taking in G the bonds from BΛ, if λ = 0,
and from BΛ, if λ = 1, we get (1.9). From this we can see that Potts model is in a
sense a special case of the random-cluster model with q ∈ N.

Further more, we will work directly with the random-cluster model, i.e. with the
partition function (1.13). We will restrict ourselves only to q ≥ 1. Only graphs
G(Λ) that “belong” to a set Λ ⊂ Zd will be considered instead using of arbitrary
subgraphs of (Zd, B). Namely, we take only G(Λ) such that

(Λ, BΛ) ⊂ G(Λ) ⊂ (V (BΛ), BΛ). (1.19)

In particular, we can consider for G(Λ) either the graph (Λ, BΛ) or the graph
(V (BΛ), BΛ). We will specify other options later in terms of boundary conditions.
We will use the index Λ instead of index G(Λ) whenever it cannot be misunderstood.

2Of course we must also multiply the right-hand side of (1.12) to assure that the probability
measure stays the same.
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Given G(Λ) as above, we will use the notation introduced in the section about
the Potts model, i.e. X (X ) is a set of ordered bonds from BΛ (BΛ), X = X ∪ X ,
EΛ(X) is the number of vertices of G(Λ) not connected to any ordered bond in X,
and DY

Λ (X) is the number of components of (Zd, X◦Y ) intersecting G(Λ) and having
at least one ordered edge. We use δrX to denote the set of bonds b from BΛ \ X
for which |V (b) ∩ V (X)| = r (r = 1, 2) and δsX the set of bonds b̄ from BΛ \ X for
which |V (b̄) ∩ V (X)| = s (s = 0, 1). Now we can write some obvious equalities:

|EΛ(X)| = |V (BΛ)| − |V (X) ∩ Λ|, (1.20)

2d|V (BΛ)| = 2|BΛ| + |BΛ|, (1.21)

2d|V (X) ∩ Λ| = 2|X| + |X | + 2|δ2X| + |δ1X| + |δ1X |. (1.22)

Hence, we have

|EΛ(X)| =
|BΛ \ X|

d
+

|BΛ \ X |

2d
−

‖δX‖

2d
(1.23)

with ‖δX‖ = 2|δ2X| + |δ1X| + |δ1X |. Using this, we can rewrite the partition
function (1.13) as follows

ZY
Λ =

∑

X

p|X|(1 − p)|BG(Λ)\X|q
|BΛ\X|

d q
|BΛ\X|

2d q|D
Y
Λ (X)|−

‖δX‖
2d . (1.24)

1.3 Introduction of contours

The aim of this section and following ones is to convert the partition function (1.24)
into partition functions of contour models more suitable for our work. First we state
some general notations that do not depend on the type of the boundary condition.

For an arbitrary set Y ⊂ B of ordered bonds we use P (Y ) to denote the set
consisting of the union of all ordered bonds together with all unit squares whose all
four edges are ordered, all unit cubes having all faces in P (Y ), etc. (according to
dimension).

Under the term contour we will understand a connected component of boundary
(in Rd) of the closed set of all points having distance (in maximal norm) less or
equal to 1/4 from P (Y ). We use ∂(Y ) = {γi} to denote the set of all contours of a
configuration Y , K the set of all contours and K the set of all collections of contours
from K.

We call a collection ∂ ∈ K compatible if there exists configuration Y such that ∂
is set of contours of Y , ∂ = ∂(Y ), Kco will be set of all compatible collections. Since
mapping between all configurations and all compatible collections of contours ∂ is
one-to-one, we can use the notation Y (∂), DΛ(∂), etc.

In addition, we will need something like a length of contour. It is suitable not to
consider the physical length but to use the number of bonds intersected by γ. The
length will be denoted by ‖γ‖ = |B ∩ γ|, and ‖∂‖ =

∑
γ∈∂ ‖γ‖ if this sum exists.



CHAPTER 1. TRANSLATION INVARIANT MEASURES 8

The next notion we need to introduce is a “colour” of a contour. A contour of a
finite length divides R

d into two components. The infinite one we denote Ext γ and
the finite one Int γ. For contours of infinite length we will not define these terms.
Let us imagine a configuration Y such that γ is the only contour of Y . We call γ
ordered (disordered) if all bonds laying entirely in Ext γ, are ordered (disordered).
For future reference we use Kd (Ko) to denote the sets of all disordered (ordered)
contours, Kd, Ko the sets of collections from these sets and Kco

d ⊂ Kd, K
co
o ⊂ Ko the

sets of compatible (this means non intersecting here) collections.
The contour γ ∈ ∂ for which γ 6⊂ Int γ′ for all γ′ ∈ ∂, γ 6= γ′ is called an external

contour of the configuration ∂. We use Ke ⊂ Kco (resp. Ke
o ⊂ Kco

o , Ke
d ⊂ Kco

d ) to
denote the set of all collections of mutually external (ordered, disordered) contours.

1.4 Ordered boundary condition

When all bonds outside BΛ are ordered, we will talk about ordered boundary condi-
tion. The graph G(Λ) “belonging” in this case to Λ is the graph (V (BΛ), BΛ). From
this we can see that all components of X, that are connected to BΛC = (BΛ)C must
be counted as one component.

We use Kco
Λ (o) to denote the set of all collections ∂ of contours such that the

configuration Y (∂) has all bonds outside BΛ ordered. For these configurations we
will write X(∂) = Y (∂) ∩ BΛ, X (∂) = Y (∂) ∩ BΛ.

Figure 1.1: Ordered boundary condition

It is obvious for ordered boundary condition that ‖∂‖ = ‖δX(∂)‖ + |B \ X |.
Since all components of X not touching a boundary are separated from rest of the
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lattice by one disordered contour (see Figure 1.1, it is a pity it can be only two-
dimensional), and the component which is connected to the boundary is always non
empty (it contains at least all vertices from V (BΛ) \ Λ), we get

DΛ(∂) = “number of disordered contours” + 1. (1.25)

Using this and setting

eo = − log p, (1.26)

ed = − log(1 − p) −
1

d
log q (1.27)

and

ρ(γ) =

{
q−‖γ‖/2d for γ ordered
q q−‖γ‖/2d for γ disordered,

(1.28)

we rewrite (1.24) as

Zo
Λ = q

∑

∂∈Kco
Λ (o)

e−eo|X(∂)|e−ed|BΛ\X(∂)|
∏

γ∈∂

ρ(γ). (1.29)

We can view (1.29) as the partition function of a model where each edge has the
energy eo or ed and the “boundary” between edges with different “colours” costs us
energy

E(γo) = (‖γ‖/2d) log q (1.30)

or
E(γd) = (−1 + ‖γ‖/2d) log q, (1.31)

respectively.
On the first sight the very short and elegant expression of partition function

(1.29) has one disadvantage. There is a long-range order interaction between con-
tours. Namely, when we remove one, for example disordered, contour from ∂ we
will possibly get the collection where one ordered contour is directly inside another
ordered contour but this collection is not compatible. In some other models it is
possible to re-colour the inner contours (for example as in Ising model). However,
in this model it is not possible because the value of ρ depends on a contour colour
and in addition we can see the contour colour from its shape.

In the following paragraphs we will remove this long-range interaction by the
standard Pirogov-Sinai procedure [2, 12, 13]. For ordered boundary condition, all
external contours are ordered. We use Θ(∂) to denote the set of external contours
of collection ∂. Let us introduce, for any ∆ ⊂ Rd, two sets: BΛ(∆) = {b | b ∈
BΛ, c(b) ∈ ∆} and BΛ(∆) = {b | b ∈ BΛ, c(b) ∈ ∆}, where we use c(b) to denote the
center of bond b. It is clear that

|X(∂)| = |BΛ(Ext ∂)| +
∑

γ∈Θ(∂)

|BΛ(Int γ) ∩ X(∂′(γ))|, (1.32)
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|BΛ \ X(∂)| =
∑

γ∈Θ(∂)

|BΛ(Int γ) \ X(∂′(γ))|, (1.33)

|X (∂)| = |BΛ(Ext ∂)| +
∑

γ∈Θ(∂)

|BΛ(Int γ) ∩ X(∂′(γ))|, (1.34)

|BΛ \ X (∂)| =
∑

γ∈Θ(∂)

|BΛ(Int γ) \ X(∂′(γ))|, (1.35)

where Ext ∂ =
⋂

γ∈Θ(∂) Ext γ and ∂′(γ) = {γ′ ∈ ∂ | γ′ ⊂ Int γ}.
Using this we can write

Zo
Λ = q

∑

∂∈Kco
Λ (o)

e−eo[|BΛ(Ext ∂)|+|BΛ(Ext ∂)|]
∏

γ∈Θ(∂)

e−eo|BΛ(Int γ)∩X(∂′(γ))| ×

× e−eo|BΛ(Int γ)∩X(∂′(γ))|e−ed[|BΛ(Int γ)\X(∂′(γ))|+|BΛ(Int γ)\X(∂′(γ))|]
∏

γ∈∂

ρ(γ) (1.36)

= q
∑

θ

e−eo[|BΛ(Ext θ)|+|BΛ(Ext θ)|]
∏

γ∈θ

ρ(γ)Zo(Int γ)
Zd(Int γ)

Zo(Int γ)
. (1.37)

Here, the sum runs over all collections θ from Kco
Λ (o) of mutually external contours

and for finite ∆ ⊂ Rd we define

Zd(∆) =
∑

∂(d)∈Kco

∂(d)⊂∆

e−eo|B(∆)∩Y (∂)|e−ed|B(∆)\Y (∂)|
∏

γ∈∂

ρ(γ), (1.38)

Zo(∆) =
∑

∂(o)∈Kco

∂(o)⊂∆

e−eo|B(∆)∩Y (∂)|e−ed|B(∆)\Y (∂)|
∏

γ∈∂

ρ(γ). (1.39)

The index o (d) by ∂ refers to the condition that all external contours of ∂ are
ordered (disordered).

We can iterate the step (1.37) by expanding Zo(Int γ) until there are so small
ordered contours that there cannot be other ordered contours inside. The number
of iterations will necessarily be finite because we have a finite Λ.

After this we get

Zo
Λ = qe−eo(|BΛ|+|BΛ|)

∑

∂∈Kco
o (Λ)

∏

γ∈∂

ρ(o)(γ)
Zd(Int γ)

Zo(Int γ)
(1.40)

= qe−eo(|BΛ|+|BΛ|)
∑

∂∈Kco
o (Λ)

∏

γ∈∂

Φo(γ) (1.41)

= qe−eo(|BΛ|+|BΛ|)Z(Ko(Λ),Φo) (1.42)

with Ko(Λ) being the set of all ordered contours laying in 1-neighbourhood of Λ,
Kco

o (Λ) the set of compatible collections from this set (i.e. non-intersecting) and
using notation from Appendix A.
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Hence, we get the expression of partition function for ordered boundary condition
in terms of contour model with contour functional

Φo(γ) = ρ(γ)
Zd(Int γ)

Zo(Int γ)
(1.43)

and mainly without long-range order interaction.

1.5 Disordered boundary condition

Under this term we will understand such the case where all bonds outside BΛ will
be disordered (i.e. also all bonds in B are disordered, and so X = X). A graph
“belonging” to Λ will be the graph (Λ, BΛ). Remembering the Potts model we find
out that disordered boundary condition in random-cluster model corresponds to
Potts model free boundary condition. The notation of contour, its length, colour,
interior and exterior remains the same as in the previous section. It is obvious that
‖∂‖ = ‖δX(∂)‖ and

DΛ(∂) = “number of disordered contours”. (1.44)

Figure 1.2: Disordered boundary condition

When we put these facts into (1.24) we get

Zd
Λ = q|BΛ|/2d

∑

∂∈Kco
Λ (d)

e−eo|X(∂)|e−ed|BΛ\X(∂)|
∏

γ∈∂

ρ(γ), (1.45)

where again

ρ(γ) =

{
q−‖γ‖/2d for γ ordered
q q−‖γ‖/2d for γ disordered,

(1.46)
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and Kco
Λ (d) is the set of compatible collections of contours, such that their configu-

rations are compatible with disordered boundary condition outside Λ. It is trivial
that

|BΛ \ X(∂)| = |BΛ(Ext ∂)| +
∑

γ∈Θ(∂)

|BΛ(Int γ) \ X(∂′(γ))|, (1.47)

|X(∂)| =
∑

γ∈Θ(∂)

|BΛ(Int γ) ∩ X(∂′(γ))|, (1.48)

|BΛ \ X (∂)| = |BΛ(Ext ∂)| +
∑

γ∈Θ(∂)

|B(Int γ) \ X(∂′(γ))| = |BΛ|, (1.49)

|X (∂)| =
∑

γ∈Θ(∂)

|BΛ(Int γ) ∩ X(∂′(γ))| = 0. (1.50)

For disordered boundary condition, all external contours are disordered. As
in the previous section we extract from the partition function the dependence on
the external configuration using Zd(∆) and Zo(∆). After the same iteration as in
Section 1.4 it yields

Zd
Λ = e−ed|BΛ|q|BΛ|/2d

∑

∂∈Kco
d (Λ)

∏

γ∈∂

ρ(d)(γ)
Zo(Int γ)

Zd(Int γ)
(1.51)

= e−ed|BΛ|q|BΛ|/2d
∑

∂∈Kco
d

(Λ)

∏

γ∈∂

Φd(γ) (1.52)

= e−ed|BΛ|q|BΛ|/2dZ(Kd(Λ),Φd) (1.53)

with Kd(Λ) being the set of all disordered contours from 1-neighbourhood of Λ, and
Kco

d (Λ) the compatible collection of contours from this set.
At the end of this section we note that the same expansion as for Zo

Λ and Zd
Λ is

valid also for Zo(∆) and Zd(∆):

Zo(∆) = e−eo|B(∆)|Z(Ko(∆),Φo) (1.54)

and
Zd(∆) = e−ed|B(∆)|Z(Kd(∆),Φd), (1.55)

where this time Ko(∆) (Kd(∆)) is the set of ordered (disordered) contours laying
entirely in ∆.3

Note: We define configurations for disordered boundary condition only on the
set BΛ, unlike to ordered boundary condition. Due to this, the contours cannot
overlap from 1-neighbourhood of Λ. This asymmetry does not have an influence
when we make the limit Λ ր Zd, but has a big influence on the simplicity of
expressions.

3This is not in contradiction with the definition of Ko(Λ) and Kd(Λ) because ∆ ⊂ Rd and
Λ ⊂ Zd.
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1.6 Properties of contour functionals

In this section we will show, using the standard Pirogov-Sinai procedure, that there
exist a transition point pc such that both contour functionals that we got in previous
sections fulfill the assumptions of Theorem A.2. After proving it, we will have tools
from this theorem to make a very accurate description of behavior of models with
these functionals also in an infinite volume.

To define pc and to prove that Φo and Φd (we will use the symbol ⋄ for both o
of d to save place) are τ -functionals for this value of p, we introduce a metastable
free energy. First we suppress all contours whose weights are not dumped. Putting
thus for τ ≥ 1 + log(2c)

Φ̄⋄(γ) =

{
Φ⋄(γ)

0

if |Φ⋄(γ)| ≤ e−τ‖γ‖,

otherwise
(1.56)

we define
Z̄⋄(∆) = e−e⋄|B(∆)|Z(K⋄(∆), Φ̄⋄) (1.57)

and similarly

Z̄o
Λ = q e−eo|BΛ|Z(Ko(Λ), Φ̄o), (1.58)

Z̄d
Λ = q|BΛ|/2de−ed|BΛ|Z(Kd(Λ), Φ̄d). (1.59)

The functionals Φ̄⋄ are constructed in such a way to be automatically dumped and
translation invariant and so we can use the cluster expansion to have good control
over limit

p(Φ̄⋄) = lim
ΛրZd

|BΛ|
−1 logZ(K⋄(Λ), Φ̄⋄). (1.60)

Especially using (A.20) we can write

Z̄⋄
Λ = exp(−f⋄|BΛ| + ε|∂BΛ|) (1.61)

with
f⋄ = e⋄ − p(Φ̄⋄) (1.62)

and with ε of order e−ωm⋄ (see Appendix A).
The metastable free energy defined by (1.62) plays an important role in deter-

mining which phase is stable. It turns out that the stable phase is characterized by
having minimal metastable energy. We define

a⋄ = f⋄ − min(fo, fd) (1.63)

and we claim that Φo is dumped once ao = 0 and similarly for Φd. Now we will
prove it but in a very special situation that it will be sufficient for us. For a sketch
of general proof see for example [6].
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Proposition 1.3 Let q such that

log q

2d
≥ 1 + log(2c) + 4dε. (1.64)

Then there exist pc ∈ [0, 1] such that both ao, ad = 0, and both functionals Φo and
Φd are τ -functionals, i.e. Φ⋄(γ) ≤ e−τ‖γ‖ for every γ ∈ K⋄ with

τ =
log q

2d
− 4dε ≥ 1 + log(2c). (1.65)

Proof: Existence of a point pc for which ad = ao = 0 follows once we observe that
it is determined by the equation fo = fd that is a well controlled disturbance of the
equation eo = ed and has a unique solution pc close to po = q1/d/(1 + q1/d) solving
eo = ed (see [8]).

The τ -functionality of Φo and Φd we prove by induction in diameter of γ. By
induction hypothesis we can replace Z⋄(Int γ) by Z̄⋄(Int γ). Using equality (1.61)
also holding for Z⋄(Int γ), we get

Zo(Int γ)

Zd(Int γ)
=

Z̄o(Int γ)

Z̄d(Int γ)
≤ exp[−(fo − fd)|B(Int γ)| + 2ε|∂B(Int γ)|] (1.66)

with ∂B(∆) being the set of bonds from B \ B(∆) which share vertex with some
bond from B(∆).

Since ao = ad = 0, i.e. we work at the transition point of random-cluster model
(or at the critical temperature of Potts model), we have fo − fd = 0. The value of
|∂B(Int γ)| we can bound by 2d‖γ‖. Hence

Φd(γ) ≤ ρd(γ) exp(4dε‖γ‖) = exp

[(
1 −

‖γ‖

2d

)
log q + 4dε‖γ‖

]
. (1.67)

Therefore, for q such that (log q)/(2d) ≥ τ + 4dε we have Φd(γ) ≤ e−τ‖γ‖. In similar
way we can prove it for Φo(γ). 2

1.7 Uniqueness of limit random-cluster measure

In this section we will prove that in finite base cylinder it is only one limit random-
cluster measure. We will not make a general proof but we will show it only for a
special type of boundary conditions. First we will state a notation needed here.

We will use the symbol µG,p,q if we will need to denote the dependence on p and
q explicitly. For two measures µG and µ′

G on ΩG we will write µG ≤ µ′
G if for every

increasing FG-measurable function f the inequality µG(f) ≤ µ′
G(f) holds. We say

that the measure µ′
G FKG-dominates the measure µG. For every random-cluster
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measure µ with q ≥ 1 the FKG inequality

µG(fg) ≥ µG(f)µG(g) (1.68)

holds true with f , g being increasing measurable functions.
First we will state an auxiliary lemma which we will not prove. For proof you

can see [4] and his references.

Lemma 1.4 Let G be an arbitrary graph and µG,p,q and µG,p′,q′ are two random-
cluster measures with different values of p and q. Then

µG,p,q ≤ µG,p′,q′ if q ≥ q′, q ≥ 1 and p ≤ p′ (1.69)

Further, let V be a cylinder with a finite base Q ⊂ { i ∈ Zd | id = 0 } and G(V)
a graph belonging to V . We use Vm,n to denote the set of points from V having
value of dth coordinate in the interval [m, n], Vn = V−n,n. We use Dm to denote the
event realized if all vertical bonds 〈i, j〉 from BG(V ) such that id = m, jd = m+1 are
disordered. The event Dm,n realizes if at least one event Di, i = 0, . . . , n realizes.
We will use D̄m and D̄m,n for negation of Dm and Dm,n.

Lemma 1.5 Let V be a cylinder with finite base Q and Y ⊂ B. Then for every
δ > 0 and for every random-cluster measure on G(V ) with parameters p and q ≥ 1
there exists n such that

µY
V (Dm,m+n) > 1 − δ. (1.70)

Proof: Let us denote by µ⋆
V the measure µV,P,1 with P ≥ p. According to

Lemma 1.4 the inequality µ⋆
V ≥ µY

V holds true. Since Dm is decreasing event (i.e.
D̄m is increasing) we can write

µY
V (D̄m) ≤ µ⋆

V (D̄m) = P |Q|. (1.71)

Therefore,
µY

V (Dm,m+n) = 1 − µY
V (D̄m,m+n) ≥ 1 − P (n+1)|Q|. (1.72)

2

Let us now consider an arbitrary boundary condition Y ⊂ B. We use Yo (Yd) to
denote Y ∪BG(V ) (Y \BG(V )). We say that Y is V -good if and only for every hight h
there are not two mutually not connected ordered clusters in B \ BG(V ) which are
connected to BV above and below the hight h.

Lemma 1.6 Let V ⊂ Zd be a cylinder with finite base, G(V ) let be arbitrary graph
such that (V, BV ) ⊆ G(V ) ⊆ (V (B(V )), B(V )), and let Y ⊂ B. Then the limit
random-cluster measures

µYo

V = lim
n→∞

µYo

Vn
(1.73)
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and
µYd

V = lim
n→∞

µYd

Vn
(1.74)

exist. Moreover, if the measure

µY
V = lim

n→∞
µY

Vn
(1.75)

exist then
µYd

V ≤ µY
V ≤ µYo

V . (1.76)

Proof: Using FKG inequality we can easily prove that

µYo

F ≥ µYo

F̄
(1.77)

µYd

F ≤ µYd

F̄
(1.78)

with F being the subgraph of F̄ . Using this it is simple to prove the existence of µYo

V

and µYd

V . The inequality (1.76) is simple consequence of FKG inequality again. 2

Proposition 1.7 Let V ⊂ Zd be a cylinder with finite base, G(V ) let be arbitrary
graph such that (V, BV ) ⊆ G(V ) ⊆ (V (B(V )), B(V )), and let Y ⊂ B be V -good.
Then there exists only one limit random-cluster measure on G(V ) with boundary
condition Y .

Proof: The only thing we need is to prove µYo

V = µYd

V . Consider now an increasingFΛ-measurable function f with Λ ⊂ Vm. Then

µYo

Vn
(f) = µYo

Vn
(f | D̄−n,−m−1 ∪ D̄m,n−1)µ

Yo

Vn
(D̄−n,−m−1 ∪ D̄m,n−1)

+

−m−1∑

i=−n

n−1∑

j=m

µYo

Vn
(f | E)µYo

Vn
(E). (1.79)

with E being the event which realizes if all Di, Dj , D̄i+1,−m−1 and D̄m,j−1 realize.
We use ε(n) to denote µYo

Vn
(D̄−n,−m−1 ∪ D̄m,n−1). Since Y is V -good

µYo

Vn
(f) ≤ ε(n)‖f‖ +

−m−1∑

i=−n

n−1∑

j=m

µYd

Vi+1,j
(f)µYo

Vn
(E) (1.80)

≤ ε(n)‖f‖ + (1 − ε(n))µYd

Vn
(f) ≤ ε(n)‖f‖ + µYd

Vn
(f). (1.81)

We used the inequality (1.78) when we have changed µYd

Vi,j
to µYd

Vn
. ε(n) is the

probability that at least one from events D−n,−m−1 and Dm,n−1 realizes. These
probabilities can be bound using Lemma 1.5 by P (n−m)|Q|. Therefore, when we take
the limit n → ∞ we get

µYo

V (f) ≤ µYd

V (f). (1.82)

Using this inequality, (1.76) and the fact that every function can be approximate by
linear combination of local increasing functions we get µYo

V = µYd

V . 2
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1.8 Description of stable phase

We describe now more accurate the behavior of stable phases, i.e. translation invari-
ant limit random-cluster measures with minimal metastable free energy, in infinite
volume. Furthermore, we will always consider that ad = ao = 0 (i.e. p = pc).

First, let us define a probability measure inside an ordered contour γo. We
attach to each configuration Y , such that γo is the only external contour of Y , its
probability

µ(Y | γo) =
1

Zd(Int γo)
e−eo|Y ∩B(Int γo)|−ed|B(Int γo)\Y |

∏

γ′∈(∂(Y )\γo)

ρ(γ′) (1.83)

and similarly for the interior of some disordered contour γd

µ(Y | γd) =
1

Zo(Int γd)
e−eo|Y ∩B(Int γd)|−ed|B(Int γd)\Y |

∏

γ′∈(∂(Y )\γd)

ρ(γ′). (1.84)

For a bounded F -measurable function ϕ we define

µ(ϕ | γ) =
∑

Y ;Θ(∂(Y ))=γ

ϕ(Y )µ(Y | γ). (1.85)

For a collection of mutually external contours θ we denote µ(ϕ | θ) =
∏

γ∈θ µ(ϕ | γ).
In addition, we use U ÷ V to denote the symetrical difference of U and V , and

for two sets ∆ and ∆′ ⊂ Rd we write

d(∆, ∆′) = inf
x∈∆,y∈∆′

d(x, y), (1.86)

with d(x, y) being the distance of two points x, y ∈ Rd in maximal norm.
Since Int θ consists only from finite components there exists a unique measure

µ(. | θ) and due to this the following proposition can be made.

Proposition 1.8 Let

log q

2d
≥ 1 + 4dε + log(2c) + 2

log m⋄

m⋄
. (1.87)

Then for ⋄ = o, d there exists limit random-cluster measure µ⋄
V (.) in an arbitrary

volume V and a probability measure P e
⋄,V on Ke

⋄(V ) such that for every bounded
measurable ϕ one has

µ⋄
V (ϕ) =

∫

Ke
⋄(V )

µ(ϕ | θ)P e
⋄,V (dθ). (1.88)

Moreover:
(i) µ⋄

V is a weak limit of µ⋄
U over finite U ⊂ V , ordered by inclusion
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(ii) Denoting Ke
⋄(θ, V ) = { θ̄ ∈ Ke

⋄(V ) | θ̄ ⊃ θ }, ρe
⋄,V (θ) = P e

⋄,V (Ke
⋄(θ, V ))

whenever θ ∈ Ke
⋄(V ), and taking

ω = τ − 1 − log(2c) − 2
log m⋄

m⋄
(1.89)

we have:
(a) ρe

⋄,V (θ) ≤ e−τ‖θ‖+1

for every θ ∈ Ke
⋄(V ).

(b) |ρe
⋄,V1

(θ) − ρe
⋄,V2

(θ)| ≤ ‖θ‖ exp[−τ‖θ‖ + 1 − ωd(θ, V1 ÷ V2)]
for every V1, V2 ⊂ Zd and θ ∈ Ke

⋄(V1 ∩ V2).
(c) |ρe

⋄,V (θ1 ∪ θ2) − ρe
⋄,V (θ1)ρ

e
⋄,V (θ2)|

≤ ‖θ1 ∪ θ2‖ exp[−τ‖θ1 ∪ θ2‖ + 1 − ωd(θ1, θ2)]
whenever θ1 ∪ θ2 ∈ Ke

⋄(V ).

Proof: Since Φ⋄ are τ -functionals according to Proposition 1.3, we can use Theo-
rem A.2. There is a probability measure P⋄,V on Ka

⋄(V ) that recovers its correlation
functions. Introducing a map Ka

⋄(V ) 7→ Ke
⋄(V ) by attributing to each ∂ ∈ Ka

⋄(V ) the
set of its external contours Θ(∂) ∈ Ke

⋄(V ), we can define the measure P e
⋄,V on Ke

⋄(V )
as the image of P⋄,V under this map. Let us observe that for a finite Λ one has

ρe
⋄,V (θ) = Φ⋄(θ)

Z(K⋄(Λ) \ [[θ]])

Z(K⋄(Λ))
= Φ⋄(θ) exp [ −

∑

C∈Kcl
⋄ (Λ)

C∩[[θ]] 6=∅

ΦT
⋄ (C)], (1.90)

where [[θ]] = { γ ∈ K⋄ | either γιθ or there exists γ̄ ∈ θ such that γ̄ ⊂ Int γ }.
To compute the sum in the previous expression we will bound first

∑

C;
⋃

γ∈C(γ∪Int γ)∋i

|ΦT
⋄ (C)|eω‖C‖ ≤

∑

C∋i

|ΦT
⋄ (C)| ‖C‖eω‖C‖. (1.91)

To prove this let us consider a sum over clusters with fixed length ‖C‖ = n. Con-
sidering the half-line starting in i that is parallel with a fixed coordinate axis, there
are fewer than n possibilities for the first intersection with such cluster. Therefore,

∑

C; ‖C‖=n⋃
γ∈C(γ∪Int γ)∋i

|ΦT
⋄ (C)|eω‖C‖ ≤ n

∑

C; C∋i
‖C‖=n

|ΦT
⋄ (C)|eω‖C‖. (1.92)

Using the bounds (1.91),

‖C‖ ≤ exp

[
log m⋄

m⋄
‖C‖

]
(1.93)

and the assumptions on ω we easily prove (ii)(a). The proof of (ii)(b,c) is an easy
application of the previous procedure and the bound |eu − ev| ≤ max(eu, ev)|u− v|.
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To prove (i) and (1.88), let us consider a cylinder function ϕ living in Λ ⊂ Zd

and choose ε > 0. We shall prove that for U ⊂ V finite and large enough
∣∣∣∣∣µ

⋄
U(ϕ) −

∫

Ke
⋄,V

µ(ϕ | θ)P e
⋄,V (dθ)

∣∣∣∣∣ ≤ ε‖ϕ‖. (1.94)

One can easily verify that

µ⋄
U(ϕ) =

∑

θ∈Ke
⋄(U)

µ(ϕ | θ)

∏
γ∈θ ρ(γ)Z(K⋄(Int γ),Φ⋄)

Z(K⋄(U),Φ⋄)
(1.95)

≡

∫

Ke
⋄(U)

µ(ϕ | θ)P e
⋄,U(dθ). (1.96)

Hence, to prove (1.94) we must verify
∣∣∣∣
∫

Ke
⋄(U)

µ(ϕ | θ)P e
⋄,U(dθ) −

∫

Ke
⋄(V )

µ(ϕ | θ)P e
⋄,V (dθ)

∣∣∣∣ ≤ ε‖ϕ‖ (1.97)

for U large enough. For each θ ∈ Ke
⋄ we will consider a subset θ(k) ⊂ θ of those

γ ∈ θ for which ‖γ‖ < k. Denoting by Ke
⋄(Λ, k) the set { θ ∈ Ke

⋄ | there exists γ ∈ θ
such that (γ ∪ Int γ) ∩ BΛ 6= ∅ and ‖γ‖ ≥ k }, we get using (ii)(a) and the similar
reasoning as in the proof of (1.91) the estimate

∫
[µ(ϕ | θ) − µ(ϕ | θ(k))]P e

⋄,U(dθ) ≤ 2‖ϕ‖P e
⋄,U(Ke

⋄(Λ, k)) (1.98)

≤ 4‖ϕ‖ |BΛ|e
(−τ+1+log c)k+1 (1.99)

≤
1

4
ε‖ϕ‖, (1.100)

whenever U ⊂ Zd and k large enough. Having chosen such k, the estimate (1.97)
will be verified if we show that

∣∣∣∣
∫

Ke
⋄(U)

µ(ϕ | θ(k))P e
⋄,U(dθ) −

∫

Ke
⋄(V )

µ(ϕ | θ(k))P e
⋄,V (dθ)

∣∣∣∣ ≤
1

2
ε‖ϕ‖ (1.101)

for U large enough. Observing that µ(ϕ | θ(k)) is a cylindrical function living in
k-neighbourhood of the set Λ the estimate (1.101) follows from the weak conver-
gence limUրV P e

⋄,U = P e
⋄,V (see Theorem A.2(iii)). Thus, we prove that the limit

limUրV µ⋄
U(ϕ) exists and is equal to

∫

Ke
⋄(V )

µ(ϕ | θ)P e
⋄,V (dθ) (1.102)

for all cylindrical ϕ. Since both sides of (1.88) have the unique extensions from
bounded cylindrical function to bounded measurable functions we have finished the
proof. 2



Chapter 2

Translation non-invariant state

2.1 Interfaces and walls

To work with a translation non-invariant limit measure for random-cluster we need
to introduce a configuration that will serve us similarly as pure ordered or pure
disordered states did while we were exploring translation invariant states. As this
configuration we will use the configuration ξ which each bond having at least one
vertex in a lower subspace1 is disordered and the rest of bonds from B is ordered.
This configuration has a simple infinite contour which will be called an interface of
configuration ξ and denoted by I0.

We use Bo ⊂ B to denote the set of all bonds having both vertices with non-
negative dth coordinate and Bd = B \ Bo. For an arbitrary Λ ⊂ Zd we will write
Bo

Λ = BΛ ∩ Bo, Bo
Λ = BΛ ∩ Bo, Bo

Λ = BΛ ∩ Bo and analogically Bd
Λ = BΛ ∩ Bd,

Bd
Λ = BΛ ∩ Bd and Bd

Λ = BΛ ∩ Bd.
Our task in this section is to write the partition function for a subgraph G(Λ) of

(Zd, B) that belongs to some finite set Λ under the boundary condition ξ in terms
of a contour model. In this chapter we will take for Λ always a box in Zd, i.e. the
subset of Zd of the form

Λ =

d∏

i=1

〈xi, yi〉 (2.1)

with xi, yi ∈ R and 〈xi, yi〉 = [xi, yi] ∩ Z.
In analogy with Sections 1.4 and 1.5 we say that a configuration Y on B is

compatible with the boundary condition ξ outside G(Λ) if and only if for Y the fol-
lowing is true: all bonds from (BΛ)C ∩Bo are ordered and all bonds from (BΛ)C ∩Bd

are disordered in Y , i.e. a graph G(Λ) we talk about is the graph (Λ∪V (Bo
Λ), Bo

Λ∪Bd
Λ).

As in the previous chapter we will write X = Y ∩ BΛ, X = Y ∩ BΛ.
If Y is compatible with ξ outside a finite Λ, it is trivial to prove that there is just

one infinite contour in ∂(Y ). We will call it an interface of the configuration Y and
denote it by I(Y ). I(Y ) can differ from I0 only in 1-neighbourhood of Λ. We use

1Under this term we understand the set of points from Rd having the d
th coordinate negative

20
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Figure 2.1: Configuration with an interface

I(Λ) to denote the set of such interfaces. For each interface from I(Λ) there exists
at least one configuration Y compatible with boundary condition ξ outside Λ.

On the other side, let us have an infinite contour γ. We say that γ is an interface
if and only if γ \ I0 has finite components.

An interface divides Rd into two connected components. We use Rd
o(I) to de-

note the upper one and Rd
d(I) the lower one. We will write Bo

Λ(I) for BΛ(Rd
o(I)),

Bd
Λ(I) for BΛ(Rd

d(I)), Bo
Λ(I) for BΛ(Rd

o(I)) and Bd
Λ(I) for BΛ(Rd

d(I)). We also denote
Λo(I) = Rd

o(I) ∩ Λ and Λd(I) = Rd
d(I) ∩ Λ.

The length of an interface is according to the previous definition infinity. Thus,
we define ‖I‖Λ = |BΛ ∩ I|. We denote ρΛ(I) = q−‖I‖Λ/2d. We use Kco

Λ (ξ) to denote
the set of such collections ∂ from K such that Y (∂) is compatible with ξ outside Λ
and I(∂) for the interface of ∂.

Now we rewrite the partition function (1.24). We from the Figure 2.1 we can see
that

‖∂‖ =
∑

γ∈∂
γ 6=I(∂)

‖γ‖ + ‖I(∂)‖Λ = ‖δX‖ + |Bo
Λ \ X (∂)|. (2.2)

Similarly to Section 1.4, the following equality holds true:

DΛ(∂) = “number of disordered contours” + 1. (2.3)

It comes from the fact that the infinite component of ξ always intersects G(Λ) and
every finite component of X is divided from the rest of the lattice by one disordered
contour.

Using this we can write

Zξ
Λ =

∑

I∈I(Λ)

Zξ
Λ(I) (2.4)
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with

Zξ
Λ(I) = qq|B

d
Λ|/2d

∑

∂∈Kco
Λ

(ξ)

I(∂)=I

e−eo|X(∂)|e−ed|(B
o
Λ\X(∂))∪(Bd

Λ\X(∂))|ρΛ(I)
∏

γ∈∂
γ 6=I

ρ(γ) (2.5)

= qq−|Bd
Λ|/2d(1 − p)−|Bd

Λ|
∑

∂∈Kco
Λ

(ξ)

I(∂)=I

e−eo|X(∂)|e−ed|BΛ\X(∂)|ρΛ(I)
∏

γ∈∂
γ 6=I

ρ(γ). (2.6)

There are all external contours ordered in Rd
o(I) and disordered in Rd

d(I). We will
use ∂o to denote ∂ ∩ Rd

o(I), ∂d to denote ∂ ∩ Rd
d(I) and for ∆ ∈ Rd we will write

B⋄
Λ(I)(∆) = B⋄

Λ(I) ∩ B(∆) and similarly for B and B. Thus,

Zξ
Λ(I) = q1−|Bd

Λ|/2d(1 − p)−|Bd
Λ|
∑

θo,θd

e−eo|Bo
Λ(I)(Ext θo)|e−ed|B

d
Λ(I)(Ext θd)|

ρ(I)
∏

γ∈θo

ρ(γ)Zd
Λ(Int γ)

∏

γ∈θd

ρ(γ)Zo
Λ(Int γ). (2.7)

Here the sum runs over all configurations of mutually external contours such that
all contours from θo lay in Rd

o(I), from θd in Rd
d(I) and both from θo and θd lay in

1-neighbourhood of Λ.
After the procedure described in Section 1.4 we get:

Zξ
Λ(I) = q1−|Bd

Λ|/2d(1 − p)−|Bd
Λ|e−eo|Bo

Λ(I)|e−ed|B
d
Λ(I)|ρΛ(I)

×
∑

∂o∈Kco
o (Λ,I)

∂d∈Kco
d

(Λ,I)

∏

γ∈∂o

Φo(γ)
∏

γ∈∂d

Φd(γ) (2.8)

= q1−|Bd
Λ|/2d(1 − p)−|Bd

Λ|e−eo|Bo
Λ(I)|e−ed|B

d
Λ(I)|ρΛ(I)

× Z(Ko(Λ
o, I),Φo)Z(Kd(Λ

d, I),Φd). (2.9)

Here Ko(Λ
o, I) is the set of ordered contours being in 1-neighbourhood of Λo(I) but

not intersecting I and similarly Kd(Λ
d, I) is the set of disordered contours laying

in 1-neighbourhood of Λd(I) and not intersecting I. Kco
o (Λ, I), Kco

d (Λ, I) are non-
intersecting collections of contours from these sets.

In addition, we will need another object called a wall. It will be a decoration
of the flat interface I0. We will express the partition function in terms of these
decorations.

To define a wall we first introduce the shift Th : Rd 7→ Rd, (x1, x2, . . . , xd) 7→
(x1, x2, . . . , xd + h) for every h ∈ R. We also introduce two mappings on R

d:
π̃(∆) =

⋃
h∈R Th(∆) for ∆ ⊂ Rd and π(∆) = π̃(∆) ∩ I0.

Every interface I we divide into two sets

good(I) = { x ∈ R
d | x ∈ I, π̃(x) ∪ I = x } (2.10)
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and bad(I) = I \ good(I). We use W̃(I) to denote the intersection of interface I
with the set of all points having distance less or equal to 1/2 from bad(I). Under

the term wall we understand a connected component of W̃(I).
The wall w is called a standard wall if there exists an interface Iw such that w

is the only wall of Iw. We use W to denote the set of all standard walls. We call
the collection of standard walls V ⊂ W compatible if π(w1) and π(w2) do not touch
or intersect whenever w1, w2 ∈ V. The set of all compatible collections of standard
walls we denote by Wco.

If w is a wall we use ExtI0 w to denote the infinite component of I0 \ π(w) and
IntI0 w = I0 \ (π(w)∪ExtI0 w). If w1 and w2 are compatible walls we say that w2 is
inside of w1 if π(w2) ⊂ IntI0 w1. We use E(V) to denote the set of all external walls
of compatible collection V, i.e. such walls w for those w′ ∈ V, w 6= w′ implies that
π(w) ⊂ ExtI0 w′. The set of all collections for that V = E(V) we denote by We.

The compatible collection of walls V is called admissible if every wall from V is
inside a finite number of walls from V. We use Wa to denote the set of all admissible
collections. We also introduce the sets W(V ) of walls laying in 1-neighbourhood of
V and Wa(V ) of admissible collections from W(V ).

The following lemma describes the mutual relation between walls and standard
walls and between collections of standard walls and the set of all interfaces.

Lemma 2.1 (a) For every wall w there exists one and only one h = h(w) such
that Th(w) is in W. We call the shift Th(w)(w) the standard position of w.

(b) The mapping W(·) that ascribes to an interface I the collection of its walls
in standard positions maps I, the set of all interfaces, into Wco and is one-to-one
from Ia = W−1(Wa).

For proof see for example Appendix A of [5]

2.2 Normalization of partition function

The task of this section is to extract from Zξ
Λ(I) the terms not depending on I. We

will find the new, normalized partition functions Z̃ξ
Λ(I). The advantage of these new

partition functions is a possibility of rewriting them in a form which is very close to
the one used in contour models. Moreover, these “contours” live near I0. We will
obtain a (d− 1)-dimensional contour model and we will explore it by methods from
Theorem A.1.

Before continuing extraction, let us define the function χ⋄(C) on the set Kcl
⋄ .

χ⋄(C) = 1 if there exists bond b from B⋄
Λ and bond b′ from B⋄ \ B⋄

Λ such that
b ∩ C 6= ∅ and b′ ∩ C 6= ∅ and moreover both b and b′ are edges of the same
hypercube in Zd, otherwise χ⋄(C) = 0.

Since we will use the results of Proposition 1.3 we will always suppose that the
assumptions of this proposition are fulfilled. In particular, we suppose that

log q

2c
≥ 4dε + 1 + log(2c). (2.11)
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Proposition 2.2 If I ∈ I(Λ) we have

Z̃ξ
Λ(I) =

Zξ
Λ(I)

N ξ
Λ

=
ρΛ(I)

ρΛ(I0)
exp

{
−
∑

⋄

∑

C∈Kcl
⋄

C∩I 6=∅

ΦT
⋄ (C)

[
|C ∩ B⋄

Λ(I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BΛ|

|C ∩ B|

]}
(2.12)

with

N ξ
Λ = ρ(I0)q

1−|BΛ
d |/2d(1−p)−|BΛ

d | exp

{
−fo|BΛ|−

∑

⋄

∑

C∈Kcl
⋄

χ(C)=1

ΦT
⋄ (C)

|C ∩ BΛ|

|C ∩ B|

}
. (2.13)

Proof: One substitutes
∑
C∈Kcl

⋄ (Λ,I) Φ
T
⋄ (C) for logZ(K⋄(Λ

⋄, I)) according to The-
orem A.2, and

|B⋄
Λ(I)|(f⋄ + p(Φ⋄)) = f⋄|B

⋄
Λ(I)| +

∑

C:C∩B⋄Λ(I)6=∅

ΦT
⋄ (C)

|C ∩ B⋄
Λ(I)|

|C ∩ B|
(2.14)

for e⋄|B
⋄
Λ(I)| according to (1.62) and (A.18) in (2.9). Using the fact that fo = fd we

can easily prove this proposition. 2

According to the definition of ρΛ(I) and ‖I‖Λ holds true

log
ρΛ(I)

ρΛ(I0)
= −(‖I‖Λ − ‖I0‖Λ)

log q

2d
. (2.15)

Denoting ‖w‖ = |w ∩ B| and ‖π(w)‖ = |π(w) ∩ B| for every w ∈ W we can write

‖I‖Λ = ‖I0‖Λ +
∑

w∈W(I)

(‖w‖ − ‖π(w)‖), (2.16)

log
ρΛ(I)

ρΛ(I0)
= −

log q

2d

∑

w∈W(I)

(‖w‖ − ‖π(w)‖) = −
∑

w∈W(I)

E(w), (2.17)

where

E(w) =
log q

2d
(‖w‖ − ‖π(w)‖) (2.18)

and thus

Z̃ξ
Λ(I) =

∏

w∈W(I)

exp[−E(w)]

× exp

{
−
∑

⋄

∑

C∈Kcl

C∩I 6=∅

ΦT
⋄ (C)

[
|C ∩ B⋄

Λ(I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BΛ|

|C ∩ B|

]}
. (2.19)
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2.3 Expression in terms of aggregates

Now, we would like to investigate a cylindrical volume V with a finite base Q ⊂ Zd−1.
We note that according to Lemma 1.7 there is the unique limit random-cluster
measure and we have

lim
UրV

µξ
U(·) = µξ

V (·), (2.20)

where we consider a weak limit over the directed set of finite volumes U ⊂ V .

Lemma 2.3 Let the assumptions of Proposition 1.3 be fulfilled, i.e.

log q

2d
≥ 1 + 4dε + log(2c) (2.21)

and
log q

2d
≥ 4 + log(2c). (2.22)

Then:
(a) There exists KQ : I(V ) 7→ R such that Z̃ξ

U(I) ≤ KQ(I) for any I ∈ I(U)
with

∑
I∈I(V ) KQ(I) < ∞.

(b) There exists a finite limit limUրV Z̃ξ
U(I) and it equals

Z̃ξ
V (I) =

∏

w∈W(I)

exp[−E(w)]

× exp

{
−
∑

⋄

∑

C∈Kcl

C∩I 6=∅

ΦT
⋄ (C)

[
|C ∩ B⋄

V (I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BV |

|C ∩ B|

]}
(2.23)

(c) The probabilities P I
U of interfaces from I(U) defined by

µξ
U({ Y | I(Y ) = I }) = P I

U (I) =
Z̃ξ

U(I)
∑

I′∈I(U) Z̃ξ
U(I ′)

(2.24)

converge to a probability on I(V ) which is defined by Z̃ξ
V (I), i.e.

P I
V (I) =

Z̃ξ
V (I)

∑
I′∈I(V ) Z̃ξ

V (I)
. (2.25)

Proof: According to the definition of E(w) and (A.12) we can write

Z̃ξ
U(I) ≤ exp

{
−
∑

w∈W(I)

log q

2d
(‖w‖ − ‖π(w)‖) + 4‖I‖U

}
(2.26)

= exp
{
−
∑

w∈W(I)

(
log q

2d
− 4

)
(‖w‖ − ‖π(w)‖) + 4‖I0‖U

}
. (2.27)
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Since both inequalities ‖I‖U ≤ ‖I‖V and ‖π(w)‖ ≤ ‖w‖/2 are obvious for every
interface I ∈ I(U) and every wall we get

Z̃U(β | I, ξ) ≤ exp
{
−

1

2

∑

w∈W(I)

(
log q

2d
− 4

)
‖w‖ + 4‖I0‖V

}
(2.28)

≡ KQ(I). (2.29)

One can see from this expression that KQ(I) does not depend on the volume U but
only on the base Q and on the interface I. The sum can be bound by the following
way

∑

I∈I(V )

KQ(I) ≤ exp(4‖I0‖V )
∏

i∈I0∩BV

∑

w∈W
i∈w

exp

[
−

(
log q

2d
− 4

)
‖w‖

]
. (2.30)

The number of walls that contains an arbitrary site i ∈ Zd
⋆ can be bound in the same

way as the number of such contours (see (A.11)) by

|{w | w ∋ i, ‖w‖ = n }| ≤ cn. (2.31)

Hence
∑

w∈W
i∈w

exp [− (log q/2d − 4) ‖w‖]

≤
∞∑

n=mw

cn exp[− (log q/2d − 4)n] (2.32)

≤
{c exp [− (log q/2d − 4)]}mw

1 − c exp[− (log q/2d − 4)n]
≤ 1 (2.33)

if
log q

2d
≥ 4 + log(2c) (2.34)

and where we use mw to denote the minimal length of wall. 2

In the next lemma we will rewrite the partition function Z̃ξ
U(I) as a sum over

triplets T = (Tw, To, Td) ∈ T (V ) defined so that Tw ∈ Wa(V ) and To, Td are finite
subsets of Kcl

o or Kcl
d and the elements of To and Td intersect BV and I(Tw). We will

use T = T (Zd).

Lemma 2.4 Under the assumption of Lemma 2.3, one gets for I ∈ I(V ) that

Z̃ξ
U(I) =

∏

w∈Tw=W(I)

e−E(w)
∑

T∈T (V ),I(Tw)=I

∏

⋄

∏

C∈T⋄

f ⋄
V,I(C), (2.35)

where

f ⋄
V,I(C) = exp

{
− ΦT

⋄ (C)

[
|C ∩ B⋄

V (I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BV |

|C ∩ B|

]}
− 1 (2.36)

whenever C ∈ Kcl.
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Proof: According to Lemma 2.1 we know that W(I(V )) = W(V ). When we use
this fact and the part (b) from the previous lemma we must only prove the equality

exp

{
−
∑

⋄

∑

C∈Kcl
⋄

C∩I 6=∅

ΦT
⋄ (C)

[
|C ∩ B⋄

V (I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BV |

|C ∩ B|

]}

=
∑

T∈T (V )
I(Tw)=I

∏

⋄

∏

C∈T⋄

f ⋄
V,I(C). (2.37)

This equality comes from the observation

exp
(∑

n∈N

an

)
=
∏

n∈N

[(exp an − 1) + 1] =
∑

K⊂N
finite

∏

n∈K

(exp an − 1) (2.38)

for countable N if
∑

|an| < ∞. This inequality holds true because

∑

⋄

∑

C∈Kcl
⋄

C∩I 6=∅

|ΦT
⋄ (C)|

∣∣∣∣
[
|C ∩ B⋄

V (I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BV |

|C ∩ B|

]∣∣∣∣ ≤ 4‖I‖V . (2.39)

2

Now we introduce the notation of an aggregate. Let T ∈ T (V ) and a =
(aw, ao, ad), where aw ⊂ Tw, ao ⊂ To, ad ⊂ Td are such that

π(a) = π

(
⋃

w∈aw

w ∪
⋃

C∈ad

C ∪
⋃

C∈ao

C

)
(2.40)

is connected component of π(T ). Then we say that a is the aggregate of T . On the
other side the triplet (aw, ao, ad) is called an aggregate (in V ) if it is the aggregate
of the triplet from T (T (V )).

If a is the only aggregate of T then it is called a standard aggregate. The set
of all standard aggregates of triplets from T (V ) we denote by A(V ). Further we
use Aco(V ) to denote the set of all finite subsets from A(V ) consisting of standard
aggregates such that for two of them, say a, a′, the set π(a)∪ π(a′) is disconnected.

It can be proven that for any aggregate a of T ∈ T (V ) there exists one and only
one h = h(a) such that the shift Tha is in A(V ). The shift Tha we call the aggregate
a in a standard position. The mapping A(·) that ascribes to a triplet T ∈ T (V )
the set of its aggregates in standard positions is one-to-one mapping from T (V )
onto Aco(V ).

Now we have all tools to express the partition function Z̃ξ
V (I) in terms of an ab-

stract contour model. The following lemma is a simple consequence of Lemma 2.3
and 2.4. We must only realize that the value of f ⋄

V,I(C) for a cluster C from aggre-
gate a depends only on the part of the interface which is directly influenced by aw.
Thus, we can write f ⋄

V,I(aw)(C) instead of f ⋄
V,I(Tw)(C) if aw ∈ Tw.
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Lemma 2.5 Let us denote for every cylindrical set V with finite base and for every
standard aggregate a ∈ A(V )

ΨV (a) =
∏

w∈aw

e−E(w)
∏

⋄

∏

C∈a⋄

f ⋄
V,I(aw)(C). (2.41)

Then under assumptions of Lemma 2.3, one has

(a) Z̃ξ
V = Z(A(V ), ΨV ),

where

Z̃ξ
V =

Zξ
V

N ξ
V

(2.42)

and
Z(A(V ), ΨV ) =

∑

R∈A(V )

∏

a∈R

ΨV (a). (2.43)

(b) P I
V (I(V)) =

∑

S∈A(V )
W(S)=V

ρA(V )(S, ΨV ),

where

P I
V (I) =

Z̃ξ
V (I)

∑
I′∈I(V ) Z̃ξ

V (I ′)
(2.44)

and
ρA(V )(S, ΨV ) =

[∏

a∈S

ΨV (a)
]/

Z(A(V ), ΨV ) (2.45)

for S ∈ Aco(V ).

2.4 Properties of aggregate contour model

The main purpose of this section is to prove the assumptions of Theorem A.1 for
a contour model in which aggregates play the role of contours and which has the
contour functional ΨV . It will be proven in Lemma 2.7

Before proving this, we must note that although in the previous section we
rewrite Z̃ξ

V (I) only for cylinders with a finite base the definitions of f ⋄
V,I and ΨV are

all right for arbitrary cylindrical volume. Thus, we will use these two terms also for
a cylindrical volume V with an infinite base.

For proof of Lemma 2.7 we need the following estimate.

Lemma 2.6 Let the assumptions of Lemma 2.3 be fulfilled. Then

∑

C∈Kcl
⋄

i∈C

|f ⋄
V,I(C)| exp(ω‖C‖) ≤ κ (2.46)
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whenever

ω ≤ −
2 + log 2

m⋄
+

log κ

m⋄
+ τ −

[
1 + log(2c) +

log m⋄

m⋄

]
(2.47)

and κ ≤ 2e2, V cylindrical volume in Zd, I is an interface from I(V ) and i ∈ Zd
⋆.

Proof: According to Proposition 1.3 and Theorem A.2 we have
∑

C∈Kcl
q

C∋i

|ΦT
⋄ (C)|eω̃‖C‖ ≤ 1 (2.48)

with

ω̃ = τ −

[
1 + log(2c) +

log m⋄

m⋄

]
. (2.49)

Using the facts that |eu − 1| ≤ ev|u| if |u| ≤ v and that |C ∩ B| ≥ m⋄ for every
cluster from Kcl

⋄ we have
∑

C∈Kcl
⋄

C∋i

|f ⋄
V,I(C)| exp(ω‖C‖)

=
∑

C∈Kcl
⋄

C∋i

∣∣∣∣exp

{
−ΦT

⋄ (C)

[
|C ∩ B

⋄
V (I)|

|C ∩ B|
− χ⋄(C)

|C ∩ BV |

|C ∩ B|

]}
− 1

∣∣∣∣

× exp(ω‖C‖) (2.50)

≤
∑

C∈Kcl
⋄

C∋i

2e2|ΦT
⋄ (C)| exp(ω‖C‖) (2.51)

≤ 2e2 exp[(ω − ω̃)m⋄] ≤ κ. (2.52)

Lemma 2.7 Let us define

ζ = log(4c) + 1 + log(3cd−1) (2.53)

and let the assumptions of Lemma 2.6 be fulfilled. Then
∑

a∈A(V )
π(A)∋i

exp(‖π(a)‖ + ω‖a‖)ΨV (a) ≤ 1, (2.54)

where
‖a‖ =

∑

w∈aw

‖w‖ +
∑

C∈ad∪ao

‖C‖ (2.55)

and i ∈ I0 ∩ B, whenever

ω ≤ min

[
τ − 1 − log(2c) − max

⋄

(
log m⋄

m⋄
−

2 + log 4

m⋄

)
− ζ,

log q

2d
− ζ

]
. (2.56)
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Proof: We use I⋆
0 to denote the set { i | i ∈ I0, the distance of i from all lines

(planes, etc.) composing π(B) is odd multiple of 1/4 }. This is the set of points
where projections of contours and walls have their corners. Let us now consider the
set P ⊂ I⋆

0 . We say that this set is connected if and only if the set P̄ that contains
all points from P , all abscissas of length 1/2 with both vertices in P , all squares with
all sides in P , etc., is connected. We use P to denote the set of all finite connected
subsets of I⋆

0 , and ‖P‖ = |P̄ ∩ B|.
If aw is an admissible collection of walls from W(V ) and P ∈ P we define

I(aw, P ) = I(aw) ∩ π̃(P̄ ). Then

∑

a∈A(V )
π(A)∋i

exp(‖π(a)‖ + ω‖a‖)ΨV (a)

≤
∑

P∈P
P∋i

(exp ‖P‖)
∑

a∈A(V )

π(a)=P̄

exp(ω‖a‖) exp

{
−
∑

w∈aw

E(w)

}

×
∏

⋄

∏

C∈a⋄

f ⋄
V,I(aw)(C) (2.57)

≤
∑

P∈P
P∋i

(exp ‖P‖)
∑

π(aw)⊂P̄

aw∈W(V )

exp

[(
ω −

log q

2d

)
‖aw‖

]

×
∑

(ao,ad)∈F(aw ,P )

∏

⋄

exp(ω‖a⋄‖)
∏

C∈a⋄

|f ⋄
V,I(aw)(C)| = (1), (2.58)

where we used the definition of E(w), the fact that ‖π(w)‖ ≥ 0, and where we
denoted by F(aw, P ) the set { (ao, ad) | (aw, ao, ad) ∈ A(V ), π(a) = P̄ }. Using the
fact that ‖a‖ ≥ ‖I(a, P )‖ whenever π(a) = P̄ we get

(1) ≤
∑

P∈P
P∋i

(exp ‖P‖)
∑

π(aw)⊂P

aw∈W(V )

exp

[(
ω −

log q

2d
+ ζ

)
‖aw‖ − ζ‖I(aw, P )‖

]

×
∑

(ao,ad)∈F(aw ,P )

∏

⋄

exp[(ω + ζ)‖a⋄‖]
∏

C∈a⋄

|f ⋄
V,I(aw)(C)| = (2). (2.59)

Since ω − (log q)/(2d) + ζ ≤ 0, and according to the previous lemma, which we can

use because ω + ζ ≤ τ −
[
1 + log(2c) + log m⋄

m⋄

]
− 2+log 4

m⋄
, i.e. we take κ = 1

2
, we have

(2) ≤
∑

P∈P
P∋i

(exp ‖P‖)
∑

π(aw)⊂P

aw∈W(V )

exp[−ζ‖I(aw, P )‖]

×
∏

⋄

∏

j∈I(aw,P )∩B

∞∑

k=0

( ∑

C∈Kcl
⋄

C∋j

{exp[(ω + ζ)‖C‖]}|f ⋄
V,I(aw)(C)|

)k

(2.60)
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≤
∑

P∈P
P∋i

(exp ‖P‖)
∑

π(aw)⊂P

aw∈W(V )

exp[−(ζ − log 4)‖I(aw, P )‖] = (3). (2.61)

Now we will estimate the number of admissible families aw of walls, such that
I(aw, P ) is connected, ‖I(aw, P )‖ = n and it contains a point from boundary of
P̄ . We will bound it in similar way as a number of contours with length n by cn.
We will also use the fact that the “shortest” interface with these properties has the
length ‖P‖.

(3) ≤
∑

P∈P
P∋i

(exp ‖P‖)
∞∑

n=‖P‖

exp[−(ζ − log 4)n]cn (2.62)

=
∑

P∈P
P∋i

(exp ‖P‖)
exp[(log(4c) − ζ)‖P‖]

1 − exp[log(4c) − ζ ]
(2.63)

≤ 2
∑

P∈P
P∋i

exp[(1 + log(4c) − ζ)‖P‖] = (4). (2.64)

To bound the last expression we will use the estimate

|{P ∈ P | P ∋ i, ‖P‖ = n }| ≤ cn
d−1. (2.65)

And thus

(4) ≤ 2
∞∑

n=1

cn
d−1 exp[(1 + log(4c) − ζ)n] = (5). (2.66)

With respect to the definition of ζ we have

(5) = 2
exp[1 + log(4c) − ζ + log cd−1]

1 − exp[1 + log(4c) − ζ + log cd−1]
≤ 1. (2.67)

2

In the previous two lemmas we verified the assumptions of Theorem A.2 for
every contour model with contour functional ΨV . The bounds we found are even
independent on volume V , so we can work without fear with these contour models
also for infinite-base cylinders.

The following proposition is a version of Theorem A.2 for the aggregate contour
model. Before stating it we recall that

τ =
log q

2d
− 4dε. (2.68)

In order to make the notation shorter, we define a constant

c1 = 1 + 4dε + log(2c) + max
⋄

[
log m⋄

m⋄
+

2 + log 4

m⋄

]
+ ζ. (2.69)
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To have all things properly prepared, we have to define an incompatibility of
aggregates. We say that two aggregates a1 and a2 are incompatible if and only
if π(a1) ∪ π(a2) is connected. We use Acl to denote the set of all collections of
aggregates, such collections which are not decomposable into two compatible sets.

Proposition 2.8 Let
log q

2d
≥ c1 (2.70)

and let V ⊂ Zd be a cylindrical set. Then there exists the unique function ΨV,T :
A 7→ R such that

logZ(D, ΨV ) =
∑

C∈Acl(D)

ΨV,T (C) (2.71)

for every D ⊂ A(U), where U is a cylinder with finite base. For every i ∈ I0 ∩ Zd
⋆

we also have ∑

π(C)∋i

C∈Acl

|ΨV,T (C)|eω‖C‖ ≤ 1 (2.72)

with

ω ≤
log q

2d
− c1. (2.73)

Moreover,

ΨV,T (C) =
∑

D⊂C

(−1)‖D‖−‖C‖ logZ(D, ΨV ) (2.74)

for every C ∈ Acl.
For every S ∈ Acl,f there exists the unique function ∆V

S
: Af 7→ C such that

ρD(S, ΨV ) =
∑

C∈Acl(D)

∆V
S (C) (2.75)

for every C ⊂ A and that

∑

C⊃S

|∆V
S (C)|eω‖C‖ ≤ e‖π(S)‖

∣∣∣
∏

a∈S

ΨV (a)
∣∣∣. (2.76)

The function ∆V
S

is given by

∆V
S (C) =

∑

G⊂C

(−1)‖G‖−‖C‖ρG(S, ΨV ) (2.77)

and
∆V
S1∪S2

(C1 ∪ C2) = ∆V
S1

(C1)∆
V
S2

(C2), (2.78)

whenever every a1 ∈ S1 ∪ C1 is compatible with every a2 ∈ S2 ∪ C2.
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Proof: According to assumptions of this proposition and according to the previous
lemma, the assumptions of Theorem A.1 are fulfilled when we take a(a) = ‖π(a)‖,
l(a) = ‖a‖ and ‖C‖ =

∑
a∈C ‖a‖. Then all statements of this proposition come from

Theorem A.1. 2

At the end of this section we notice that in respect to (2.77) and the definition
of ρD(S, ΨV ) in Lemma 2.5, the sum in (2.75) can run only over such C for that
C ⊃ S, because for other C is ∆V

S
(C) = 0.

2.5 The existence of limit measure

In the previous section we found out that the aggregate contour model is a well
behaving contour model. However, our main aim is to describe a limit random-
cluster measure, primarily to describe the behaving of walls on the interface between
ordered and disordered phases because we control the behaviour of these phases due
to Proposition 1.8.

First we state an auxiliary lemma needed for following proofs.

Lemma 2.9 Let
log q

2d
≥ c1 (2.79)

and

ω ≤
log q

2d
− c1 (2.80)

and let S ⊂ Aco, C ⊂ Acl, and a finite M ⊂ I0∩Zd
⋆. Let a ∈ S implies π(a)∩M 6= ∅

whenever S ∈ S. Then
∑

S∈S

∑

C∈C

|∆V
S
(C)| ≤ 2|M | exp[−ω(inf

C
‖C‖ + inf

S
‖S‖)]. (2.81)

Proof:
∑∑

|∆V
S
(C)| ≤

∑∑
[exp(−ω inf

C
‖C‖) exp(ω‖C‖)]|∆V

S
(C)| (2.82)

≤ [exp(−ω inf
C
‖C‖)]

{∑

S

[exp π(S)]
∏

a∈S

|ΨU(a)|
}

(2.83)

according to Proposition 2.8,

≤
{∑

S

[exp π(S) exp(ω‖S‖)]
∏

a∈S

|ΨU(a)|
}

× exp[−ω(inf
C
‖C‖ + inf

S
‖S‖)] (2.84)

≤
∏

i∈M

{
1 +

∑

a:i∈π(a)

exp[‖π(a)‖ + ω‖a‖] |ΨU(a)|
}

× exp[−ω(inf
C
‖C‖ + inf

S
‖S‖)] (2.85)
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≤ 2|M | exp[−ω(inf
C
‖C‖ + inf

S
‖S‖)] (2.86)

according to Proposition 2.8 again. 2

In Lemma 2.5 we found the probability

P I
U =

∑

S∈A(U)
W(S)=V

ρA(U)(S, ΨU) (2.87)

on I(U), where U was a cylinder with finite base. Using this probability we now
define correlations ρI

U (V) for V ∈ Wf,co(U) by

ρI
U (V) = P I

U ({ I ∈ I(U) | W(I) ⊃ V }). (2.88)

In the following lemma we will show some properties of these correlations.

Lemma 2.10 Let
log q

2d
≥ c1 (2.89)

and

ω ≤
log q

2d
− c1 (2.90)

then we have

(a) ρI
U(V) ≤ exp[−(2ω − log 2)‖V‖]

(b) |ρI
U1

(V) − ρI
U2

(V)| ≤ 4 exp[−(ω − log 2)‖V‖ − ωd(V, U1 ÷ U2)]

whenever U1, U2 are cylinders with finite base, U1÷U2 is their symmetrical difference
and V ∈ Wco,f(U1 ∩ U2).

Proof: Let us denote the set

{ S ∈ Aco(U) | W(S) ⊃ V, a ∈ S ⇒ V ∩ W(a) 6= ∅ } (2.91)

by Aco(U, V). Then, due to Lemma 2.5,

ρI
U(V) =

∑

S∈Aco(U,V)

ρA(U)(S, ΨU). (2.92)

(a) According to Proposition 2.8 and Lemma 2.9 we can write

ρI
U (V) =

∑

S∈Aco(U,V)

∑

C∈Acl

C⊂A(U)

∆U
S (C) ≤ exp[−(2ω − log 2)‖V‖], (2.93)

because S ∈ Aco(U, V) implies [a ∈ S ⇒ π(a) ∩ π(V) 6= ∅], ∆U
S
(C) 6= 0 ⇒ C ⊃ S,

‖S‖ ≥ ‖V‖ for S ∈ Aco(U, V), and ‖π(V)‖ ≤ ‖V‖.
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(b) We first express the difference ρI
U1

(V) − ρI
U2

(V) using Aco(U, V):

ρI
U1

(V) − ρI
U2

(V) =
∑

S∈Aco(U1,V)

ρA(U1)(S, ΨU
1 ) −

∑

S∈Aco(U2,V)

ρA(U2)(S, ΨU
2 ) (2.94)

=
∑

S∈Aco(U1,V)

∑

C∈Acl(U1)
(C⊃S)

∆U1
S

(C) −
∑

S∈Aco(U2,V)

∑

C∈Acl(U2)
(C⊃S)

∆U2
S

(C). (2.95)

Since ∆U1
S

(C) = ∆U2
S

(C) for C ⊂ U1 ∩U2, S ⊂ U1 ∩U2 in accordance to Proposi-
tion 2.8 we get

ρI
U1

(V) − ρI
U2

(V) =
∑

S∈Aco(U1∩U2,V)

∑

C∈Acl(U1)

C 6∈Acl(U2)

∆U1
S

(C) −
∑

S∈Aco(U1∩U2,V)

∑

C 6∈Acl(U1)

C∈Acl(U2)

∆U2
S

(C)

+
∑

S∈Aco(U1,V)
S 6∈Aco(U2,V)

∑

C∈Acl(U1)

∆U1
S

(C) −
∑

S 6∈Aco(U1,V)
S∈Aco(U2,V)

∑

C∈Acl(U2)

∆U2
S

(C). (2.96)

When we estimate each of these four sums using Lemma 2.9 as in the proof of
(a) we get

|ρI
U1

(V) − ρI
U2

(V)| ≤ 4 exp[−(ω − log 2)‖V‖ − ωd(V, U1 ÷ U2)]. (2.97)

2

Further more, we will use the symbol lim fin cyl to denote the limit over directed
sequence of cylinders with a finite base.

Lemma 2.11 Let V cylinder not necessarily with a finite base and let the assump-
tions of Lemma 2.10 hold true. Then there exists a probability measure P I

V on I(V )
that recovers its correlation function ρI

V (V) = P I
V ({ I ∈ I(V ) | W(I) ⊃ V }). More-

over
ρI

V (V) = lim fin cyl
UրV

ρI
U(V), (2.98)

P I
U converges weakly to P I

V and ρI
V has all properties have been proven for cylinder

with finite base in Lemma 2.10.

Proof: The existence of limit ρI
V = lim fin cylUրV ρI

U is a simple consequence of
Lemma 2.10 (b). Naturally the limit satisfies the properties (a),(b) from that lemma.

We must now prove a weak convergence of P I
U to finish the proof. Thanks to

Lemma 2.1, the probabilities P I
U can be understood as probabilities on Wco, in fact

on Wa = Wco for cylinders U with finite bases.
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The probability P I
V is defined uniquely by its values on sets of the form

MM,V = {V
′ ∈ Wco(V ) =| V

′ ∩ M = V } (2.99)

for finite sets M ∈ W(V ) and V ∈ Wco(V ). Since

MM,V = MV

∖ ⋃

w∈M\V

MV∪{w}, (2.100)

where MV = {V′ ∈ Wco(V ) | V′ ⊃ V } for V ⊂ M , and

⋂

w∈V′

MV∪{w} =

{
MV∪V′ for V ∪ V

′ compatible
∅ otherwise

(2.101)

one has for any probability P on Wco(V )

P (MM,V) = P (MV) − P
( ⋃

w∈M\V

MV∪{w}

)
(2.102)

= P (MV) −
∑

V′⊂M\V
V′ 6=∅

(−1)|V
′|+1P (MV∪V′) (2.103)

=
∑

V′⊂M\V

(−1)|V
′|P (MV∪V′). (2.104)

Thus it suffices to verify the convergence P I
U → P I

V only on MV. However, by
definition of MV we have

P I
U (MV) = ρI

V (V), (2.105)

and thus
P I

U (MV) = ρI
U(V) → ρI

V (V) = P I
V (MV). (2.106)

2

The following proposition describes a very important property of P I
V .

Proposition 2.12 Let
log q

2d
≥ c1 +

1

2
log 4cd−1. (2.107)

Then
P I

V (Wa(V )) = P I
V (Ia(V )) = 1. (2.108)

Proof: It is simple to notice that P I
V (Wco(V )) = 1, since the set W(V ) \Wco(V ) is

covered by the countable union of sets of collections of walls that are “incompatible
at some i ∈ Zd

⋆.”
To verify that P I

V (Wa(V )) = 1 we use a usual proof. First, we consider the
half-line p from a fixed i ∈ I0, i ∈ Zd

⋆ parallel to a fixed coordinate axis in Zd such
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that p ⊂ I0 and the wall w such that i ∈ IntI0 π(w) and ‖w‖ = n. There are less
than n possibilities for p to intersect π(w), because ‖π(w)‖ ≤ ‖w‖, and thus

P I
V ({V | i ∈ IntI0 π(w), ‖w‖ = n, w ∈ V })

≤ nP I
V ({V | i ∈ π(w), ‖w‖ = n, w ∈ V }). (2.109)

Hence, the probability that a site i is inside at least n walls may be bound by

∞∑

m=n

P I
V ({V | i ∈ IntI0 π(w), ‖w‖ = m, w ∈ V })

≤
∞∑

m=n

m
∑

w;π(w)∋i

‖w‖=m

ρI
V (w) (2.110)

≤
∞∑

m=n

m[c(d − 1)]m exp[−(2ω − log 2)m] (2.111)

≤
∞∑

m=n

2m[c(d − 1)]m exp[−(2ω − log 2)m] (2.112)

=
exp[−(2ω − log 4cd−1)n]

1 − exp[−(2ω − log 4cd−1)]
, (2.113)

since the length of the nth wall “encircling” i is at least n. Then the probability
that the site i is “encircled” by an infinite number of wall is bound by

lim
n→∞

exp[−(2ω − log 4cd−1)n]

1 − exp[−(2ω − log 4cd−1)]
= 0 (2.114)

and so P I
V (Wa(V )) = 1. 2

We proved that there exists almost surely the interface between ordered and
disordered phase in an arbitrary cylinder in the random-cluster model with boundary
condition ξ. Since in Chapter 1 we proved that in every volume there are almost
surely only finite contours enclosing the islands of opposite phase, we can dedicate
from these two facts that there is almost surely only one infinite ordered component.
This fact will be very important in the next chapter.

In the following proposition we will prove the existence of the limit random-
cluster measure obtained as a limit lim fin cylUրV µξ

U .

Proposition 2.13 Let the assumption of Proposition 2.12 holds true then the limit

µ(·) = lim fin cyl
UրV

µξ
U(·) (2.115)

exists and is translation non-invariant.
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Proof: Let ϕ be a cylindrical function living on the BΛ. From Lemma 2.11 we
know that for arbitrary cylinder V there is a probability measure P I

V on I(V ) and
due to Proposition 2.12 there is almost surely the interface and thus we can write

µξ
V (ϕ) =

∫

I∈I(V )

µV (ϕ | I) dP I
V (I) (2.116)

for every cylinder. The conditional probability µV (ϕ | I) has a sense for arbitrary
cylinder because it is a product of measures in upper and lower part of cylinder with
ordered and disordered boundary condition and these measures exist according to
Proposition 1.8.

Thus, for showing this theorem is true we must prove
∣∣∣
∫

IU∈I(U)

µU(ϕ | IU) dP I
U (IU) −

∫

IV ∈I(V )

µV (ϕ | IV ) dP I
V (IV )

∣∣∣ ≤ ε (2.117)

for U , V large enough, both with finite base.
With respect to the note about µV (ϕ | I) we can write

∫

IU∈I(U)

|µU(ϕ | IU) − µV (ϕ | IU)|dP I
U (IU) ≤

ε

2
. (2.118)

To prove that
∣∣∣
∫

IU∈I(U)

µV (ϕ | IU) dP I
U (IU) −

∫

IV ∈I(V )

µV (ϕ | IV ) dP I
V (IV )

∣∣∣ ≤ ε

2
(2.119)

we define the function
fk(I) = χk,Λ(I)µV (ϕ | I) (2.120)

for every k ∈ N ∪ ∞, and where χk,Λ(I) = 1 when for every wall from W(I) that
intersects π̃(BΛ) holds ‖w‖ ≤ k, and χk,Λ(I) = 0 otherwise. Using Lemma 2.10 (a)
we can show that the limit

lim
k→∞

∫

IV̄ ∈I(V̄ )

fk(I)dP I
V̄ (IV̄ ) (2.121)

exists and is equal to∫

IV̄ ∈I(V̄ )

f∞(I)dP I
V̄ (IV̄ ) =

∫

IV̄ ∈I(V̄ )

µV (ϕ | IV̄ ) dP I
V̄ (IV̄ ) (2.122)

for every finite-base cylinder V̄ ⊆ V large enough. For I ′ converging to I we have
fk(I

′) converges to fk(I), where I, I ′ ∈ Ia because d(BΛ, U⋄(I
′) ÷ U⋄(I)) converges

to infinity and we can use Lemma 2.10 (b). Hence, fk is continuous and according
to the weak convergence of P I

U demonstrated in Lemma 2.11 we have
∣∣∣
∫

IU∈I(U)

fk(IU) dP I
U (IU) −

∫

IV ∈I(V )

fk(IV ) dP I
V (IV )

∣∣∣ ≤ ε

2
. (2.123)

The existence of limit random-cluster measure comes from (2.118)–(2.123). The
assertion that this limit is not translation invariant is a simple consequence of exis-
tence of interface. 2



Chapter 3

Proof of DLR property of

translation non-invariant measure

In Section 1.2 we showed two possibilities of defining the infinite-volume random-
cluster measure. In the previous chapter we found, using the technique from [5],
that there exists a limit random-cluster measure in Zd with boundary condition ξ.
The aim of this chapter is to prove that the measure we have obtained fulfills the
condition of the second definition.

Lemma 3.1 Let µξ be the limit random-cluster measure that we have found in the
previous chapter, Λ ⊂ Zd finite, A be a cylinder event defined in terms of edges
from BΛ and let us write µΛ instead of µBΛ

. Then the random variable g(ω) = µω
Λ(A)

is µξ-a.s. continuous, using the product topology on its domain Ω.

Proof: As we have mentioned there is µξ-a.s. the only one infinite ordered com-
ponent. Let us define the discontinuity set of the random variable g(ω) by

D =
⋂

∆

{
ω | sup

ζ:ζB∆
=ωB∆

|g(ζ) − g(ω)| > 0
}
, (3.1)

where the intersection is over all ∆ ⊂ Z
d containing Λ. For any ζ the difference

|g(ζ)− g(ω)| can be nonzero if and only if there exist two points i, j ∈ Λ∩BΛ = ∂Λ
such that both i and j are joined to ∂∆ by a path using ordered edges of ω lying
in B∆ \ BΛ, but i is not joined to j by such path. Note that if this event occurs
for no i, j, then D̄BΛ

(ω′) = D̄BΛ
(ω) for all ω′ which agree with ω on B∆, so that

g(ζ) = g(ω). Denoting the last event by DΛ,∆ we have that

D ⊆
⋂

∆

DΛ,∆. (3.2)

Therefore,

µξ(D) ≤ µξ
(⋂

∆

DΛ,∆

)
. (3.3)

39
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However,

⋂

∆

DΛ,∆ ⊆ {(BΛ)C contains two or more infinite ordered components}, (3.4)

is an event with zero probability as we have proved. 2

Theorem 3.2 The limit random-cluster measure µξ have been found in the previous
chapter as a limit

µξ = lim
Λ→Zd

µξ
Λ (3.5)

is a random-cluster measure i.e.

µξ(A | TΛ) = µ·
Λ(A), µξ-a.s., for all A ∈ F and finite Λ. (3.6)

Proof: Let A be a cylinder event defined in terms of the states of bonds in BΛ

and let ∆ ⊃ Λ. For a finite ∆ we first prove that

µ·
Λ(A) = µξ

∆(A | TΛ), µξ
∆-a.s. (3.7)

We can rewrite the random-cluster measure µξ
∆ using the definition of finite volume

random-cluster measure (1.12) and the notation wF (X) = p|X|(1− p)|F\X|, where F
is an arbitrary set of bonds from B,

µξ
∆(A | TΛ) =

∑
X∆

χA(X)wB∆
(X)qD̄ξ

∆(X)

∑
X∆

wB∆
(X)qD̄ξ

∆(X)
(3.8)

=

∑
X∆\Λ

w(B∆\BΛ)(X)
∑

X′
Λ
χA(X)wBΛ

(X ′)qD̄ξ
∆(X◦X′)

∑
X∆\Λ

w(B∆\BΛ)(X)
∑

X′
Λ
wBΛ

(X ′)qD̄ξ
∆(X◦X′)

(3.9)

=
qD̄Λ,∆(X|ξ)

∑
X′

Λ
χA(X)wBΛ

(X ′)qD̄ξ
Λ(X◦X′)

qD̄Λ,∆(X|ξ)
∑

X′
Λ
wBΛ

(X ′)qD̄ξ
Λ(X◦X′)

= µ·
Λ(A), (3.10)

where X∆ = XB∆
is a subset of B∆, X∆\Λ = XB∆\Λ

subset of B∆\Λ, χA is the

characteristic function of event A and we use D̄ξ
Λ,∆(X) to denote the number of

components of graph (Zd, XB∆
◦ ξBC

∆
) that intersect at least one bond from B∆ but

no one from BΛ.
Let us consider a cylinder event B in TΛ. According to Lemma 3.1 the function

χB(X)µX
Λ (A) is µξ-a.s. continuous. Hence,

µξ(χB(·)µ·
Λ(A)) = lim

∆րZd
µξ

∆(χB(·)µ·
Λ(A)) (3.11)

= lim
∆րZd

µξ
∆(χB(·)µξ

∆(A | TΛ)) (3.12)

= lim
∆րZd

µξ
∆(A ∩ B) = µξ(A ∩ B). (3.13)
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where the last but one equality can be proven from the definition of finite volume
random-cluster measure in a similar way as used in proof of (3.7).

Since TΛ is generated by the collection of all such B, we deduce that

µξ(A | TΛ) = µ·
Λ(A), µξ-a.s., for all A ∈ F and finite Λ. (3.14)



Appendix A

Polymer models and cluster

expansion

In this appendix we will summarize standard facts about contour (polymer) models
and cluster expansion. The first step will be formulating them in a very abstract
form. Throughout the whole Appendix A we follow the article [7].

We will consider a countable set K of polymers. Let ι be a reflexive and symmet-
ric relation. We call a pair γ1, γ2 incompatible (compatible) if and only if (γ1, γ2) ∈ ι
((γ1, γ2) /∈ ι). We use notation γ1ιγ2 for incompatible polymers. By Kco, Kco,f we
denote the set of all (finite) collections ∂ ⊂ K of mutually compatible polymers.
Considering a contour functional Φ : K 7→ C, we denote Φ(∂) =

∏
γ∈∂ Φ(γ) for each

∂ ∈ Kco,f

For each finite L ⊂ K we introduce the partition function

Z(L,Φ) =
∑

∂∈Kco(L)

Φ(∂), (A.1)

where Kco(L) = {∂ ∈ Kco | ∂ ⊂ L}. We also define the corellation function ρL(∂) as

ρL(∂,Φ) =
[ ∑

∂′:∂⊂∂′∈Kco(L)

Φ(∂′)
]
/Z(L,Φ). (A.2)

We use Kf(L) to denote the set of all finite collections from L, Kf = Kf (K) and for
C ∈ Kf we write γιC if there is γ′ ∈ C such that γιγ′. We call C cluster if it is not
decomposable into two nonempty sets, C = C1 ∪ C2, such that every pair γ1 ∈ C1,
γ2 ∈ C2 is compatible. The set of all clusters will be denoted by Kcl.

Now the main theorem of the cluster expansion appears. It is the copy of Theo-
rem B.1 from [5] or the conclusion of the main theorem and proposition from [7].

Theorem A.1 Let functions a : K 7→ [0,∞), l : K 7→ [0,∞) and Φ : K 7→ C and
number ω ≥ 0 be such that

∑

γ′:γ′ιγ

ea(γ′)+ωl(γ′)|Φ(γ′)| ≤ a(γ) (A.3)
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for each γ ∈ K. Then Z(L,Φ) 6= 0 for each finite L ⊂ K and:
(i) There exists a unique function ΦT : K 7→ C such that

log Z(L,Φ) =
∑

C∈Kf (L)

ΦT (C) (A.4)

for each finite L ⊂ K. Moreover, the function ΦT is given by the formula

ΦT (C) =
∑

B:B⊂C

(−1)|C|−|B| logZ(B,Φ), (A.5)

the estimate ∑

Cιγ

∣∣ΦT (C)
∣∣ eωl(C) ≤ a(γ) (A.6)

holds for each γ ∈ K with l(C) ≤
∑

γ∈C l(γ). We have ΦT (C) = 0 whenever C /∈ Kcl.

(ii) For every ∂ ∈ Kf,co there exists a unique function ∆∂ : Kf 7→ C such that

ρL(∂,Φ) =
∑

C⊂L

∆∂(C) (A.7)

for each finite L ⊂ K. Moreover,

∆∂(C) =
∑

B:B⊂C

(−1)|C|−|B|ρB(∂,Φ) (A.8)

for each finite C ⊂ K and
∑

|∆∂(C)|eωl(C) ≤ ea(∂)+ωl(∂)|Φ(∂)| (A.9)

with a(∂) =
∑

γ∈∂ a(γ). We have ∆∅(∅) = 1 and ∆∅(C) = 0 for C 6= ∅. The
function ∆∂ satisfies a factorization property:

∆∂(C) = ∆∂1(C1)∆∂2(C2) (A.10)

whenever ∂ = ∂1 ∪ ∂2, C = C1 ∪ C2, and all contours from C1 ∪ ∂1 are compatible
with those from C2 ∪ ∂2.

For proof see [5] or [7] and their references.
This theorem in its abstract form is useful while working with an aggregate

contour model. To simplify our work with contour model that arises after rewriting
the random-cluster model, we introduce another theorem, that is, in general, the
simple modification of the previous one.

We will use the notation from Section 1.3, ⋄ for o or d, as the functions a(γ) and
l(γ) we will use the length ‖γ‖. Two contours will be incompatible if they intersect
themselves. It is easy to verify that there exists a constant c such that

|{γ ∈ K⋄ | γ ∋ i, ‖γ‖ = n}| ≤ cn (A.11)

for every i from set Zd
⋆ = {x ∈ Rd | ∃〈i, j〉 ∈ B, x = 1

4
(i + 3j)}. Let m⋄ denote the

minimal length of contour from K⋄.
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Theorem A.2 Let |Φ⋄(γ)| ≤ e−τ‖γ‖ for each γ ∈ K⋄ with τ ≥ 1 + log(2c). Then
(i), (ii) The statements (i), (ii) of Theorem A.1 are fulfilled with the estimates

(A.6) and (A.9) replaced by

∑

C∈Kcl
q

C∋i

|ΦT
⋄ (C)|eω‖C‖ ≤ 1 (A.12)

whenever

ω ≤ τ −

[
1 + log(2c) +

log m⋄

m⋄

]
(A.13)

(here ‖C‖ =
∑

γ∈C ‖γ‖) and by

∑
|∆⋄

∂(C)|eωC ≤ e(ω+1)‖∂‖Φ⋄(∂) (A.14)

whenever ω ≤ τ − [1 + log(2c)].
(iii) Whenever V ⊂ Zd and ∂ ∈ Kf,co

⋄ (V ), the limit over finite U ⊂ V , ordered
by inclusion, of ρ⋄,U(∂) exists

lim
UրV

ρ⋄,U(∂,Φ) = ρ⋄,V (∂,Φ). (A.15)

If Φ(γ) ≥ 0 for every γ ∈ K⋄, there exists a unique σ-additive probability measure
P⋄,V on Kco

⋄ (V ) such that

P⋄,V (Kco
⋄ (∂, V )) = ρ⋄,V (∂,Φ) (A.16)

for each ∂ ∈ Kco
⋄ (V ). Moreover, P⋄,V (Ka

⋄ (V )) = 1 and P⋄,V is the weak limit

P⋄,V = lim
UրV

P⋄,U . (A.17)

(iv) Assuming further that Φ is translation invariant, one has for each simply
connected finite V ⊂ Zd

logZ(K⋄(V ),Φ) = p(Φ⋄)|BV | −
∑

C∈Kcl
⋄

C∩(BV )C 6=∅

ΦT
⋄ (C)

|C ∩ BV |

|C ∩ B|
(A.18)

with

p(Φ⋄) = 2
∑

C∈Kcl
⋄

C∋i

ΦT
⋄ (C)

|C ∩ B|
(A.19)

and
| logZ(K⋄(V ),Φ⋄) − p(Φ⋄)|BV || ≤ [exp(−ωm⋄)]|∂BΛ| (A.20)

whenever

ω ≤ τ −

[
1 + log(2c) +

log m⋄

m⋄

]
. (A.21)
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Proof: It is trivial to verify the assumption of Theorem A.1 from |Φ⋄(γ)| ≤ e−τ‖γ‖.
Then (i) and (ii) follows directly from Theorem A.1. For proof of (iii) see [5]. Finally,
the statement (iv) can be proven by direct application of (A.4) and (A.12). We only
notice that there are two points from Zd

⋆ on each b ∈ B, ‖γ‖ = |γ ∩ Zd
⋆| and we use

∂BΛ to denote the set of bonds from BC sharing a vertex with a bond from B. 2
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