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Chapter 1

Introduction

These notes are based on the mini-course offered at the ‘XV Brazilian
School of Probability’ in Mambucaba in August 2011. The lectures tried to
introduce the audience to random interlacements, a ‘dependent-percolation’
model recently introduced by A.-S. Sznitman in [43]. The emphasis was
put on motivating the definition of this model via some natural questions
about random walks on finite graphs, explaining the difficulties that appear
when studying the model, and presenting some of the techniques used to
analyze random interlacements. We tried to present these techniques in
the simplest possible way, sometimes at expense of generality.

Let us start setting the stage for this review by introducing one of the
problems which motivated the definition of random interlacements. To this
end, fix a finite graph G = (V, E) with a vertex set V and an edge set E ,
and denote by (Xn)n≥0 a simple random walk on this graph, that is the
Markovian movement of a particle on G prescribed as follows: It starts at
a given (possibly random) vertex x ∈ G, X0 = x, and given the position
at time k ≥ 0, say Xk = y, its position Xk+1 at time k + 1 is uniformly
chosen among all neighbors of y in G.

Random walks on finite and infinite graphs, in particular on Zd, has
been subject of intense research for a long time. Currently, there is a great
deal of studying material on this subject, see for instance the monographs
[26, 27, 28, 38, 54]. Nevertheless, there are still many interesting questions
and vast areas of research which are still to be further explored.

The question that will be of our principal interest was originally asked
by M.J. Hilhorst, who proposed the random walk as a toy model for cor-
rosion of materials. For sake of concreteness, take the graph G to be the
d-dimensional discrete torus TdN = (Z/NZ)d which for d = 3 can be re-
garded as a piece of crystalline solid. The torus is made into a graph
by adding edges between two points at Euclidean distance one from each
other. Consider now a simple random walk (Xn)n≥0, and imagine that this
random walk represents a corrosive particle wandering erratically through
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the crystal, while it marks all visited vertices as ‘corroded’. (The particle
can revisit corroded vertices, so its dynamics is Markovian, i.e. it is not
influenced by its past.)

If the time that the particle runs is short, then one intuitively expects
that only a small part of the torus will be corroded, the crystal will be
‘intact’. On the other hand, when the running time is large, many sites
will be corroded and the connected components of non-corroded sites will
be small, the crystal will be destroyed by the corrosion, see Figure 1.1 for
the simulations. The question is how long should the particle run to destroy
the crystal and how this destruction proceeds.

Figure 1.1: A computer simulation by David Windisch of the largest com-
ponent (light gray) and second largest component (dark gray) of the vacant
set left by a random walk on (Z/NZ)3 after [uN3] steps, for N = 200. The
pictures correspond consecutively to u being 2.0, 2.5, 3.0, and 3.5. Ac-
cording to recent simulation, the threshold of the phase transition satisfies
uc(T3

· ) = 2.95± 0.1.

Remark that throughout these notes, we will not be interested in the
instant when all sites become corroded, that is in the cover time of the graph
by the simple random walk. Note however that random interlacements can
also be useful when studying this problem, see the recent papers [3, 4] of
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D. Belius.
In a more mathematical language, let us define the vacant set left by the

random walk on the torus up to time n

VN (n) = TdN \ {X0, X1, . . . , Xn}. (1.1)

VN (n) is the set of non-visited sites at time n (or simply the set non-
corroded sites at this time). We are interested in connectivity properties of
the vacant set, in particular in the size of its largest connected component.

We will see later that the right way to scale n with N is n = uNd for
u ≥ 0 fixed. In this scaling the density of the vacant set is asymptotically
constant and non-trivial, that is is for every x ∈ TdN ,

lim
N→∞

Prob[x ∈ VN (uNd)] = c(u, d) ∈ (0, 1). (1.2)

This statement suggest to view our problem from a slightly different
perspective: as a specific site percolation model on the torus with density
(roughly) c(u, d), but with spatial correlations. These correlations decay
rather slowly with the distance, which makes the understanding of the
model delicate.

At this point it is useful to recall some properties of the usual Bernoulli
site percolation on the torus TdN , d ≥ 2, that is of the model where the sites
are declared open (non-corroded) and closed (corroded) independently with
respective probabilities p and 1−p. This model exhibits a phase transition
at a critical value pc ∈ (0, 1). More precisely, when p < pc, the largest
connected open cluster C?max(p) is small with high probability,

p < pc =⇒ lim
N→∞

Prob[|C?max(p)| = O(logλN)] = 1, (1.3)

and when p > pc, the largest connected open cluster is comparable with
the whole graph (it is then called giant),

p > pc =⇒ lim
N→∞

Prob[|C?max(p)| ∼ Nd] = 1. (1.4)

Much more is known about this phase transition, at least when d is large
[9, 10]. A similar phase transition occurs on other (sequences of) finite
graphs, in particular on large complete graph, where it was discovered (for
the edge percolation) in the celebrated paper of Erdős and Rényi [18].

Coming back to our random walk problem, we may now refine our ques-
tions: Does a similar phase transition occur there. Is there a critical value
uc = uc(Td· ) such that, using Cmax(u,N) to denote the largest connected
component of the vacant set on TdN at time uNd,

u < uc =⇒ lim
N→∞

Prob[|Cmax(u,N)| ∼ Nd] = 1,

u > uc =⇒ lim
N→∞

Prob[|Cmax(u,N)| = o(Nd)] = 1 ?
(1.5)
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At the time of writing of these notes, we have only partial answers to
to this question (see Chapter 2 below). It is however believed that this
phase transition occurs for the torus in any dimension d ≥ 3. This belief
is supported by simulations, cf. Figure 1.1.

Remark 1.1. It is straightforward to see that such phase transition does not
occur for d ∈ {1, 2}. When d = 1, the vacant set at time n is a segment of
length roughly (N − (n1/2ξ))∨ 0, where ξ is a random variable distributed
as the size of the range of a Brownian motion at time 1. Therefore, the
scaling n = uNd = uN in (1.2) is not interesting. More importantly, it
follows from this fact that no sharp phase transition occurs even on the
‘corrected’ scaling, n = uN2. The situation in d = 2 is more complicated,
but the fragmentation is qualitatively different from the case d ≥ 3.

The phase transition for the Bernoulli percolation on the torus, (1.3),
(1.4), can be deduced straightforwardly from the properties of its ‘infinite
volume limit’, that is the Bernoulli percolation on Zd which is very well
understood (see e.g. the monographs [19, 8]). It is thus legitimate to ask
whether there is an infinite volume percolation which is a local limit of the
vacant set. This question is not only of theoretical interest, there are many
problems that are easier to solve in the infinite volume situation. As we
will see, the existence of the phase transition is one of them.

One of the main goals of these notes is to construct explicitly this in-
finite volume limit, which is called random interlacements, and study its
properties. We will not go into details how these properties can be then
used to control the finite volume problem, even if not surprisingly, the
recent progress in understanding random interlacements has been useful
to analyze the original questions concerning the vacant set on the torus,
see [49].

Organization of these notes

In the first chapters of these notes we restrict our analysis to d-dimensional
torus and Zd, with d ≥ 3, cf. Remark 1.1.

In Chapter 2, we study the random walk on the torus, aiming on moti-
vating the construction of random interlacements. We will define what we
call the ‘local-picture’ left by the random walk on TdN . To be more precise,
suppose that N is large and that we are only interested in what happens in
a small fixed box A ⊂ TdN . It is clear that as the number of steps n of the
walk grows, the random walk will visit A several times, leaving a ‘texture’
of visited and non-visited sites inside this box.

To control this texture we split the random walk trajectory into what
we call ‘excursions’ which correspond to the successive visits to A. Using
some classical results from random walk theory, we will establish three key
facts about these excursions:
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(i) the successive excursions to A are roughly independent from each
other,

(ii) the first point in A visited by each excursion has a limiting distribu-
tion (as N grows), which we call the normalized equilibrium distri-
bution on A.

(iii) when the number of steps n scales as uNd, the number of excursions
entering A is approximately Poisson distributed (with parameter is
proportional to u).

All these properties hold precisely in the limit N → ∞ when A is kept
fixed.

Starting from these three properties of the random walk excursions, we
define a measure on {0, 1}A, which is the candidate for the asymptotic
distribution of the wanted infinite volume percolation (intersected with A).
This limiting distribution is what we call the local picture. In view of
properties (i)–(iii), it should not be surprising that Poisson point processes
enter the construction here.

In Chapter 3, we will use this local picture to give a definition of random
interlacements. To this end we map A ⊂ TdN into its isometric copy A ⊂
Zd and transfer the local picture to {0, 1}A. Then, taking the limit as

A ↑ Zd, we essentially obtain a consistent measure on {0, 1}Zd , which we
call random interlacements.

The actual construction of random interlacements given in Chapter 3
is more complicated, because its goal is not only to prove the existence
(and uniqueness) of the infinite volume measure, but also to provide a
way to perform calculations. In particular, the actual construction aims
on preserving the Poisson point process structure appearing in the local
picture.

We will construct the random interlacements as a trace left on Zd by
a Poisson point process on the space of doubly infinite random walk tra-
jectories modulo time shift, see (3.10) below. Intuitively speaking, every
trajectory appearing in this Poisson point process correspond to one ex-
cursion of the random walk in the torus.

In Chapter 4, after having defined the random interlacements measure,
we will describe some of its basic properties. We will study its correlations,
translation invariance and ergodicity, and compare it to Bernoulli site per-
colation. This comparison helps determining which of the techniques that
have already been developed for Bernoulli percolation have chance to work
in the random interlacements setting.

As we will find out, many of the techniques of Bernoulli percolation are
not directly applicable for random interlacements. Therefore, we will need
to adapt them, or develop new techniques that are robust enough to deal
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with dependence. In Chapter 5, we prove a result related to the existence
of a phase transition for random interlacements on high dimensions, see
Theorem 5.1. The proof of this theorem makes use of a technique which is
very important in various contexts, namely the multi-scale renormalization.

The last two chapters of these notes present two recent branches of the
random interlacements research. In Chapter 6, we study the properties
of the interlacement set of random interlacements on Zd. This set is the
complement of the vacant set, and should be viewed as the limit of occu-
pied/corroded sites in the random-walk-on-torus problem. We will see that
the properties of the interlacement set are rather well understood, contrary
to those of the vacant set.

Finally, in Chapter 7, we return to random walk on finite graphs, this
time however not on the torus, but on random regular graphs. We explain
that the infinite volume limit of this problem is random interlacements on
regular trees, and sketch the techniques used to show that for these graphs
there is a phase transition in the spirit of (1.5).

We would like to precise the scope and structure of these notes. We do
not want to present a comprehensive reference of what is currently known
about random interlacements. Instead, we intend to favor a motivated
and self-contained exposition, with more detailed proofs of basic facts that
should give the reader familiarity with the tools needed to work on the
subject. The results presented here are not the most precise currently
available, instead they were chosen in a way to balance between simplicity
and relevance. For interested reader we collect the pointers to the relevant
literature at the end of each chapter.



Chapter 2

Random walk on the torus

In this chapter we discuss some properties of random walk on a discrete
torus. Our aim is to motivate the definition of the local picture discussed
in the Introduction, that is to understand the intersection of the trajectory
of the random walk with a fixed set A ⊂ TdN as N becomes large.

2.1 Notation

Let us start by fixing the notation used through these notes. We consider,
for N ≥ 1, the discrete torus TdN = (Z/NZ)d, which we regard as a graph
with an edge connecting two vertices if and only if their Euclidean distance
is one.

On TdN we consider a simple random walk. For technical reasons that
will be explained later, we actually consider the so called lazy random
walk which stays put, with probability one half, and jumps otherwise to a
uniformly chosen neighbor. Its transition matrix is given by

C(x, y) =


1/2, if x = y,

1/(4d), if x and y are neighbors in TdN ,

0, otherwise.

(2.1)

Let π be the uniform distribution on the torus TdN . It is easy to see that
π and C(x, y) satisfy the detailed balance condition, that is π is reversible
for the random walk.

We write P for the law on (TdN )N of lazy simple random walk on TdN
started with uniform distribution π. We let Xn, n ≥ 0, stand for the
canonical process on (TdN )N. The law of the canonical (lazy) random walk
started at a specified point x ∈ TdN is denoted by Px.

Note that we omit the dependence on N in the notation π, P , Px and
Xn. This will be done in other situations throughout the text, hoping that
the context will clarify the omission.

7
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For k ≥ 0, we introduce the canonical shift operator θk in the space of
trajectories (TdN )N, which is characterized by Xn ◦ θk = Xn+k for every
n ≥ 0. Analogously, we can define θT for a random time T .

The main reason for considering the lazy random walk are the following
facts:

C(·, ·) has only positive eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λNd ≥ 0. (2.2)

The spectral gap ΛN := λ1 − λ2 satisfies ΛN ≥ cN−2, (2.3)

see for instance [28], Theorems 5.5 and 12.4. A simple calculation using
the spectral decomposition leads then to

sup
x,y∈TdN

∣∣Px[Xn = y]− π(y)
∣∣ ≤ ce−ΛNn, for all n ≥ 0, (2.4)

see [28], (4.22), (4.35) and Theorem 5.5.
It will be useful to define the regeneration time rN associated to the

simple random walk on TdN by

rN = Λ−1
N log2N ∼ cN2 log2N. (2.5)

To justify the name regeneration time, observe that, for every x ∈ TdN , by
(2.2) and (2.4), the total variation distance between Px[XrN ∈ ·] and π
satisfies

‖Px[XrN ∈ ·]− π(·)‖TV :=
1

2

∑
y∈TdN

∣∣Px[XrN = y]− π(y)
∣∣

≤ c′Nde−c log2N

≤ c′e−c log2N ,

(2.6)

which decays with N faster than any polynomial. This means that, inde-
pendently of its starting distribution, the distribution of the random walk
position at time rN is very close to being uniform.

We also consider the simple (lazy) random walk on the infinite lattice
Zd where edges again connect points with Euclidean distance one. The
canonical law of this random walk starting at some point x ∈ Zd is denoted

by PZd
x . If no confusion may arise, we write simply Px.

We introduce the entrance and hitting times HA and H̃A of a set A of
vertices in TdN (or in Zd) by

HA = inf{t ≥ 0 : Xt ∈ A},
H̃A = inf{t ≥ 1 : Xt ∈ A}.

(2.7)

Throughout these notes, we will suppose that the dimension d is greater
or equal to three (cf. Remark 1.1), implying that

the random walk on Zd is transient. (2.8)
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Fix now a finite set A ⊂ Zd (usually we will denote subsets of Zd by
A,B, . . . ). Due to the transience of the random walk, we can define the
equilibrium measure, eA, and the capacity, cap(A), of A by

eA(x) := 1x∈AP
Zd
x [H̃A =∞], x ∈ Zd,

cap(A) := eA(A) = eA(Zd).
(2.9)

Note that cap(A) normalizes the measure eA into a probability distribution.
Throughout this notes we use B(x, r) to denote the closed ball centered

at x with radius r (in the graph distance), considered as a subset of Zd or
TdN , depending on the context.

2.2 Local entrance point

We now start the study of the local picture left by the random walk on
TdN . To this end, consider a (finite) box A ⊂ Zd centered at the origin.
For each N larger than the diameter of A, one can find a copy AN of this
box inside TdN . We are interested in the distribution of the intersection of
the random walk trajectory (run up to time n) with the set AN , that is
{X0, X1, . . . , Xn} ∩ AN . As N increases, the boxes AN get much smaller
compared to the whole torus TdN , explaining the use of the terminology
‘local picture’. In particular, it is easy to see that

π(AN )→ 0 as N →∞. (2.10)

As soon as N is strictly larger than the diameter of the box A, we can
find an isomorphism φN : AN → A between the box AN and its copy A in
the infinite lattice. As usual, to avoid a clumsy notation, we will drop the
indices N by φN and AN .

The first question we attempt to answer concerns the distribution of the
point where the random walk typically enters the box A. Our goal is to
show that this distribution almost does not depend on the starting point
of the walk, if it starts far enough from the box A.

To specify what we mean by ‘far enough from A’, we consider a sequence
of boxes A′N centered at the origin in Zd and having diameter N1/2 (the
specific value 1/2 is not particularly important, any value strictly between
zero and one would work for our purposes here). Note that for N large
enough A′N contains A and N1/2 ≤ N . Therefore, we can extend the
isomorphism φ defined above to φ : A′N → A′N ⊂ Zd, where A′N is a copy
of A′N inside TdN . Also π(A′N ) → 0 as N → ∞, therefore, under P , the
random walk typically starts outside of A′N .

The first step in determination of the entrance distribution to A is the
following lemma which roughly states that the random walk likely regen-
erates before hitting A.
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Lemma 2.1. (d ≥ 3) For A′ and A′ as above, there exists δ > 0 such that

sup
x∈TdN\A′

Px[HA ≤ rN ] ≤ N−δ, ‘A isn’t hit before regenerating’ (2.11)

sup
x∈Zd\A′N

PZd
x [HA <∞] ≤ N−δ, ‘escape to infinity before hitting A’ (2.12)

Proof. From [26, Proposition 1.5.10] it can be easily deduced that there is
c <∞ such that for any ` ≥ 1 and x ∈ Zd, with |x| > `,

PZd
x [HB(0,`) <∞] ≤ c

( `

|x|

)d−2

. (2.13)

The estimate (2.12) then follows directly from (2.13).
To show (2.11), let Π be the canonical projection from Zd onto TdN .

Given an x in TdN \A′, we can bound Px [HA ≤ rN ] from above by

PZd
φ(x)

[
HB(φ(x),N log2N)c ≤ rN

]
+ PZd

φ(x)

[
HΠ−1(A)∩B(φ(x),N log2N) <∞

]
.

(2.14)

Using (3.30) on p.227 of [29], we obtain

PZd
φ(x)

[
HB(φ(x),N log2N)c ≤ rN

]
≤ PZd

φ(x)

[
max

1≤t≤rN
|Xt − φ(x)|∞ ≥ cN log2N

]
≤ 2d exp{−2(cN log2N)2/4rN}

≤ ce−c log2N .

(2.15)

The set Π−1(A) ∩ B(φ(x), N log2N) is contained in a union of no more
than c logcN translated copies of the set A. By the choice of x, φ(x) is at
distance at least cN1/2 from each of these copies. Hence, using the union
bound and (2.13) again, we obtain that

Pφ(x)

[
HΠ−1(A)∩B(φ(x),N log2N) <∞

]
≤ c(logN)cN−c. (2.16)

Inserting the last two estimates into (2.14), we have shown (2.11).

As a consequence of (2.11), we can now show that, up to a typically
small error, the probability Py[XHA = x] does not depend much on the
starting point y ∈ TdN \A′:

Lemma 2.2.

sup
x∈A,

y,y′∈TdN\A′

∣∣∣Py[XHA = x]− Py′ [XHA = x]
∣∣∣ ≤ cN−δ. (2.17)
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Proof. We apply the following intuitive argument: by the previous lemma,
it is unlikely that the random walk started at y ∈ TdN \ A′ visits the set
A before time rN , and at time rN the distribution of the random walk is
already close to uniform, i.e. it is independent of y. Therefore the hitting
distribution cannot depend on y too much.

To make this intuition into a proof, we first observe that (2.17) is implied
by

sup
y∈TdN\A′

∣∣∣Py[XHA = x]− P [XHA = x]
∣∣∣ ≤ cN−δ. (2.18)

To show (2.18), we first deduce from inequality (2.4) that

sup
y∈TdN\A′

∣∣∣Ey[PXrN [XHA = x]
]
− P [XHA = x]

∣∣∣
≤
∑
y′∈TdN

sup
y∈TdN\A′

∣∣∣Py[XrN = y′]− π(y′)
∣∣∣Py′ [XHA = x]

≤ cNde−c log2N ≤ e−c log2N .

(2.19)

For any y ∈ TdN \ A′, by the simple Markov property applied at time rN
and the estimate (2.19),

Py[XHA = x] ≤ Py[XHA = x,HA > rN ] + Py[HA ≤ rN ]

≤ Ey
[
PXrN [XHA = x]

]
+ Py[HA ≤ rN ]

≤ P [XHA = x] + e−c log2N + Py[HA ≤ rN ].

(2.20)

With (2.11), we have therefore shown that for any y ∈ TdN \A′,

Py[XHA = x]− P [XHA = x] ≤ N−δ. (2.21)

On the other hand, for any y ∈ TdN \A′, by the simple Markov property at
time rN again,

Py[XHA = x] ≥ Py[XHA = x,HA > rN ]

≥ Ey
[
PXrN [XHA = x]

]
− Py[HA ≤ rN ]

≥ P [XHA = x]−N−δ,
(2.22)

using (2.19), (2.11) in the last inequality. Combining (2.21) and (2.22),
(2.18) follows.

Given that the distribution of the entrance point of the random walk
in A is roughly independent of the starting point (given that the starting
point is not in A′), we are naturally tempted to determine such distribution.
This is the content of the next lemma, which will play an important role
in motivating the definition of random interlacements later.
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Lemma 2.3. For A and A′ as above there is δ > 0 such that

sup
x∈A, y∈TdN\A′

∣∣∣∣Py[XHA = x]− eA(φ(x))

cap(A)

∣∣∣∣ ≤ N−δ. (2.23)

Note that the entrance law is approximated by the (normalized) exit dis-
tribution, cf. definition (2.9) of the equilibrium measure. This is intimately
related to the reversibility of the random walk.

Proof. Let us fix vertices x ∈ A, y ∈ TdN \A′. We first define the equilibrium
measure of A, with respect to the random walk killed when exiting A′,

eA
′

A (z) = 1A(z)Pz[HTdN\A′ < H̃A], for any z ∈ A. (2.24)

Note that by (2.12) and the strong Markov property applied at HTdN\A′ ,

eA(φ(z)) ≤ eA
′

A (z) ≤ eA(φ(z)) +N−δ, for any z ∈ A. (2.25)

In order to make the expression Py[XHA = x] appear, we consider the
probability that the random walk started at x escapes from A to TdN \ A′
and then returns to the set A at some point other than x. By reversibility
of the random walk with respect to the measure (πz)z∈TdN , we have∑
z∈A\{x}

πxPx[HTdN\A′ < H̃A, XH̃A
= z] = πxPx[HTdN\A′ < H̃A, XH̃A

6= x]

=
∑

z∈A\{x}
πzPz[HTdN\A′ < H̃A, XH̃A

= x].

(2.26)

By the strong Markov property applied at time HTdN\A′ , we have for any
z ∈ A,

πzPz[HTdN\A′ < H̃A, XH̃A
= x]

= πzEz

[
1{HTd

N
\A′<H̃A}

PXH
Td
N
\A′

[XHA = x]
]
.

(2.27)

With (2.25) and (2.17), this yields∣∣∣πzPz[HTdN\A′ < H̃A, XH̃A
= x]−πxeA(φ(z))Py[XHA = x]

∣∣∣ ≤ N−δ, (2.28)

for any z ∈ A. With this estimate applied to both sides of (2.26), we obtain

πxeA(φ(x))
(
1− Py[XHA = x]

)
=Py[XHA = x]

(
πx cap(A)− πxeA(φ(x))

)
+O

(
|A|N−δ

)
,

(2.29)

implying (2.23).

We observe that the entrance distribution Py[XHB = ·] was approxi-
mated in Lemma 2.3 by a quantity that is independent of N and solely
relates to the infinite lattice random walk. This is a very important ingre-
dient of the local picture construction.
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2.3 Local measure

We continue to study the trace that a random walk on the torus leaves
inside a small box A ⊂ TdN . We already know from the previous section that
the random walk typically enters A in a point x chosen with distribution
eA(φ(x))/ cap(A). After entering the box A, the random walk behaves in
the same way as on the infinite lattice Zd until it gets far away from A
again. We will therefore split the random walk trajectory into so-called
excursions. For this, recall the definition of A′ and the shift operators θk
from Section 2.2 and let

R0 = HA, D0 = HTdN\A′ ◦ θR0
+R0,

Rl = HA ◦ θDl−1
+Dl−1, Dl = HTdN\A′ ◦ θRl +Rl, for l ≥ 1.

(2.30)

These will be respectively called return and departure times of the random
walk between A and A′, see Figure 2.1.

AN

A′
N

Td
N

X0

R0

D0

R1

D1

Figure 2.1: A trajectory of the random walk inside the torus split into
excursions (thick lines) and the remaining parts (thin lines) with respect
to the boxes AN , A′N .

Observe that every time n for which the random walk is inside A has to
satisfy Rk ≤ n < Dk for some k ≥ 0. This implies that

{X0, X1, . . . , XDk} ∩A =

k⋃
j=0

{XRj , XRj+1, . . . , XDj} ∩A. (2.31)
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Or in other words, the trace left by the random walk trajectory in A up to
time Dk is given by union of the traces of k separate excursions.

Since XDk /∈ A′N , using Lemma 2.2 and the strong Markov property
applied at the time Dk, we can conclude that the set of points in A visited
by the random walk between times Rk+1 and Dk+1 is roughly indepen-
dent of what happened before the time Dk. Therefore, the excursions
{XRj , XRj+1, . . . , XDj}, j = 0, 1, 2, . . . , should be roughly independent. A
fixed number of such excursions should actually become i.i.d. in the limit
N →∞.

Lemma 2.3 yields that the entrance points XRj of these trajectories
in A are asymptotically distributed as eA(φ(·))/ cap(A). Moreover, as N
grows, the difference Dk−Rk tends to infinity. Therefore, as N grows, the
excursion {XRj+1, . . . , XDj} looks more and more like a simple random
walk trajectory on Zd (note that this heuristic claim is only true because
the random walk on Zd, for d ≥ 3, is transient).

From the previous arguments it follows that the asymptotic distribution
of every excursion should be given by

Q̄A[X0 = x, (Xn)n≥0 ∈ · ] =
eA(x)

cap(A)
PZd
x [ · ], for x ∈ Zd. (2.32)

To understand fully thy trace left by random walk in A, we now have to
understand how many excursions are typically performed by the random
walk between A and A′ until some fixed time n.

Using a reversibility argument again, we first compute the expected num-
ber of excursions before time n. To this end fix k ≥ 0 and a and let us
estimate the probability that k is a return time Rj for some j ≥ 0. This
probability can be written as

P [k = Rj for some j ≥ 0]

=
∑
x∈A

∑
y∈(A′)c

∑
m≤k

P
[
Xm = y,Xk = x,Xi ∈ A′ \A,m < i < k

]
. (2.33)

Let Γj(y, x) be the set of possible random walk trajectories of length j join-
ing y to x and staying in A′ \A between times 1 and j−1. By reversibility,
for every γ ∈ Γj(y, x) and l ≥ 0,

P [(Xl, . . . , Xl+j) = γ] = π(y)Py[(X0, . . . , Xj) = γ]

= π(x)Px[(X0, . . . , Xj) = γ̂],
(2.34)

where γ̂ ∈ Γj(x, y) is the time-reversed path γ. Observing that the time
reversal is a bijection from Γj(y, x) to Γj(x, y), the right-hand side of (2.33)
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can be written as

k∑
m=0

∑
x∈A

∑
y∈(A′)c

∑
γ∈Γk−m(y,x)

P [(Xm, . . . , Xk) = γ]

(2.34)
=

k∑
m=0

∑
x∈A

∑
y∈(A′)c

∑
γ∈Γk−m(x,y)

π(x)Px[(X0, . . . , Xk−m) = γ]

=
∑
x∈A

k∑
m=0

N−dPx[k −m = HTdN\A′ < H̃A]

= N−d
∑
x∈A

Px[HTdN\A′ < min{k, H̃A}].

(2.35)

We now use (2.25) to obtain that

lim
N→∞

lim
k→∞

∣∣∣NdP
[
k = Rj for some j ≥ 0

]
− cap A

∣∣∣ = 0. (2.36)

As the random variables (Ri+1−Ri)i≥0 are i.i.d., the renewal theory yields

lim
N→∞

N−dE[Ri+1 −Ri] = (cap A)−1. (2.37)

and thus, for all u > 0 fixed,

lim
N→∞

E
[
# excursions between times 0 and uNd

]
= u cap A. (2.38)

Remark, that we finally obtained a justification for the scaling mentioned
in (1.2)!

The expectation of the difference Ri+1 − Ri ∼ Nd is much larger than
the regeneration time. Hence, typically the random walk regenerates many
times before returning to A. It is thus plausible that, asymptotically as
N → ∞, N−d(Ri+1 − Ri)/ cap A has exponential distribution with pa-
rameter 1, and that the number of excursions before uNd has Poisson
distribution with parameter cap A. This heuristic can be made rigorous,
see [1, 2].

Combining the discussion of the previous paragraph with the asymptotic
i.i.d. property of the excursions, and with (2.32), we deduce the following
somewhat informal description of how the random walk visits A:

• the random walk trajectory is split into roughly independent excur-
sions,

• for each x ∈ A, the number of excursions starting at x is approxi-
mately an independent Poisson random variable with mean ueA(x),

• the trace left by the random walk on A is given by the union of all
these excursions intersected with A.
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To make the last point slightly more precise, observe that with high
probability X0, XuNd /∈ A′, that the times 0 and uNd are not in any
excursion. So with hight probability there are no incomplete excursion in
A at time uNd.

2.4 Local picture as Poisson point process

We are now going to make the above informal construction precise, using
the formalism of Poisson point processes. For this, let us first introduce
some notation. Let W+ be the space of infinite random walk trajectories
that spend only a finite time in finite sets of Zd.

W+ =
{
w : N→ Zd : ‖w(n)− w(n+ 1)‖1 ≤ 1 for each n ≥ 0

and {n : w(n) = y} is finite for all y ∈ Zd
}
.

(2.39)

(Recall that we consider lazy random walk.) As usual, Xn, n ≥ 0, denote
the canonical coordinates on W+ defined by Xn(w) = w(n). We endow the
space W+ with the σ-algebra W+ generated by the coordinate maps Xn,
n ≥ 0.

Recall the definition of Q̄A in (2.32) and define the measure Q+
A :=

cap(A)Q̄A on (W+,W+), that is

Q+
A [X0 = x, (Xn)n≥0 ∈ F ] = eA(x)PZd

x [F ], x ∈ Zd, F ∈ W+. (2.40)

From the transience of the simple random walk on Zd it follows that W+

has a full measure under Q+
A , that is Q+

A (W+) = eA(A) = cap A.
To define the Poisson point process we consider the space of finite point

measures on W+,

Ω+ =
{
ω+ =

n∑
i=1

δwi : n ∈ N, w1, . . . , wn ∈W+

}
, (2.41)

where δw stands for the Dirac’s measure on w. We endow this space with
the σ-algebra generated by the evaluation maps ω+ 7→ ω+(D), where D ∈
W+.

Now let PuA be the law of a Poisson point process on Ω+ with intensity
measure uQ+

A (see e.g. [32], Proposition 3.6, for the definition and the
construction). The informal description given at the end of the last section
can be then retranslated into following theorem. Its full proof, completing
the sketchy arguments of the last section, can be found in [52].

Theorem 2.4. Let u > 0, J be the index of the last excursion started
before uNd, J := max{i : Ri ≤ uNd}. For every i ≤ J define wNi ∈ W+

to be an (arbitrary) extension of the ith excursion, that is

wni (k) = φ(XRi+k) for all k ∈ {0, . . . , Di −Ri}. (2.42)



Random Walks and Random Interlacements 17

Then the distribution of the point process
∑
i≤J δwNi converges to PuA weakly

on Ω+.
As consequence, the distribution of φ({X0, . . . , XuNd} ∩ A) on {0, 1}A

converges to the distribution of
⋃
i≤N Rangewi ∩A, where the law of ω+ =∑N

i=1 δwi is given by PuA.

2.5 Notes

The properties of the vacant set left by the random walk on the torus were
for the first time studied by Benjamini and Sznitman in [6]. In this paper
it is shown that (for d large enough) when the number of steps scales as
n = uNd for u sufficiently small, then the vacant set has a giant component,
which is unique (in a weak sense). The size of the second largest component
was studied in [51].

The local picture in the torus and its connection with random inter-
lacements was established in [52] for many distant microscopic boxes si-
multaneously. This result was largely improved in [49], by extending the
connection to mesoscopic boxes of size N1−ε. More precisely, for A being
a box of size N1−ε in the torus, Theorem 1.1 of [49] constructs a coupling
between the random walk on the torus and random interlacements at levels
u(1− ε) and u(1 + ε) such that for arbitrary α > 0

Prob[I(1−ε)u∩A ⊂ {X0, . . . , XuNd}∩A ⊂ I(1+ε)u∩A] ≥ 1−N−α, (2.43)

for N large enough, depending on d, ε, u and α. Here, Iu is the interlace-
ment set at level u, that we will construct in the next chapter.

This coupling allows one to prove the best known results on the properties
of the largest connected component Cmax(u,N) of the vacant set on the
torus, going in direction of the phase transition mentioned in (1.5). In
the following theorem, which is taken from Theorems 1.2–1.4 of [49], u? =
u?(d) <∞ denotes the critical parameter of random interlacements on Zd,
that we define in (4.34) below, and u?? = u??(d) < ∞ is another critical
value introduced in (0.6) of [42], satisfying u?? ≥ u?. We recommend [37]
for further material on this subject.

Theorem 2.5 (d ≥ 3). (i) Subcritical phase: When u > u?, then for
every η > 0,

P [|Cmax(u,N)| ≥ ηNd]
N→∞−−−−→ 0. (2.44)

In addition, when u > u??, then for some λ > 0

P [|Cmax(u,N)| ≥ logλN ]
N→∞−−−−→ 0. (2.45)

(ii) Supercritical phase: When u is small enough then for some δ > 0,

P [|Cmax(u,N)| ≥ δNd]
N→∞−−−−→ 1. (2.46)
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Moreover, for d ≥ 5, the second largest component of the vacant set
has size at most logλN with high probability.

It is believed that the assumption u > u? of (2.44) is optimal, i.e. (2.44)
does not hold for any u ≤ u?. The other two results are not so optimal.
The following behavior is conjectured:

Conjecture 2.6. The vacant set of the random walk on the torus exhibits
a phase transition. Its critical threshold coincides with the critical value
u? of random interlacements on Zd. In addition, u?? = u? and thus for
u > u?, (2.45) holds. Finally, for u < u?

N−d|Cmax(u,N)| N→∞−−−−→ ρ(u) ∈ (0, 1). (2.47)

2.5.1 Disconnection of a discrete cylinder

These notes would be incomplete without mentioning another problem
which motivated the introduction of random interlacements: the disconnec-
tion of a discrete cylinder, or, in a more picturesque language, the problem
of ‘termite in a wooden beam’.

In this problem one considers a discrete cylinder G × Z, where G is an
arbitrary finite graph, most prominent example being the torus TdN , d ≥ 2.
On the cylinder one considers a simple random walk started from a point
in its base, G× {0}. The object of interest is the disconnection time, TG,
of the discrete cylinder which is the first time such that the range of the
random walk disconnects the cylinder. More precisely, TG is the smallest
time such that, for a large enough M , (−∞,−M ]×G and [M,∞)×G are
contained in two distinct connected components of the complement of the
range, (G× Z) \ {X0, . . . , XTG}.

The study of this problem was initiated by Dembo and Sznitman [16]. It
is shown there that TN := TTdN , is of order N2d, on the logarithmic scale:

lim
N→∞

log TN
logN

= 2d, d ≥ 2. (2.48)

This result was successively improved in [17] (a lower bound on TN : the
collection of random variables N2d/TN , N ≥ 1, is tight when d ≥ 17), [40]
(the lower bound hold for any d ≥ 2), [42] (an upper bound: TN/N

2d is
tight). Disconnection time of cylinders with a general base G is studied in
[39]: for the class of bounded degree bases G, it is shown that TG is roughly
of oder |G|2.

Some of the works cited in the last paragraph explore considerably the
connection of the problem with the random interlacements. This connec-
tion was established in [41], and states that the local picture left by random
walk on the discrete cylinder converges locally to random interlacements.
The connection is slightly more complicated than on the torus (that is why
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we choose the torus for our motivation). The complication comes from
the fact that the parameter u of the limiting random interlacements is not
deterministic but random, and depends on the local time of the ‘vertical
projection’ of the random walk. We state the connection as a theorem
which is a simplified version of [41, Theorem 0.1].

Theorem 2.7. Let xN ∈ TdN ×Z be such that its Z-component zN satisfies

limN→∞ zN/N
d = v. Let Lzt =

∑t
i=0 1{Xi ∈ TdN × {z}} be the local time

of the vertical projection of the random walk. Assume that tN satisfies
lim tN/N

2d = α. Then, for any n > 0 fixed, in distribution,(
{X0, . . . , XtN } ∩B(xN , n), LzNtN /N

d
) N→∞−−−−→ (IL ∩B(n), L), (2.49)

where L/(d+ 1) has the distribution of the local time of Brownian motion
at time α/(d+ 1) and spatial position v, and IL is the interlacement set of
random interlacements at level L.

A version of Theorem 2.7 for cylinders with general base G is given
in [53].

The dependence of the intensity of the random interlacements on the
local time of the vertical projection should be intuitively obvious: While in
the horizontal direction the walk mixes rather quickly (in time N2 logN),
there is no averaging going on in vertical direction. Therefore the intensity
of the local picture around xN must depend on the time that the random
walk spends in the layer zN , which is given by LzNtN .

It should be not surprising that Conjecture 2.6 can be transfered to the
disconnection problem:

Conjecture 2.8 (Remark 4.7 of [42]). The random variable TN/N
2d con-

verges in distribution to a random variable U which is defined by

U = inf{t ≥ 0 : sup
x∈R

`(t/(d+ 1), x) ≥ u?(d+ 1)}, (2.50)

where `(t, x) is the local time of a one-dimensional Brownian motion and
u?(d+ 1) is the critical value of random interlacements on Zd+1.

A relation between the tails of TN/N
2d and of the random variable U is

given in [42].



Chapter 3

Definition of random
interlacements

The goal of this chapter is to extend the local picture obtained previously,
cf. Theorem 2.4, to the whole lattice. We will define a (dependent) perco-
lation model on Zd, called random interlacements, whose restriction to any
finite set A ⊂ Zd is given by (the trace of) the Poisson point process PuA.

Before starting the real construction, let us first sketch a cheap argument
for the existence of the infinite volume limit of the local pictures (it is worth
remarking that infinite volume limit refers here to A ↑ Zd, not to the limit
N →∞ performed in the last chapter). To this end consider A ⊂ TdN , and

denote by QN,uA the distribution of trace left by random walk in A, that
is the distribution of

(
1{x ∈ VN (uNd)}

)
x∈A on {0, 1}A. Consider now

another set Ā ⊃ A and N ≥ diam Ā. From the definition, it is obvious that
the measures QN,uA and QN,u

Ā
automatically satisfy the restriction property

QN,uA = πĀ,A ◦Q
N,u
A′ ,

1 (3.1)

where πĀ,A : {0, 1}Ā → {0, 1}A is the usual restriction map. Moreover, by
Theorem 2.4 (or Theorem 1.1 of [52]),

QN,uA converges weakly as N →∞ to a measure QuA, (3.2)

where QuA is the distribution of the trace left on A by the Poisson pro-
cess PuA.

Using (3.2), we can see that the restriction property (3.1) passes to the
limit, that is

QuA = πĀ,A ◦QuĀ. (3.3)

1For a measurable map f : S1 → S2 and a measure µ on S1, we use f ◦ µ to denote
the push forward of µ by f , (f ◦ µ)(·) := µ(f−1(·)).

20
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Kolmogorov’s extension theorem then yields the existence of the wanted

infinite volume measure Qu on {0, 1}Zd (endowed with the usual cylinder
σ-field).

The construction of the previous paragraph has a considerable disadvan-
tage. First, it relies on (3.2), whose proof is partly sketchy in these notes.
Secondly, it does not give enough information about the measure Qu. In
particular, we completely lost the nice feature that QuA is the trace of a
Poisson point process of random walk trajectories.

This is the motivation for another, more constructive, definition of the
infinite volume model. The reader might consider this definition rather
technical. However, the effort put into it will be more than paid back when
working with the model. The following construction follows the original
paper [43] with minor modifications.

We wish to construct the infinite volume analog to the Poisson point
process PuA. The first step is to introduce the measure space where the new
Poisson point process will be defined. To this end we need few definitions.

Similarly to (2.39), let W be the space of doubly-infinite random walk
trajectories that spend only a finite time in finite subsets of Zd, i.e.

W =
{
w : Z→ Zd : ‖w(n)− w(n+ 1)‖1 ≤ 1 for each n ≥ 0

and {n : w(n) = y} is finite for all y ∈ Zd
}
.

(3.4)

We again denote with Xn, n ∈ Z, the canonical coordinates on W , and
write θk, k ∈ Z, for the canonical shifts,

θk(w)(·) = w(·+ k), for k ∈ Z (resp. k ≥ 0 when w ∈W+). (3.5)

We endow W with the σ-algebraW generated by the canonical coordinates.
Given A ⊂ Zd, w ∈W (resp. w ∈W+), we define the entrance time in A

and the exit time from A for the trajectory w:

HA(w) = inf{n ∈ Z (resp. N) : Xn(w) ∈ A},
TA(w) = inf{n ∈ Z (resp. N) : Xn(w) /∈ A}.

(3.6)

When A ⊂⊂ Zd (i.e. A is a finite subset of Zd), we consider the subset of
W of trajectories entering A:

WA = {w ∈W : Xn(w) ∈ A for some n ∈ Z}. (3.7)

We can write WA as a countable partition into measurable sets

WA =
⋃
n∈Z

Wn
A , where Wn

A = {w ∈W : HA(w) = n}. (3.8)

Heuristically, the reason why we need to work with the space W of
the doubly-infinite trajectories is that when taking the limit A → Zd, the
‘excursions’ start at infinity.
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The first step of the construction of the random interlacements is to ex-
tend the measure Q+

A to the space W . This is done, naturally, by requiring
that (X−n)n≥0 is a simple random walk started at X0 conditioned not to
return to A. More precisely, we define on (W,W) the measure QA by

QA[(X−n)n≥0 ∈ F,X0 = x, (Xn)n≥0 ∈ G] = Px[F |H̃A =∞]eA(x)Px[G],
(3.9)

for F,G ∈ W+ and x ∈ Zd.
Observe that QA gives full measure to W 0

A . This however means that
the set A is still somehow registered in the trajectories, more precisely the
origin of the time is at the first visit to A. To solve this issue, it is convenient
to consider the space W ? of trajectories in W modulo time shift

W ? = W/ ∼, where w ∼ w′ iff w(·) = w′(·+ k) for some k ∈ Z, (3.10)

which allows us to ‘ignore’ the rather arbitrary (and A-dependent) time
parametrization of the random walks. We denote with π? the canonical
projection from W to W ?. The map π? induces a σ-algebra in W ? given
by

W? = {U ⊂W ? : (π?)−1(U) ∈ W}. (3.11)

It is the largest σ-algebra on W ? for which (W,W)
π?→ (W ?,W?) is mea-

surable. We use W ?
A to denote the set of trajectories modulo time shift

entering A ⊂ Zd,
W ?

A = π?(WA). (3.12)

It is easy to see that W ?
A ∈ W?.

The random interlacements process that we are defining will be governed
by a Poisson point process on the space (W ? ×R+,W? ⊗B(R+)). To this
end we define Ω in analogy to (2.41):

Ω =

{
ω =

∑
i≥1

δ(w?i ,ui) : w?i ∈W ?, ui ∈ R+ such that

ω(W ?
A × [0, u]) <∞, for every A ⊂⊂ Zd and u ≥ 0

}
.

(3.13)

This space is endowed with the σ-algebra A generated by the evaluation
maps ω 7→ ω(D) for D ∈ W? ⊗ B(R+).

At this point, the reader may ask why we do not take Ω to be simply
the space of point measures on W ?. The reason for this is that we are, for
practical reasons, trying to construct the infinite volume limit of local pic-
tures for all values of parameter u ≥ 0 simultaneously. Otherwise said, we
construct a coupling of random interlacements models for different values
of u, similar to the usual coupling of Bernoulli percolation measures with
different values of parameter p. The component ui of the couple (w?i , ui)
can be viewed as a label attached to the trajectory w?i . This trajectory
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will influence the random interlacements model at level u only if its label
satisfy ui ≤ u.

The intensity measure of the Poisson point process governing the random
interlacements will be given by ν ⊗ du . Here, du is the Lebesgue measure
on R+ and the measure ν on W ? is constructed as an appropriate extension
of QA to W ? in the following theorem.

Theorem 3.1 ([43], Theorem 1.1). There exists a unique σ-finite measure
ν on the space (W ?,W?) satisfying, for each finite set A ⊂ Zd,

1W?
A
· ν = π? ◦QA,

2 (3.14)

where the finite measure QA on WA is given by (3.9).

Proof. The uniqueness of ν satisfying (3.14) is clear since, given a sequence
of sets Ak ↑ Zd, W ? = ∪kW ?

Ak
.

For the existence, what we need to prove is that, for fixed A ⊂ A′ ⊂ Zd,

π? ◦ (1WA
·QA′) = π? ◦QA. (3.15)

Indeed, we can then set, for arbitrary Ak ↑ Zd,

ν =
∑
k

1W?
Ak
\W?

Ak−1
· π? ◦QAk . (3.16)

The equality (3.15) then insures that ν does not depend on the sequence Ak.
We introduce the space

WA,A′ = {w ∈WA : HA′(w) = 0} (3.17)

and the bijection sA,A′ : WA,A′ →WA,A given by

[sA,A′(w)](·) = w(HA(w) + ·), (3.18)

moving the origin of time from the entrance to A′ to the entrance to A.
To prove (3.15), it is enough to show that

sA,A′ ◦ (1WA,A′ ·QA′) = QA. (3.19)

Indeed, from (3.9) it follows that 1WA,A′ · QA′ = 1WA
· QA′ and thus (3.15)

follows just by applying π? on both sides (3.19).
To show (3.19), we consider the set Σ of finite paths σ : {0, . . . , Nσ} → Zd

such that σ(0) ∈ A′, σ(n) /∈ A for n < Nσ, and σ(Nσ) ∈ A. We split the
left-hand side of (3.19) by partitioning WA,A′ into the sets

Wσ
A,A′ = {w ∈WA,A′ : w restricted to {0, · · · , Nσ} equals σ}, for σ ∈ Σ.

(3.20)

2For any set G and measure ν, we define 1G · ν(·) := ν(G ∩ ·).
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For w ∈Wσ
A,A′ , we have HA(w) = Nσ, so that we can write

sA,A′ ◦ (1WA,A′ ·QA′) =
∑
σ∈Σ

θNσ ◦ (1Wσ
A,A′
·QA′). (3.21)

To prove (3.19), consider an arbitrary collection of sets Ai ⊂ Zd, for
i ∈ Z, such that Ai 6= Zd for at most finitely many i ∈ Z. Then,

sA,A′ ◦ (1WA,A′ ·QA′)[Xi ∈ Ai, i ∈ Z]

=
∑
σ∈Σ

QA′ [Xi+Nσ (w) ∈ Ai, i ∈ Z, w ∈Wσ
A,A′ ]

=
∑
σ∈Σ

QA′ [Xi(w) ∈ Ai−Nσ , i ∈ Z, w ∈Wσ
A,A′ ].

(3.22)

Using the formula (3.9), the identity

eA(x)Px[ · |H̃A =∞] = Px[ · , H̃A =∞], x ∈ supp eA′ , (3.23)

and the Markov property, the above expression equals∑
x∈supp eA′

∑
σ∈Σ

Px
[
Xj ∈ A−j−Nσ , j ≥ 0, H̃A′ =∞

]
× Px

[
Xn = σ(n) ∈ An−Nσ , 0 ≤ n ≤ Nσ

]
× Pσ(Nσ)

[
Xn ∈ An, n ≥ 0

]
=

∑
x∈supp eA′

∑
y∈A

∑
σ:σ(Nσ)=y

Px
[
Xj ∈ A−j−Nσ , j ≥ 0, H̃A′ =∞

]
× Px

[
Xn = σ(n) ∈ An−Nσ , 0 ≤ n ≤ Nσ

]
Py
[
Xn ∈ An, n ≥ 0

]
.

(3.24)

For fixed x ∈ supp eA′ and y ∈ A, we have, using the reversibility in the
first step and the Markov property in the second,∑

σ:σ(Nσ)=y

Px
[
Xj ∈ A−j−Nσ , j ≥ 0, H̃A′ =∞

]
× Px

[
Xn = σ(n) ∈ An−Nσ , 0 ≤ n ≤ Nσ

]
=

∑
σ:σ(Nσ)=y
σ(0)=x

Px
[
Xj ∈ A−j−Nσ , j ≥ 0, H̃A′ =∞

]
× Py

[
Xm = σ(Nσ −m) ∈ A−m, 0 ≤ m ≤ Nσ

]
=

∑
σ:σ(Nσ)=y
σ(0)=x

Py

[
Xm = σ(Nσ −m) ∈ A−m, 0 ≤ m ≤ Nσ,

Xm ∈ A−m,m ≥ Nσ, H̃A′ ◦ θNσ =∞

]

= Py

[
H̃A =∞, the last visit to A′

occurs at x, Xm ∈ A−m,m ≥ 0

]
.

(3.25)
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Using (3.25) in (3.24) and summing over x ∈ supp eA′ , we obtain

sA,A′ ◦ (1WA,A′ ·QA′)[Xi ∈ Ai, i ∈ Z]

=
∑
y∈A

Py[H̃A =∞, Xm = A−m,m ≥ 0]Py[Xm ∈ Am,m ≥ 0]

(3.9)
= QA[Xm ∈ Am,m ∈ Z].

(3.26)

This shows (3.19) and concludes the proof of the existence of the measure ν
satisfying (3.14). Moreover, the measure ν is clearly σ-finite, it is sufficient
to observe that ν(W ?

A , [0, u]) <∞ for any A ⊂⊂ Zd and u ≥ 0.

We can now complete the construction of the random interlacements
model, that is describe the infinite volume of the local pictures discussed
in the previous chapter. On the space (Ω,A) we consider the law P of a
Poisson point process with intensity ν(dw?⊗du) (recall that ν is σ-finite).
With the usual identification of point measures and subsets, under P, the
configuration ω can be viewed as an infinite random cloud of doubly-infinite
random walk trajectories (modulo time-shift) with attached non-negative
labels ui.

Finally, for ω =
∑
i≥0 δ(w?i ,ui) ∈ Ω we define two subsets of Zd, the

interlacement set at level u, that is the set of sites visited by the trajectories
with label smaller than u,

Iu(ω) =
⋃

i:ui≤u
Range(w?i ), (3.27)

and its complement, the vacant set at level u,

Vu(ω) = Zd \ Iu(ω). (3.28)

Let Πu be the mapping from Ω to {0, 1}Zd given by

Πu(ω) = (1{x ∈ Vu(ω)} : x ∈ Zd). (3.29)

We endow the space {0, 1}Zd with the σ-field Y generated by the canonical
coordinates (Yx : x ∈ Zd). As for A ⊂⊂ Zd, we have

Vu ⊃ A if and only if ω(W ?
A × [0, u]) = 0, (3.30)

the mapping Πu : (Ω,A)→ ({0, 1}Zd ,Y) is measurable. We can thus define

on ({0, 1}Zd ,Y) the law Qu of the vacant set at level u by

Qu = Πu ◦ P. (3.31)

The law Qu of course coincides with the law Qu constructed abstractly
using Kolmogorov’s theorem below (3.3). In addition, we however gained
a rather rich structure behind it which will be useful later.
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Some additional notation. We close this chapter by introducing some
additional notation that we use frequently through the remaining chapters.
Let sA : W ?

A →W be defined as

sA(w?) = w0, where w0 is the unique element of W 0
A with π?(w0) = w?,

(3.32)
i.e. sA ‘gives to w ∈ W ?

A its A-dependent time parametrization’. We also
define a measurable map µA from Ω to the space of point measures on
(W+ × R+,W+ ⊗ B(R+)) via

µA(ω)(f) =

∫
W?

A×R+

f(sA(w?)+, u)ω(dw?,du), for ω ∈ Ω, (3.33)

where f is a non-negative measurable function on W+ × R+ and for w ∈
W , w+ ∈ W+ is its restriction to N. In words, µA selects from ω those
trajectories that hit A and erases their parts prior to the first visit to A.
We further define a measurable function µA,u from Ω to the space of point
measures on (W+,W+) by

µA,u(ω)(dw) = µA(ω)(dw × [0, u]), (3.34)

which ‘selects’ from µA(ω) only those trajectories whose labels are smaller
than u. Observe that

Iu(ω) ∩ A =
⋃

w∈suppµA,u(ω)

Rangew ∩ A. (3.35)

It also follows from the construction of the measure P and from the
defining property (3.14) of ν that

µA,u ◦ P = PuA. (3.36)

3.1 Notes

As we mentioned, random interlacements on Zd were first time introduced
in [43]. Later, [46] extended the construction of the model to any transient
weighted graphs. Since then, large effort has been spent in the study of its
percolative and geometrical properties, which relate naturally to the above
mentioned questions on the fragmentation of a torus by random walk. In
the next section we start to study some of the most basic properties of this
model on Zd.



Chapter 4

Properties of random
interlacements

4.1 Basic properties

We now study the random interlacements model introduced in the last
chapter. Our first goal is to understand the correlations present in the
model.

To state the first result we define the Green’s function of the random
walk,

g(x, y) =
∑
n≥0

Px[Xn = y], for x, y ∈ Zd. (4.1)

We write g(x) for g(x, 0), and refer to [26], Theorem 1.5.4 p.31 for the
following estimate

c′

1 + |x− y|d−2
≤ g(x, y) ≤ c

|x− y|d−2
, for x, y ∈ Zd. (4.2)

Lemma 4.1. For every u ≥ 0, x, y ∈ Zd, A ⊂⊂ Zd,

P[A ⊂ Vu] = exp{−u cap(A)}, (4.3)

P[x ∈ Vu] = exp{−u/g(0)}, (4.4)

P[{x, y} ∈ Vu] = exp
{
− 2u

g(0) + g(y − x)

}
. (4.5)

Remark 4.2. The equality (4.3) in fact characterizes the distribution of the
vacant set Vu, and can be used to define the measure Qu. This follows
from the theory of point processes, see e.g. [24], Theorem 12.8(i).

Proof. Using the notation introduced at the end of the last chapter, we
observe that A ⊂ Vu(ω) if and only if µA,u(ω) = 0. Claim (4.3) then

27



28 Černý, Teixeira

follows from

P[µA,u(ω) = 0]
(3.36)

= exp{−uQA(W+)}
(2.40)

= exp{−ueA(Zd)} = exp{−u cap(A)}.
(4.6)

The remaining claims of the lemma follows from (4.3), once we com-
pute cap({x}) and cap({x, y}). For the first case, observe that under
Px the number of visits to x has geometrical distribution with parame-
ter Px[H̃x =∞] = cap({x}), by the strong Markov property. This yields
immediately that

cap({x}) = g(0)−1. (4.7)

For the second case, we recall the useful formula that we prove later,

Px[HA <∞] =
∑
y∈A

g(x, y)eA(y), x ∈ Zd,A ⊂⊂ Zd. (4.8)

Assuming without loss of generality that x 6= y, we write e{x,y} = ρxδx +
ρyδy, and cap({x, y}) = ρx + ρy for some ρx, ρy ≥ 0. From formula (4.8),
it follows that

1 = ρxg(z, x) + ρyg(z, y), for z ∈ {x, y}. (4.9)

Solving this system for ρx, ρy yields

cap({x, y}) =
2

g(0) + g(x− y)
. (4.10)

Claims (4.4) and (4.5) then follows directly from (4.3) and (4.7), (4.10).
To show (4.8), let L = sup{k ≥ 0 : Xk ∈ A} be the time of the last visit

to A, with convention L = −∞ if A is not visited. Then,

Px[HA <∞] = Px[L ≥ 0] =
∑
y∈A

∑
n≥0

Px[L = n,XL = y]

=
∑
y∈A

∑
n≥0

Px[Xn = y,Xk /∈ A for k > n]

=
∑
y∈A

∑
n≥0

Px[Xn = y]eA(y) =
∑
y∈A

g(x, y)eA(y),

(4.11)

where we used the strong Markov property in the forth, and the definition
of the Green function in the fifth equality.

The last lemma and (4.2) imply that

CovP(1x∈Vu ,1y∈Vu) ∼ 2u

g(0)2
e−2u/g(0)g(x− y)

≥ cu|x− y|2−d, as |x− y| → ∞.

(4.12)
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Long range correlation are thus present in the random set Vu.
As another consequence of (4.3) and the sub-additivity of the capacity,

cap(A ∪ A′) ≤ cap A + cap A′, (4.13)

see [26, Proposition 2.2.1(b)], we obtain that

P[A ∪ A′ ⊂ Vu] ≥ P[A ⊂ Vu]P[A′ ⊂ Vu], for A,A′ ⊂⊂ Zd, u ≥ 0,
(4.14)

that is the events A ⊂ Vu and A′ ⊂ Vu are positively correlated.
The inequality (4.14) is the special case for the FKG inequality for the

measure Qu (see (3.31)) which was proved in [46]. We present it here for
the sake of completeness without proof.

Theorem 4.3 (FKG inequality for random interlacements). Let A,B ∈ Y
be two increasing events. Then

Qu[A ∩B] ≥ Qu[A]Qu[B]. (4.15)

The measure Qu thus satisfies one of the principal inequalities that hold
for the Bernoulli percolation. Many of the difficulties appearing when
studying random interlacements come from the fact that another impor-
tant inequality of Bernoulli percolation (the so-called van den Berg-Kesten)
does not hold for Qu as one can easily verify.

4.2 Translation invariance and ergodicity

We now explore how random interlacements interacts with the translations
of Zd. For x ∈ Zd and w ∈ W we define w + x ∈ W by (w + x)(n) =
w(n) + x, n ∈ Z. For w ∈ W ?, we then set w? + x = π?(w + x) for
π?(w) = w?. Finally, for ω =

∑
i≥0 δ(w?i ,ui) ∈ Ω we define

τxω =
∑
i≥0

δ(w?i−x,ui). (4.16)

We let tx, x ∈ Zd, stand for the canonical shifts of {0, 1}Zd .

Proposition 4.4.

(i) ν is invariant under translations τx of W ? for any x ∈ Zd.

(ii) P is invariant under translation τx of Ω for any x ∈ Zd.

(iii) For any u ≥ 0, the translation maps (tx)x∈Zd define a measure pre-

serving ergodic flow on ({0, 1}Zd ,Y, Qu).
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Proof. The proofs of parts (i), (ii) and of the fact that (tx)x∈Zd is a measure
preserving flow are left as an exercise. They can be found in [43, (1.28) and
Theorem 2.1]. We will only show the ergodicity, as its proof is instructive.

As we know that (tx) is a measure preserving flow, to prove the ergodicity
we only need to show that it is mixing, that is for any A ⊂⊂ Zd and for

any [0, 1]-valued σ(Yx : x ∈ A)-measurable function f on {0, 1}Zd , one has

lim
|x|→∞

EQ
u

[f f ◦ tx] = EQ
u

[f ]2. (4.17)

In view of (3.35), (4.17) will follow once we show that for any A ⊂⊂ Zd and
any [0, 1]-valued measurable function F on the set of finite point measures
on W+ endowed with the canonical σ-field,

lim
|x|→∞

E[F (µA,u)F (µA,u) ◦ τx] = E[F (µA,u)]2. (4.18)

Since, due to definition of τx and µA,u, there exists a function G with similar
properties as F , such that F (µA,u) ◦ τx = G(µA+x,u), (4.18) follows from
the next lemma.

Lemma 4.5. Let u ≥ 0 and A1 and A2 be finite disjoint subsets of Zd. Let
F1 and F2 be [0, 1]-valued measurable functions on the set of finite point-
measures on W+ endowed with its canonical σ-field. Then∣∣E[F1(µA1,u)F2(µA2,u)]− E[F1(µA1,u)]E[F2(µA2,u)]

∣∣
≤ 4u cap(A1) cap(A2) sup

x∈A1,y∈A2

g(x− y). (4.19)

Proof. We write A = A1 ∪ A2 and decompose the Poisson point process
µA,u into four point processes on (W+,W+) as follows:

µA,u = µ1,1 + µ1,2 + µ2,1 + µ2,2, (4.20)

where

µ1,1(dw) = 1{X0 ∈ A1, HA2 =∞}µA,u(dw),

µ1,2(dw) = 1{X0 ∈ A1, HA2 <∞}µA,u(dw),

µ2,1(dw) = 1{X0 ∈ A2, HA1 <∞}µA,u(dw),

µ2,2(dw) = 1{X0 ∈ A2, HA1 =∞}µA,u(dw), .

(4.21)

In words, the support of µ1,1 are trajectories in the support of µA,u which
enter A1 but not A2, the support µ1,2 are trajectories that enter first A1

and then A2, and similarly µ2,1, µ2,2.
The µi,j ’s are independent Poisson point processes, since they are sup-

ported on disjoint sets (recall that A1 and A2 are disjoint). Their corre-
sponding intensity measures are given by

u 1{X0 ∈ A1, HA2 =∞}PeA
,

u 1{X0 ∈ A1, HA2 <∞}PeA
,

u 1{X0 ∈ A2, HA1 <∞}PeA
,

u 1{X0 ∈ A2, HA1 =∞}PeA
.

(4.22)
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We observe that µA1,u − µ1,1 − µ1,2 is determined by µ2,1 and therefore
independent of µ1,1, µ2,2 and µ1,2. In the same way, µA2,u − µ2,2 − µ2,1

is independent of µ2,2, µ2,1 and µ1,1. We can therefore introduce auxiliary
Poisson processes µ′2,1 and µ′1,2 having the same law as µA1,u−µ1,1−µ1,2 and
µA2,u − µ2,2 − µ2,1 respectively, and satisfying µ′2,1, µ′1,2, µi,j , 1 ≤ i, j ≤ 2
are independent. Then

E[F1(µA1,u)] = E[F1((µA1,u − µ1,1 − µ1,2) + µ1,1 + µ1,2)]

= E[F1(µ′2,1 + µ1,1 + µ1,2)],
(4.23)

and in the same way

E[F2(µA2
)] = E[F2(µ′1,2 + µ2,2 + µ2,1)]. (4.24)

Using (4.23), (4.24) and the independence of the Poisson processes µ′2,1 +
µ1,1 + µ1,2 and µ′1,2 + µ2,2 + µ2,1 we get

E[F1(µA1
)]E[F2(µA2

)]

= E[F1(µ′2,1 + µ1,1 + µ1,2)F2(µ′1,2 + µ2,2 + µ2,1)].
(4.25)

From (4.25) we see that∣∣E[F1(µA1)F2(µA2)]− E[F1(µA1)]E[F2(µA2)]
∣∣

≤ P [µ′2,1 6= 0 or µ′1,2 6= 0 or µ2,1 6= 0 or µ1,2 6= 0]

≤ 2(P[µ2,1 6= 0] + P[µ1,2 6= 0])

≤ 2u
(
PeA

[X0 ∈ A1, HA2
<∞] + PeA

[X0 ∈ A2, HA1
<∞]

)
.

(4.26)

We now bound the two last terms in the above equation

PeA1∪A2
[X0 ∈ A1, HA2 <∞] ≤

∑
x∈A1

eA1(x)Px[HA2 <∞]

=
∑

x∈A1,y∈A2

eA1
(x)g(x, y)eA2

(y)

≤ cap(A1) cap(A2) sup
x∈A1, y∈A2

g(x, y).

(4.27)

A similar estimate holds for PeA1∪A2
[X0 ∈ A2, HA1

< ∞] and the lemma
follows.

As (4.18) follows easily from Lemma 4.5, the proof of Proposition 4.4 is
completed.

Proposition 4.4(iii) has the following standard corollary.

Corollary 4.6 (zero-one law). Let A ∈ Y be invariant under the flow
(tx : x ∈ Zd). Then, for any u ≥ 0,

Qu[A] = 0 or 1. (4.28)
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In particular, the event

Perc(u) := {ω ∈ Ω : Vu(ω) contains an infinite connected component},
(4.29)

satisfies for any u ≥ 0
P[Perc(u)] = 0 or 1. (4.30)

Proof. The first statement follows from the ergodicity by usual techniques.
The second statement follows from

P[Perc(u)] = Qu
[{
y ∈ {0, 1}Z

d

:
y contains an infinite
connected component of 1’s

}]
(4.31)

and the fact that the event on the right-hand side is in Y and tx invariant.

We now let

η(u) = P[0 belongs to an infinite connected component of Vu], (4.32)

it follows by standard arguments that

η(u) > 0 ⇐⇒ P[Perc(u)] = 1. (4.33)

In particular defining

u? = sup{u ≥ 0 : η(u) > 0}, (4.34)

we see than the random interlacements model exhibits a phase transition
at u = u?. The non-trivial issue is of course to deduce that 0 < u? < ∞
which we will (partially) do in the next chapter.

4.3 Comparison with Bernoulli percolation

We find useful to to draw a parallel between random interlacements and
the usual Bernoulli percolation on Zd.

We recall the definition of Bernoulli percolation. Given p ∈ [0, 1], con-

sider on the space {0, 1}Zd the probability measure Rp under which the
canonical coordinates (Yx)x∈Zd are a collection of i.i.d. Bernoulli(p) ran-
dom variables. We say that a given site x is open if Yx = 1, otherwise we
say that it is closed. Bernoulli percolation on Zd is rather well understood,
see e.g. monographs [19, 8].

In analogy to (4.33) and (4.34), one defines for Bernoulli percolation the
following quantities:

θ(p) = Rp
[
the origin is connected to infinity by an open path

]
,

pc = inf{p ∈ [0, 1] such that θ(p) > 0}.
(4.35)
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An well-known fact about Bernoulli percolation is that for d ≥ 2, pc ∈
(0, 1) [19, Theorem (1.10)]. In other words, this means that the model
undergoes a non-trivial phase transition. As we said, we would like to
prove an analogous result for random interlacements percolation, that is to
show that u∗ ∈ (0,∞).

Before doing this, let us understand how the random configuration in

{0, 1}Zd obtained under the measures Rp and Qu defined in (3.31) compare
to one another.

The first important observation is that under the measure Rp every con-
figuration inside a finite set A has positive probability, while this is not
the case with Qu. This follows from the following easy claim, which is the
consequence of the definitions (3.13), (3.31) of Ω and Qu.

for every u ≥ 0, almost surely under the measure Qu, the
set {x ∈ Zd : Yx = 0} has no finite connected components.

(4.36)

One particular consequence of this fact is that the random interlacements
measure Qu will not satisfy the so-called finite energy property. We say

that a measure R on {0, 1}Zd satisfies the finite energy property if

0 < R(Yy = 1|Yz, z 6= y) < 1, R-a.s., for all y ∈ Zd, (4.37)

for more details, see [20] (Section 12). Intuitively speaking, this says that
not all configurations on a finite set have positive probability under the
measure Qu. As a consequence, some percolation techniques, such as Bur-
ton and Keane’s uniqueness argument, will not be directly applicable to Qu.

Another important technique in Bernoulli independent percolation is the
so-called Peierl’s-type argument. This argument makes use of the so-called
?-paths defined as follows. We say that a sequence x0, x1, . . . , xn is a ?-path
if the supremum norm |xi − xi+1|∞ equals one for every i = 0, . . . , n − 1.
The Peierl’s argument strongly relies on the fact that, for p sufficiently
close to one,

the probability that there is some ?-path of 0’s (closed sites)
from the origin to B(0, 2N) decays exponentially with N .

(4.38)

This can be used for instance to show that for such values of p there is a
positive probability that the origin belongs to an infinite connected com-
ponent of 1’s (open sites).

This type of argument fails in the case of random interlacements. Actu-
ally, using (4.4) together with (4.37) we obtain that

for every u > 0, with positive probability there is an infinite
?-path of 0’s starting from the origin.

(4.39)
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It is actually possible to show that the probability to find a long planar
?-path decays, see Chapter 5. However, this is done using a different tech-
nique than in Peierl’s argument.

We further show that random interlacements cannot be compared to
Bernoulli percolation via stochastic domination techniques. (This is not
completely true if one only considers subspaces of sufficiently large co-
dimension, see Appendix in [12].)

We recall that for two measures Q and Q′ on {0, 1}Zd , we say that Q
dominates Q′ if∫

f dQ ≥
∫
f dQ′, for every increasing f : {0, 1}Z

d

→ R+. (4.40)

Lemma 4.7. For any values of p ∈ (0, 1) and u > 0, the measure Qu

neither dominates nor is dominated by Rp.

Proof. We start by showing that Qu is not dominated Rp. For this, let A =
AL = [1, L]d∩Zd, and consider the function f = 1{Yx = 1 for every x ∈ A}.
This function is clearly monotone increasing and for every choice of p,∫

f dRp = pL
d

, (4.41)

while for every u > 0, by (4.3),∫
f dQu = exp{−u cap A}. (4.42)

Using the inequality (see by (2.16) of [26])

cLd−2 ≤ cap AL ≤ c′Ld−2, (4.43)

it follows that the right-hand side of (4.42) is at most exp{−cuLd−2}. From
these considerations, it is clear that for any u > 0 and any p ∈ (0, 1) we
have

∫
fdRp <

∫
fdQu for some L large enough. This finishes the proof

that Rp does not dominate Qu.
Let us now turn to the proof that Rp is not dominated by Qu. For this,

we consider the function g = 1{Yx = 1 for some x ∈ A}, which is clearly
increasing and satisfies ∫

g dRp = 1− (1− p)L
d

. (4.44)

In order to estimate the integral of g with respect to Qu, we observe that
if the whole cube A is covered by the random interlacements, then g = 0.
Therefore,∫

g dQu ≤ 1− P[A ⊂ Iu]
(3.36)

= 1− PuA
[
A ⊂

⋃
w+,i∈supp(ω+)

Range(w+,i)
]
.

(4.45)
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In order to evaluate the above probability, let us first condition on the
number of points in the support of ω+.

PuA
[
A ⊂

⋃
w+,i∈supp(ω+)

Range(w+,i)
]

≥ PuA
[
ω+(W+) = bLd−2 log2 Lc

]
× P⊗bL

d−2 log2 Lc
eA/ cap(A)

[
A ⊂

bLd−2 log2 Lc⋃
i=1

Range(Xi)
] (4.46)

where the last probability is the independent product of bLd−2 log2 Lc sim-
ple random walks Xi’s, starting with distribution eA/ cap(A).

Let us first evaluate the first term in (4.46), corresponding to the Pois-
son distribution of ω+(W+). For this, we write α = u cap(A) and β =
bLd−2 log2 Lc. Then, using de Moivre-Stirling’s approximation, we obtain
that the left term in the above equation is

e−ααβ

β!
≥ ce

−α+β

√
β

(α
β

)β
(4.47)

and using again (4.43), for L ≥ c(u) sufficiently large,

≥ exp{−cuLd−2 + bLd−2 log2 Lc}
( cu

log2 L

)β
≥
( cu

log2 L

)β
≥ exp

{
− cu log(log2 L) · (log2 L)Ld−2

}
≥ exp

{
− cu(log3 L)Ld−2

}
.

(4.48)

To bound the second term in (4.46), fix first some z ∈ A and estimate

P⊗βeA/ cap(A)

[
z ∈ ∪βi=1Range(Xi)

]
= 1−

(
PeA/ cap(A)

[
z 6∈ Range(X1)

])β
(4.2)

≥ 1−
(
1− cL2−d)cLd−2 log2 L ≥ 1− e−c log2 L.

(4.49)

Therefore, by a simple union bound, we obtain that the right-hand side of
(4.46) is bounded from below by 1/2 as soon as L is large enough depending
on u. Putting this fact together with (4.46) and (4.48), we obtain that∫

g dQu ≤ 1− c exp
{
− cu(log3 L)Ld−2

}
, (4.50)

which is smaller than the right hand side of (4.44) for L large enough
depending on p and u. This proves that Qu does not dominate Rp for any
values of p ∈ (0, 1) or u > 0, finishing the proof of the lemma.
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4.4 Notes

Various interesting properties of random interlacements have been estab-
lished in recent works. Let us mention here a few of them.

In Theorem 2.4 of [43] and in Appendix A of [12], the authors provide a
comparison between Bernoulli percolation and random interlacements on
sub-spaces (slabs) of Zd. If the co-dimension of the subspace in question
is at least three, then the domination by Bernoulli percolation holds. This
domination was useful in simplifying arguments for the non-triviality of
the phase transition for the vacant set and the behavior of the chemical
distance in Iu in high dimensions, see Remark 2.5 3 of [43] and Appendix A
of [12] for more details.

Another important result on the domination of random interlacements
says that the component of the interlacement set Iu containing a given
point is dominated by the range of a certain branching random walk, see
Propositions 4.1 and 5.1 in [48]. This result does not add much for the
study of random interlacements on Zd (as the mentioned branching random
walk covers the whole lattice almost surely), but it has been valuable for
establishing results for random interlacements on non-amenable graphs,
see [48].

It may be interesting to observe that the measure Qu does not induce a
Markov field. More precisely, this means that the law of Vu∩A conditioned
on Vu ∩ Ac is not the same as that of Vu ∩ A conditioned on Vu ∩ {x ∈
Ac;x ∼ A}. See [46], Remark 3.3 3) for more details.

After defining random interlacements on different classes of graphs (see
[46] for such a construction), one could get interested in understanding for
which classes of graphs there exists a non-trivial phase transition at some
critical 0 < u? < ∞. This question is expected to be very relevant to
the study of the disconnection time in arbitrary cylinders, see [39] and [53].
Some results in this direction have been established already when the graph
in question is a tree, see Theorem 5.1 of [46], or under some hypotheses on
the isoperimetrical profile of the graph, see Theorems 4.1 and 4.2 of [46]
and Proposition 8.1 of [48].



Chapter 5

Renormalization

In this section we are going to prove that u? > 0 for d sufficiently large
(d ≥ 7 is enough). This only establishes one side of the non-triviality of
u?, but illustrates the multi-scale renormalization, which is employed in
several other problems of dependent percolation and particle systems. The
biggest advantage of the renormalization scheme is that it does not enter
too much on the kind of dependence involved in the problem. Roughly
speaking, only having a control on the decay of dependence (such as in
Lemma 4.5) we may have enough to obtain global statements about the
measure under consideration.

To better control the dependences using Lemma 4.5, we need to under-
stand the decay of the Green’s function for the simple random walk on Zd.
We quote from Theorem 1.5.4 of [26] that

g(x) ≤ c|x|2−d. (5.1)

The main result of this section is

Theorem 5.1. For d ≥ 7, we have that u? > 0.

Proof. The proof we present here follows the arguments of Proposition 4.1
in [43] with some minor modifications.

We will use this bound in the renormalization argument we mentioned
above. This renormalization will take place on Z2 ⊂ Zd, which is identified
by the isometry (x1, x2) 7→ (x1, x2, 0, . . . , 0). Throughout the text we make
no distinction between Z2 and its isometric copy inside Zd.

We say that τ : {0, · · · , n} → Z2 is a ?-path if

|τ(k + 1)− τ(k)|∞ = 1, for all k ∈ {0, · · · , n− 1}, (5.2)

where |p|∞ is the maximum of the absolute value of the two coordinates
of p ∈ Z2. Roughly speaking, the strategy of the proof is to prove that
with positive probability there is no ?-path in Iu ∩ Z2 surrounding the

37
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origin. This will imply by a duality argument that there exists an infinite
connected component in Vu.

We now define a sequence of non-negative integers which will represent
the scales involved in the renormalization procedure. For any L0 ≥ 2, let

Ln+1 = lnLn, for every n ≥ 0,
where ln = 100bLanc and a = 1

1000 .
(5.3)

Here bac represent the largest integer smaller or equal to a.
In what follows, we will consider a sequence of boxes in Z2 of size Ln,

but before, let us consider the set of indices

Jn = {n} × Z2, for n ≥ 0. (5.4)

For m = (n, q) ∈ Jn, we consider the box

Dm = (Lnq + [0, Ln)2) ∩ Z2, (5.5)

And also

D̃m =
⋃

i,j∈{−1,0,1}
D(n,q+(i,j)). (5.6)

As we mentioned, our strategy is to prove that the probability of finding
a ?-path in the set Iu ∩ Z2 that separates the origin from infinity in Z2 is
smaller than one. We do this by bounding the probabilities of the following
crossing events

Bum =
{ ω ∈ Ω : there exists a ?-path in Iu ∩ Z2

connecting Dm to the complement of D̃m

}
, (5.7)

where m ∈ Jn. For u > 0, we write

qun = P[Bu(n,0)]
Proposition 4.4

= sup
m∈Jn

P[Bum]. (5.8)

In order to show that for u small enough qun decays with n, we are going
to obtain an induction relation between qun and qun+1 (that were defined in
terms of two different scales). For this we consider, for a fixed m ∈ Jn+1,
the indices of boxes in the scale n that are in the “boundary of Dm”. More
precisely

Km1 = {m1 ∈ Jn : Dm1 ⊂ Dm and Dm1 is neighbor of Z2 \Dm}. (5.9)

And the indices of boxes at the scale n, having a point at distance Ln+1/2
from Dm, i.e.

Km2 = {m2 ∈ Jn : Dm2 ∩ {x ∈ Z2 : dZ2(x,Dm) = Ln+1/2} 6= ∅}. (5.10)
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Dm

D̃m

D̃m1

Dm1

Dm2
D̃m2

Figure 5.1: The figure shows all the boxes with indices in K1 and K2. Note
that the event Bum implies Bum1

and Bum2
for some m1 ∈ K1 and m2 ∈ K2.

The boxes associated with the two sets of indices above are shown in Fig-
ure 5.1. In this figure we also illustrate that the event Bum implies the oc-
currence of both Bum1

and Bum2
for some choice of m1 ∈ Km1 and m2 ∈ Km2 .

This, with a rough counting argument, allows us to conclude that

qum ≤ cl2n sup
m1∈Km1
m2∈Km2

P[Bum1
∩Bum2

], for all u ≥ 0. (5.11)

We now want to control the dependence of the process in the two boxes
D̃m1

and D̃m2
. For this we will use Lemma 4.5, which provides that

P[Bum1
∩Bum1

]

≤ P[Bum1
]P[Bum1

] + 4u cap(D̃m1
) cap(D̃m2

) sup
x∈D̃m1

,y∈D̃m2

g(x− y)

(5.1)

≤ (qun)2 + cL2
n

L2
n

L5
n+1

(5.12)

where we assumed in the last step that u ≤ 1. Using (5.11) and taking the
supremum over m ∈ Jn+1, we conclude that

qun+1 ≤ cl2n
(
(qun)2 + L4

nL
−5
n+1

)
. (5.13)

With help of this recurrence relation, we prove the next lemma, which
shows that for some choice of L0 and for u taken small enough, qun goes to
zero sufficiently fast with n.
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Lemma 5.2. There exist L0 and ū = ū(L0) > 0, such that

qun ≤
c0

l2nL
1/2
n

(5.14)

for every u < ū.

Proof of Lemma 5.2. We define the sequence

bn = c0l
2
nq
u
n, for n ≥ 0. (5.15)

The equation (5.13) can now be rewritten as

bn+1 ≤ c

((
ln+1

ln

)2

b2n + (ln+1ln)2L4
nL
−5
n+1

)
, for n ≥ 0. (5.16)

With (5.3) one concludes that (ln+1ln)2 ≤ cL2a
n L

2a
n+1 ≤ cL4a+2a2

n . Inserting
this in (5.16) and using again (5.3), we obtain

bn+1 ≤ c1(L2a2

n b2n + L2a2−a−1
n ) ≤ c1L2a2

n (b2n + L−1
n ). (5.17)

We use this to show that, if for some L0 > (2c1)4 and u ≤ 1 we have

bn ≤ L−1/2
n , then the same inequality also holds for n+1. Indeed, supposing

bn ≤ L−1/2
n , we have

bn+1 ≤ 2c1L
2a2−1
n

(5.3)

≤ 2c1L
−1/2
n+1 L

1/2(1+a)+2a2−1
n

(5.3)

≤ 2c1L
−1/2
n+1 L

−1/4
0 ≤ L−1/2

n+1 .

(5.18)

Which is the statement of the lemma. So all we still have to prove is that

b0 ≤ L−1/2
0 for L0 > (2c1)4 and small enough u. Indeed,

b0
(5.15)

= c0l
2
0q
u
0 ≤ c0l20 sup

m∈J0
P[Iu ∩ D̃m 6= ∅]

≤ c1L2a+2
0 sup

x∈V
P[x ∈ Iu]

(4.3)

≤ c1L
2a+2
0 (1− e− cap({x})u).

(5.19)

For some L0 > (2c1)4, we take u(L0) small enough such that b0 ≤ L
−1/2
0

for any u ≤ u(L0). This concludes the proof of Lemma 5.2

We now use this lemma to show that with positive probability, one can
find an infinite connection from (0, 0) to infinite in the set Vu ∩ Zd. For
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this we choose L0 and u < u(L0) as in the lemma. Writing BM for the set
[−M,M ]× [−M,M ] ⊂ Z2, we have

1− η(u, (0, 0)) ≤ P[(0, 0) is not in an infinite component of Vu ∩ Z2]

≤ P[Iu ∩BM 6= ∅] + P
[

there is a ?-path in Z2 \BM
surrounding the point (0, 0) in Z2

]
≤
(
1− exp(−u · cap(BM ))

)
+
∑
n≥n0

P
[ Iu ∩ Z2 \BM contains a ?-path surrounding (0, 0) and

passing through some point in [Ln, Ln+1 − 1]× {0} ∈ Z2

]
(5.20)

The last sum can be bounded by
∑
n≥n0

∑
m P[Bum] where the index m runs

over all labels of boxesDm at level n that intersect [Ln, Ln+1−1]×{0} ⊂ Z2.
Since the number of such m’s is at most ln ≤ cLan,

1−η(u, (0, 0)) ≤ cL2
n0
u+

∑
n≥n0

cLanL
−1/2
n

(5.3)

≤ c(L2
n0
u+

∑
n≥n0

L−1/4
n ). (5.21)

Choosing n0 large and u ≤ u(L0, n0), we obtain that the percolation prob-
ability is positive. So that u? > 0 finishing the proof of Theorem 5.1.

5.1 Notes

As we mentioned below Theorem 5.1, its proof is largely inspired by Propo-
sition 4.1 of [43]. It illustrates well how the renormalization scheme can
help us to deal with the dependence present in the measure Qu. We would
like to mention two important improvements that were developed over the
above techniques.

Sprinkling is a technique that first appeared in Section 3 of [43]. It allows
us to obtain estimates similar to that of Lemma 4.5, but by “sprinkling”
some extra trajectories into the picture, one can wash away the dependence
even further and obtain better error estimates. This technique has been
useful later in [40] and [49] for instance.

Another modification of the renormalization we presented here, that has
been very efficient in boosting the decay of dependence (such as in (5.2))
are the so-called decoupling inequalities. The idea behind this procedure
is to create a binary tree, which encodes the occurrence of bad events in
various sub-boxes. Then, by carefully comparing the number of such trees
with the probability that they are corrupted, one obtains a bound on the
probability of bad events. This idea first appeared in [47] and [37], being
later generalized in [44].

Renormalization tools very similar to the ones described above have
proved themselves useful in obtaining various results, both for random in-
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terlacements and for other dependent percolation processes, see for instance
[50] and [22].

Remarkably, some more elaborate renormalization schemes were able to
establish the non-triviality of the phase transition that Vu undergoes at u?.
More precisely, it was shown that

u? <∞ for any d ≥ 3, see Theorem 3.5 in [43], (5.22)

and
u? > 0 for any d ≥ 3, see Theorem 3.4 in [36]. (5.23)



Chapter 6

Interlacement set

Up to now, we have mainly investigated the vacant set left by a random
walk on a finite graph or by random interlacements. In this chapter we are
going to consider the interlacement set Iu of the random interlacements,
which is of course related to the trace left by random walk on a graph,
{X0, . . . , Xu|G|}.

Contrary to the Bernoulli percolation, where by changing p to 1− p, one
can interchange the laws of open and closed sites, the interlacement set Iu
is a genuine object: It cannot be obtained from Vu by a re-parametrization.
Its properties should be thus studied separately.

In general, understanding of Iu is easier than of Vu. The main reason
for this is that the independence coming from the Poisson point process
structure is easier to explore when considering the interlacement set; Iu
is the trace left by the Poisson point process, not its complement. In
addition, there is no phase transition for the connectivity of Iu, which
further simplifies the studies of Iu:

Theorem 6.1 ([43, 12]). For every d ≥ 3, the interlacement set Iu on Zd
satisfies

P[Iu is connected for all u > 0] = 1. (6.1)

Proof. The proof of the theorem is based on the following proposition,
that is much stronger than (6.1). To state it it is useful to introduce the

following notation. We write f(n) = s.e.(n) when f(n) ≤ ce−c
′nδ for some

c, c′, δ ∈ (0,∞), ’s.e.’ staying for ‘stretched-exponentially’ small. We write
f(n) = 1− s.e.(n), when 1− f(n) = s.e.(n). Observe that ncs.e.(n) = s.e.(n)
for any fixed c > 0. So, it is quite convenient to use this notation e.g. in
the following situation: assume that we have at most nc events, each of
probability bounded from above by s.e.(n). Then, the probability of their
union is s.e.(n) as well.

Recall from Chapter 3 that P denotes the law of the Poisson point process
on W ? × [0,∞) defining the random interlacements and that µA,u is the

43
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map that selects from ω those trajectories which intersect A and have labels
smaller than u. Let us define Iun to be range of the trajectories intersecting
B(n),

Iun(ω) =
⋃

w∈suppµB(n),u(ω)

Rangew. (6.2)

Proposition 6.2. For every d ≥ 3 and 0 < u < u′,

P[Iun is connected] = 1− s.e.(n). (6.3)

P[∀w ∈ supp(µB(n),u′ − µB(n),u) is connected to Iun ] = 1− s.e.(n). (6.4)

Let us first explain how to Proposition 6.2 implies Theorem 6.1. Assume
for the moment that the claim of Theorem 6.1 is false, that is

P[there exists u > 0 such that Iu is not connected] > 0. (6.5)

Then, one can find ε > 0 and 0 < u < u′ <∞ such that

P[there exists ũ ∈ [u, u′] such that I ũ is not connected] ≥ ε (6.6)

and so,

lim inf
n→∞

P[there exists ũ ∈ [u, u′] such that I ũn is not connected] ≥ ε. (6.7)

This, however, contradicts Proposition 6.2 since, by the second claim of
the proposition, the probability that I ũn is connected for all ũ ∈ [u, u′]
approaches 1 as n→∞. So, (6.5) cannot be true.

We now show Proposition 6.2. The proof that we present is more com-
plicated than necessary, but it has some important implications that we
explore later. It is a simplified version of some of the arguments used in
[35, 34, 12].

The proof is based on the following heuristics. It is known fact that
one random walk trajectory is a two-dimensional object. Considering all
trajectories in suppµB(n),u intersecting this trajectory (including this tra-
jectory), we obtain a four-dimensional connected object. Another iterations
of this procedure give us 2k-dimensional objects (if 2k ≤ d). The capac-
ity of a 2k-dimensional object intersected with a ball of size n is roughly
comparable with n2k, as long as 2k ≤ d− 2. Hence, when 2k ≥ d− 2, this
2k-dimensional object saturates the B(n) in terms of capacity, and any
other random walk trajectory has a non-negligible chance to hit it. Iter-
ating then the construction once more, if necessary, gives an object which
is very likely hit by every other walk in suppµB(n),u, implying that Iun is
connected.

Proof of Proposition 6.2. We start the formal proof. In d = 3, 4, the propo-
sition is a direct consequence of Theorem 7.6 in [25] which states that two
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independent random walks in d = 3, 4 intersect (infinitely often) with prob-
ability 1, and of the fact that the number of trajectories in suppµB(n),u is
finite P-a.s. Therefore we will assume that d ≥ 5 in the proof.

Will repeatedly use the following lemma.

Lemma 6.3. Let A ⊂ Zd, and x ∈ Zd be such that maxy∈A dist(x, y) ≤ r.
Then, for some c > 0 depending on the dimension only

Px[HA ≤ r2 ∧HB(x,2r)c ] ≥ cr2−d cap A. (6.8)

Proof. The proof of the lemma is a variant of the proof of (4.8). The only
non-trivial new ingredient is the observation that for x, y with dist(x, y) ≤ r
the ‘truncated Green function’ satisfies

gB(x,2r2)(x, y; r2) :=

r2∧HB(x,2r2)c∑
i=0

Px[Xi = y] ≥ cg(x, y). (6.9)

We therefore omit the details and leave the proof of (6.9) and of the lemma
as exercise.

To apply Lemma 6.3 we need to estimate capacities of various collec-
tions of random walk trajectories. The estimate we will use is given in
Lemmas 6.5, 6.6 below. We start with a technical estimate.

Lemma 6.4. Let d ≥ 5, (xk)k≥1 be a sequence in Zd, and let Xk be a
sequence of independent simple random walks on Zd with Xk

0 = xk. Then
for all positive integers N and n and for all (xk)k≥1,

E
[ N∑
k,l=1

2n∑
i,j=n+1

g(Xk
i , X

l
j)
]
≤ C

(
Nn+N2n3−d/2). (6.10)

Proof. Let X be a simple random walk with X0 = 0, then for all y ∈ Zd
and for all positive integers k, by the Markov property,

Eg (Xk, y) =
∞∑
i=k

P [Xi = y] ≤ C
∞∑
i=k

i−d/2 ≤ Ck1−d/2. (6.11)

Here we used the inequality supy∈Zd P [Xk = y] ≤ Ck−d/2, see [38, Propo-
sition 7.6] In order to prove (6.10), we consider separately the cases k = l
and k 6= l. In the first case, the Markov property and the fact that
g(x, y) = g(x− y) imply

E
[ N∑
k=1

2n∑
i,j=n+1

g(Xk
i , X

k
j )
]

= NE
[ 2n∑
i,j=n+1

g(X|i−j|)
]

(6.11)

≤ CNn
(

1 +

n∑
i=1

i1−d/2
) (d≥5)

≤ CNn.

(6.12)
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In the case k 6= l, an application of (6.11) gives

E
[ 2n∑
i,j=n+1

g(Xk
i , X

l
j)
]
≤ n2Cn1−d/2. (6.13)

This completes the proof.

Let (Xk)k≥1 be the collection of independent random walks, as in the
previous lemma. For A ⊂ Zd, let T kA = inf{i ≥ 0 : Xk

i /∈ A} be the exit time
of Xk from A. For positive integers N and n, define the subset Φ(N,n) of
Zd,

Φ(N,n) =

N⋃
k=1

{
Xk
i : 1 ≤ i ≤ n ∧ T kB(xk,2n1/2)

}
. (6.14)

Lemma 6.5. For any sequence (xi)i≥1 ⊂ Zd and for all positive integers
N and n,

cap Φ(N,n) ≤ CNn, (6.15)

and
E cap Φ(N,n) ≥ cmin(Nn, n(d−2)/2). (6.16)

Proof. The upper bound follows from the sub-additivity of the capacity
(4.13) and the fact that cap({x}) = g(0, 0)−1 <∞.

We proceed with the lower bound on E cap Φ(N,n). By Kolmogorov’s
maximal inequality applied coordinatewise, for each λ > 0 and n ≥ 1,

P
[

max
1≤i≤n

|Xi| ≥ λ
]
≤ n

λ2
. (6.17)

Let J be the random set J = {1 ≤ k ≤ N : sup1≤i≤n |Xk
i − xk| ≤ 2n1/2},

and D the event D = {|J | ≥ N/4}. From (6.17), it follows that E|J | ≥
N
(
1− n

4n

)
≥ N

2 . Since |J | ≤ N , we get P [D] ≥ 1
3 .

To obtain a lower bound on the capacity, the following variational for-
mula (see Proposition 2.3 [52]) is useful:

cap A = (inf E(ν))−1, (6.18)

where the energy E(ν) of a measure ν is given by

E(ν) =
∑

x,y∈Zd
ν(x)ν(y)g(x, y), (6.19)

and the infimum in (6.18) is taken over all probability measures supported
on A.

Taking ν to be ν(x) = 2
|J|n

∑
k∈J

∑n
i=n/2 1{Xk

i = x}, which is obviously

supported on Φ(N,n), we obtain

E cap Φ(N,n) ≥ E
[
E(ν)−1

]
≥ E

[
E(ν)−1;A

]
. (6.20)



Random Walks and Random Interlacements 47

Therefore, in order to prove (6.16), it suffices to show that

E
[( 4

|J |2n2

∑
k,l∈J

n∑
i,j=n/2

g(Xk
i , X

l
j)
)−1

;A
]
≥ cmin

(
Nn, n(d−2)/2

)
. (6.21)

Using the Cauchy-Schwarz inequality and the definition of the event D, the
left-hand side of the last display can be bounded from below by

cN2n2P (D)2
(
E
[ ∑
k,l∈J

n∑
i,j=n/2

g(Xk
i , X

l
j);D

])−1

(6.22)

Since J is a subset of {1, . . . , N}, this is larger than

(N/4)2n2P (D)2
(
E
[ N∑
k,l=1

n∑
i,j=n/2

g(Xk
i , X

l
j)
])−1

(6.10)

≥ cN2n2

Nn+N2n3−d/2 ≥ cmin
(
Nn, n(d−2)/2

)
.

(6.23)

This completes the proof.

Lemma 6.6. In the setting of the previous lemma, assume that for some

δ > 0, nδ ≤ N ≤ n d−4
2 −δ, then for every ε > 0 sufficiently small

P
[

cap Φ(N,n) ≥ (Nn)1−ε] = 1− s.e.(n). (6.24)

Proof. To see that this lemma holds it is sufficient to split the trajectories
into nε pieces of length n1−ε and consider them separately. More precisely,
observe that Φ(N,n) ⊃

⋃
0≤`≤nε−1 Φ`, where

Φ` =
⋃
k≤N

Xk
`n1−ε∈B(Xk0 ,n

1/2)

{Xk
`n1−ε , . . . , Xk

(`+1)n1−ε} ∩B(Xk
0 , 2n

(1−ε)/2).

(6.25)
Using the standard random walk scaling, P [Xk

`n1−ε ∈ B(Xk
0 , n

1/2)] > c for
all ` ∈ {0, . . . , nε}, and thus the union contains more than N1−ε terms
with probability at least 1 − s.e.(n). Therefore, using the both estimates
of Lemma 6.5, the Markov property, and the assumption of the present
lemma, P [cap Φ` ≥ (Nn)1−ε|F`n1−ε ] ≥ c. P -a.s., where Fi is the σ-algebra
generated by Xk

j , k ≤ N , j ≤ i. As cap Φ(N,n) ≥ max`≤nε cap Φ`, the
lemma follows easily from these facts.

Remark 6.7. Lemma 6.6 holds also for N = 1. An easy adaptation of the
previous proof is left as exercise.
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We may now prove (6.3) of Proposition 6.2. Let {w1, . . . , wN} be an
arbitrary enumeration of suppµB(n),u, that is wk’s are random walk tra-
jectories hitting B(n) with labels smaller than u. We will show that for
every k, l

P[Rangewk and Rangewl are connected within Iu] ≥ 1− s.e.(n). (6.26)

By the definition of random interlacements, N has Poisson distribution with
parameter u capB(n) ∼ nd−2. Therefore, P[N ≥ nd] = s.e.(n), and thus,
by the remark after the definition of s.e.(·), (6.26) implies (6.3). Without
loss of generality, we take k = 1, l = 2 in (6.26).

Let s = s(d) = bd2c − 1. We split {w3, . . . , wN} into s independent
Poisson processes,

µ` = µB(n),`u/r − µ`−1, ` = 1, . . . , r, (6.27)

where µ0 = δw1
+ δw2

. As before, P [| suppµ`| ≥ nd−2−ε] = 1 − s.e.(n).
For w ∈ W , let Tn(w) = inf{k ≥ 0 : w(k) /∈ B(3n)} and R(w) =
{w(0), . . . , w(n2 ∧ Tn(w))}. Set V0 = {w1}, A0 = R(w1), and for ` =
1, . . . , r,

V` = {w ∈ suppµ` : R(w) ∩A`−1 6= ∅}, (6.28)

A` =
⋃
w∈V`

R(w). (6.29)

We claim that for all ` = 1, . . . , r and some ε > 0 small.

P[|V`| ≥ n2`−ε] = 1− s.e.(n). (6.30)

Indeed, this is trivially true for |V0|. If (6.30) holds for ` − 1, then by
Lemma 6.6,

P[capA`−1 ≥ n(1−ε)(2(`−1)−ε)n2(1−ε)] = 1− s.e.(n), (6.31)

When capA`−1 ≥ n2`−ε′ , then by Lemma 6.3, the probability than one
random walk started in B(n) hits Al−1 before time n2 is bounded from
below by cn2`−ε′n2−d = cn2`+2−d−ε′ . As µ` contains with probability 1−
s.e.(n), at least nd−2−ε independent walks, at least nd−2−εn2`+2−d−ε′n−ε =
n2`−ε̄ of them hit A`−1 before the time n2, and exit B(3n), again with
1− s.e.(n) probability. This completes the proof of (6.30).

From (6.30) it follows that |Vs| ≥ n2s−ε ≥ nd−3−ε, and, by Lemma 6.6
and Remark 6.7, capR(w2) ≥ cn2−ε, with 1− s.e.(n) probability. Consider
now random walks in Vs. After hitting As−1 the rest of their trajectories
is independent of the past, so Lemma 6.3 once more implies that

P [{Xk
HAs−1

, . . . , Xk
HAs−1

+n2} ∩R(w2)] ≥ n4−d−ε]. (6.32)
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Hence, the event ’at least one walk in Vs hits R(w2)’ has probability at
least 1− s.e.(n). This implies (6.26) and completes the proof of (6.3).

The proof of (6.4) is analogous, it is sufficient to take w2 ∈ suppµB(n),u′ \
suppµB(n),u.

The proof of Proposition 6.2, that we just finished, has some interesting
consequences. We actually proved that the set

Īun :=
⋃

w∈suppµB(n),u

R(w) (6.33)

is with high probability connected. Since R(w) ⊂ B(3n), we see Īun ⊂ Iun
is connected ‘locally’, that is one does not to go far from B(n) to make
a connection. Of course, in general, Rangew ∩ B(n) 6= R(w) ∩ B(n), so
we did not show that Iun ∩ B(n) is ‘locally connected’. However, it is not
difficult to extend the previous techniques to show

P[every x, y ∈ B(n)∩Iu are connected in Iu∩B(3n)] = 1−s.e.(n). (6.34)

Another consequence of the previous proof is the following claim. With
probability 1 − s.e.(n), for every pair w,w′ ∈ suppµB(n),u there are w =
w0, w1, . . . , ws+1 = w′ ∈ suppµB(n),u such that wi intersects wi−1, i =
1, . . . , s+ 1. Borel-Cantelli lemma then implies:

Corollary 6.8 (d ≥ 5). Consider (random) graph G whose vertices are all
trajectories in suppµZd,u, and whose two vertices are connected by an edge
iff the corresponding trajectories intersect. Then P-a.s., the diameter of G
satisfies diamG ≤ bd/2c.

Surprisingly, this bound is optimal when d is odd. The correct upper
bound (and in fact also the lower bound) is given in the following theorem.

Theorem 6.9 ([31, 34]). For every u > 0, the diameter of G equals dd/2e−
1, P-a.s.

For even d’s, our upper bound exceeds the correct one by one. The main
reason for this is that we decided to prove s.e.(n) bounds on probabilities,
which in turn forced us to loose nε it many steps. These nε’s are what
is missing in the last paragraph of the proof of Proposition 6.2 to get the
optimal bound.

Almost the same techniques, however, allow to show that (cf. (6.30),
(6.32)), for all n large enough,

P[|V` ≥ cn2`−2] > c′ > 0 and P[w2 intersects As] > c′. (6.35)

In [34], estimates similar to (6.35) together with ideas inspired by Wiener
test (see [26, Theorem 2.2.5]) are applied to obtain the optimal upper
bound.
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Our proof of Proposition 6.2 has yet another consequence on what is
called chemical distance on the interlacement set, defined for x, y ∈ Iu by

ρu(x, y) = min
{
n : ∃x = z0, z1, . . . , zn = y such that

zi ∈ Iu and |zi − zi−1| = 1, i = 1, . . . , n
}
.

(6.36)

Claim (6.34) easily yields,

P[ρu(x, y) ≤ 9nd ∀x, y ∈ B(n) ∩ Iu] = 1− s.e.(n). (6.37)

The bound 9nd is of course far from being optimal. (6.37) is however one
of the ingredients of the optimal upper bound Cn which is proved in [12]:

Theorem 6.10 ([12]). For every u > 0 and d ≥ 3 there exist constants
C,C ′ <∞ and δ ∈ (0, 1) such that

P
[
there exists x ∈ Iu∩[−n, n]d such that ρu(0, x) > Cn

∣∣0 ∈ Iu] ≤ C ′e−nδ .
6.1 Notes

The properties of interlacement set Iu on Zd were investigated already in
the paper [43]. A weaker version of Theorem 6.1 is proved there (see (2.21)
in [43]), namely, for every u > 0,

P[Iu is connected] = 1, (6.38)

which is sufficient to deduce the absence of the phase transition. The proof
of [43] is based on the Burton-Keane argument [11].

Theorem 6.1 states that for every u > 0, Iu is supercritical. It is thus
natural to ask, as in the Bernoulli-percolation theory, to which extend the
geometry of Iu (at large scales) resembles the geometry of the complete
lattice Zd.

Recently, many results going in this direction appeared. In [35] it was
proved that Iu percolates in two-dimensional slabs, namely that for every
u > 0 and d ≥ 3 exists R > 0 such that Iu ∩ (Z2 × [0, R]d−2) contains
an infinite component P-a.s. In [33] it was further shown that the random
walk on Iu is P-a.s. transient. Theorem 6.10 is another result of this type.

Theorem 6.9, giving the diameter of the graph G, was independently
shown by Procaccia and Tykesson [31] using ideas of stochastic dimension
theory developed in [5], and by Ráth and Sapozhnikov [34] whose methods
are commented above.

The techniques used in our proof of Proposition 6.2 are mixture of meth-
ods from [34] (where we borrowed Lemmas 6.4 and 6.5) and [12] (which
contains contains many s.e.(n) estimates).

The results of this chapter can be used to deduce some properties of the
trace {X0, . . . , XuNd} of the simple random walk on the torus. E.g., Theo-
rem 6.10 was combined in [12] with the coupling of random interlacements
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and random walk from [49] to control the chemical distance on the random
walk trace.



Chapter 7

Locally tree-like graphs

In the previous chapters we have studied the random walk on the torus
and the corresponding interlacement set on Zd. We have seen that in
that case many interesting questions are still open, including the existence
of a sharp phase transition in the connectivity of the vacant set of the
random walk, and its correspondence to the phase transition of random
interlacements. Answering these questions requires a better control of the
random interlacements in both sub-critical and supercritical phase which
is not available at present.

In this chapter we are going to explore random interlacements on graphs
where such control is available, namely on trees. We will then explain how
such control can be used to show the phase transition for the vacant set of
random walk on finite ‘locally tree-like’ graphs, and to give the equivalence
of critical points in both models. In other worlds, we prove Conjecture 2.6
on the locally tree-like graphs.

7.1 Random interlacements on trees

We start by considering random interlacements on trees. We will show that
vacant clusters of this model behave like Galton-Watson trees, which allows
us to perform many exact computations. As in this lecture notes we only
deal with random walks and random interlacements on regular graphs, we
restrict our attention to regular trees only.

Let Td be infinite d-regular tree, d ≥ 3, for which the simple random
walk is transient. We may therefore define random interlacements on Td
similarly as we did for Zd.

We write Px for the law of the canonical simple random walk (Xn) on Td
started at x ∈ Td, and denote by eK , K ⊂⊂ Td the equilibrium measure,

eK(x) = Px[H̃K =∞]1{x ∈ K}. (7.1)

52
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Observe that if K is connected, eK can be easily computed. Indeed, denot-
ing by d(·, ·) the graph distance on the tree, we observe that under Px, the
process d(Xn, x) has the same law as a drifted random walk on N started
at 0. If not at 0, this walk jumps to the right with probability (d − 1)/d
and to the left with probability 1/d; at 0 it goes always to the right. Us-
ing standard computation for the random walk with drift, see e.g. [54],
Lemma 1.24, it is then easy to show that

Px[H̃x =∞] = Py[Hx =∞] =
d− 2

d− 1
, (7.2)

for every neighbor y of x. For K connected, we then get

eK(x) =
1

d
#{y : y ∼ x, y /∈ K}d− 2

d− 1
, (7.3)

where the first two terms give the probability that the first step of the
random walk exists K.

We consider spaces W+, W , W ?, Ω and measures QK defined similarly
as in Chapter 3, replacing Zd by Td in these definitions when appropriate.
As in Theorem 3.1, it can be proved that there exists a unique σ-finite
measure ν on (W ?,W?) satisfying the restriction property (3.14). Using
this measure, we can then construct a Poisson point process ω on W ?×R+

with intensity measure ν(dw?)⊗ du and define the interlacements at level
u and its vacant set as in (3.27), (3.28).

The main result of this section is the following theorem.

Theorem 7.1 ([46], Theorem 5.1). Let x ∈ Td and define fx : Td → [0, 1]
by

fx(z) = Pz[d(Xn, x) > d(x, z) for all n > 0]

× Pz[d(Xn, x) ≥ d(x, z) for all n ≥ 0].
(7.4)

Then the vacant cluster of Vu containing x in the random interlacements
has the same law as the open cluster containing x in the inhomogeneous
independent Bernoulli site percolation on Td characterized by

Prob[z is open] = exp{−ufx(z)}. (7.5)

Remark 7.2. 1. Observe that on Td, fz(x) is the same for all z 6= x. Hence,
the cluster of Vu containing x can be viewed as a Galton-Watson tree with
a particular branching law in the first generation.

2. Beware that the joint law of, e.g., vacant clusters containing two
points x 6= y ∈ Td is not the same as in the Bernoulli percolation.

Proof. We partition the space W ? into disjoint subsets W ?,z according to
the position where w? ∈W ? get closest to the given point x,

W ? =
⊔
z∈Td

W ?,z, (7.6)



54 Černý, Teixeira

where

W ?,z =
{
w? ∈W ? : z ∈ Ran(w?), d

(
x,Ran(w?)

)
= d(x, z)

}
. (7.7)

(The fact that W ?,z are disjoint follows easily from the fact that Td is a
tree.)

As a consequence of disjointness we obtain that the random variables
ω(W ?,z × [0, u]) are independent. We may thus define independent site
Bernoulli percolation on Td by setting

Y uz (ω) = 1{ω(W ?,z × [0, u]) ≥ 1} for z ∈ Td. (7.8)

By (3.9), (3.14) and (7.7), we see that

P[Y uz = 0] = exp{−ufx(z)}. (7.9)

To finish the proof of the theorem, it remains to observe that the null
cluster of (Y u· ) containing x coincides with the component of Vu containing
x. The easy proof of this claim is left as exercise.

As a corollary of Theorem 7.1 and (7.3) we obtain the value of critical
threshold of random interlacements on Td which, similarly as on Zd, is
defined by

u?(Td) = inf
{
u ≥ 0 : P[the cluster of x in Vu is infinite] = 0

}
. (7.10)

Corollary 7.3. The critical point of the random interlacements on Td is
given by

u?(Td) =
d(d− 1) log(d− 1)

(d− 2)2
. (7.11)

Proof. For z 6= x, by considering drifted random walk as above (7.1), it is
easy to see that

fx(z) =
d− 2

d− 1
× d− 1

d

d− 2

d− 1
=

(d− 2)2

d(d− 1)
. (7.12)

Hence, the offspring distribution of the Galton-Watson process mentioned
in Remark 7.2 is (except in the first generation) binomial with parameters

(d−1, exp{−u (d−2)2

d(d−1)}). This Galton-Watson process is critical if the mean

of its offspring distribution is equal one, implying that u?(Td) is the solution
of

(d− 1) exp
{
− u (d− 2)2

d(d− 1)

}
= 1, (7.13)

yielding (7.11).
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Remark 7.4. For the previous result, the offspring distribution in the first
generation is irrelevant. Using (7.1) and Theorem 7.1, it is however easy
to see that (for k = 0, . . . , d)

P[x ∈ Vu] = e−u cap(x) = e−ufx(x) = e−u(d−2)/(d−1), (7.14)

P
[
|Vu ∩ {y : y ∼ x}| = k

∣∣x ∈ Vu] =

(
d

k

)
e−uk

(d−2)2

d(d−1)
(
1− e−u

(d−2)2

d(d−1)
)d−k

.

(7.15)

We will need these formulas later.

7.2 Random walk on tree-like graphs

We now return to the problem of the vacant set of the random walk on
finite graphs. However, instead of considering the torus as in Chapter 2,
we are going to study graphs that locally look like a tree, in hope to use
the results of the previous section.

Actually, most of this section will deal with so-called random regular
graphs. Random d-regular graph with n vertices is a graph that is chosen
uniformly from the set Gn,d of all simple (i.e. without loops and multiple
edges) graphs with the vertex set Vn = [n] := {1, . . . , n} and all vertices
of degree d, assuming tacitly that nd is even. We let Pn,d to denote the
distribution of such graph, that is the uniform distribution on Gn,d.

It is well know that with probability tending to 1 as n increases, the
majority of vertices in random regular graph has a neighborhood with
radius c log n which is graph-isomorph to a ball in Td.

For a fixed graph G = (V, E) let PG be the law of random walk on G
started from the uniform distribution and (Xt)t≥0 the canonical process.
As before we will be interested in the vacant set

VuG = V \ {Xt : 0 ≤ t ≤ u|V |}, (7.16)

and denote by Cumax its maximal connected component.
We will study the properties of the vacant set under the annealed measure

Pn,d given by

Pn,d(·) =

∫
PG(·)Pn,d(dG)

(
=
∑
G

PG(·)Pn,d[G]
)
. (7.17)

The following theorem states that a phase transition occurs in the be-
havior of the vacant set on random regular graph.

Theorem 7.5 (d ≥ 3, u? := u?(Td)).

(a) For every u < u? there exist constant c(u) ∈ (0, 1) such that

n−1|Cmax|
n→∞−−−−→ c(u) in Pn,d-probability. (7.18)
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(b) When u > u?, then for every ε there is K(u, ε) <∞ such that for all
n large

Pn,d[|Cmax| ≥ K(u, ε) log n] ≤ ε. (7.19)

Observe that Theorem 7.5 not only proves the phase transition, but also
confirms that the critical point coincides with the critical point of random
interlacements on Td. The theorem was proved (in a weaker form but
for a larger class of graphs) in [14]. In these notes, we are going to use a
simple proof given by Cooper and Frieze [15] which uses in a clever way the
randomness of the graph. Besides being simple, this proof has an additional
advantage that it can be used also in the vicinity of the critical point: By
a technique very similar to the ones presented here, it was proved in [13]
that the vacant set of the random walk exhibits a double-jump behavior
analogous to the maximal connected cluster in Bernoulli percolation:

Theorem 7.6.

(a) Critical window. Let (un)n≥1 be a sequence satisfying

|n1/3(un − u?)| ≤ λ <∞ for all n large enough. (7.20)

Then for every ε > 0 there exists A = A(ε, d, λ) such that for all n
large enough

Pn,d[A
−1n2/3 ≤ |Cunmax| ≤ An2/3] ≥ 1− ε. (7.21)

(b) Above the window. When (un)n≥1 satisfies

u? − un
n→∞−−−−→ 0, and n1/3(u? − un)

n→∞−−−−→∞, (7.22)

then

|Cunmax|/n2/3 n→∞−−−−→∞, in Pn,d-probability. (7.23)

(c) Below the window. When (un)n≥1 satisfies

u? − un
n→∞−−−−→ 0, and n1/3(u? − un)

n→∞−−−−→ −∞, (7.24)

then

|Cunmax|/n2/3 n→∞−−−−→ 0. in Pn,d-probability. (7.25)

We will now sketch the main steps of the proof of Theorem 7.5. Detailed
proofs can be found in [15, 13].
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7.2.1 Very short introduction to random graphs

We start by reviewing some properties of random regular graphs, for more
about these graphs see e.g. [7, 55].

It turns out that it is easier to work with multi-graphs instead of simple
graphs. Therefore we introduce Mn,d for the set of all d-regular multi-
graphs with vertex set [n].

For reasons that will be explained later, we also define random graphs
with a given degree sequence d : [n] → N. We will use Gd to denote
the set of graphs for which every vertex x ∈ [n] has the degree dx =
d(x). Similarly,Md stands for the set of such multi-graphs; here loops are
counted twice when considering the degree. Pn,d and Pd denote the uniform
distributions on Gn,d and Gd respectively. We say that a given event holds
asymptotically almost surely (denoted by Pn,d-a.a.s. or Pd-a.a.s depending
on the case) if it holds with probability converging to one, with respect to
Pn,d or Pd.

We first introduce the pairing construction, which allows to generate
graphs distributed according to Pn,d, starting from a random pairing of a
set with dn elements. The same construction can be used to generate a
random graph chosen uniformly at random from Gd.

We consider a sequence d : Vn → N such that
∑
x∈Vn dx is even. Given

such a sequence, we associate to every vertex x ∈ Vn, dx half-edges. The
set of half-edges is denoted by Hd = {(x, i) : x ∈ Vn, i ∈ [dx]}. We write
Hn,d for the case dx = d for all x ∈ Vn. Every perfect matching M of
Hd (i.e. partitioning of Hd into |Hd|/2 disjoint pairs) corresponds to a
multi-graph GM = (Vn, EM ) ∈Md with

EM =
{
{x, y} :

{
(x, i), (y, j)

}
∈M for some i ∈ [dx], j ∈ [dy]

}
. (7.26)

We say that the matching M is simple, if the corresponding multi-graph
GM is simple, that is GM is a graph. With a slight abuse of notation, we
write P̄d for the uniform distribution on the set of all perfect matchings of
Hd, and also for the induced distribution on the set of multi-graphs Md.
It is well known (see e.g. [7] or [29]) that a P̄d distributed multi-graph G
conditioned on being simple has distribution Pd, that is

P̄d[G ∈ · |G ∈ Gd] = Pd[G ∈ · ], (7.27)

and that, for d constant, there is c > 0 such that for all n large enough

c < P̄n,d[G ∈ Gn,d] < 1− c. (7.28)

These two claims allow to deduce Pn,d-a.a.s. statements directly from P̄n,d-
a.a.s. statements.

The main advantage of dealing with matchings is that they can be con-
structed sequentially: To construct a uniformly distributed perfect match-
ing of Hd one samples without replacements a sequence h1, . . . , h|Hd| of
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elements of Hd in the following way. For i odd, hi can be chosen by an
arbitrary rule (which might also depend on the previous (hj)j<i), while if
i is even, hi must be chosen uniformly among the remaining half-edges.
Then, for every 1 ≤ i ≤ |Hd|/2 one matches h2i with h2i−1.

It is clear from the above construction that, conditionally on M ′ ⊆ M
for a (partial) matching M ′ of Hd, M \ M ′ is distributed as a uniform
perfect matching of Hd \{(x, i) : (x, i) is matched in M ′}. Since the law of
the graph GM does not depend on the labels ‘i’ of the half-edges, we obtain
for all partial matchings M ′ of Hd the following restriction property,

P̄d[GM\M ′ ∈ · |M ⊃M ′] = P̄d′ [GM ∈ ·], (7.29)

where d′x is the number of half-edges incident to x in Hd that are not yet
matched in M ′, that is

d′x = dx −
∣∣{{(y1, i), (y2, j)} ∈M ′ : y1 = x, i ∈ [dx]}

∣∣, (7.30)

and GM\M ′ is the graph corresponding to a non-perfect matching M \M ′,
defined in the obvious way.

7.2.2 Distribution of the vacant set

We now study the properties of the vacant set of random walk. Instead of
the vacant set, it will be more convenient to consider the following object
that we call vacant graph Vu. It is defined by Vu = (V, Eu) with

Eu = {{x, y} ∈ E : x, y ∈ VuG}. (7.31)

It is important to notice that the vertex set of Vu is a deterministic set
V and not the random set VuG, in particular Vu is not the graph induced
by VuG in G. Observe however that the maximal connected component of
the vacant set Cmax (defined before in terms of the graph induced by Vu in
G) coincides with the maximal connected component of the vacant graph
Vu (except when Vu is empty, but this difference can be ignored in our
investigations).

We use Du : V → N to denote the (random) degree sequence of Vu, and
write Qun,d for the distribution of this sequence under the annealed measure

P̄n,d, defined by P̄n,d(·) :=
∫
PG(·)P̄n,d(dG)

(
=
∑
G P

G(·)P̄n,d[G]
)
.

The following important but simple observation from [15] allows to re-
duce questions on the properties of the vacant set Vu of the random walk
on random regular graphs to questions on random graphs with given degree
sequences.

Proposition 7.7 (Lemma 6 of [15]). For every u ≥ 0, the distribution of
the vacant graph Vu under P̄n,d is given by P̄d where d is sampled according
to Qun,d, that is

P̄n,d[V
u ∈ · ] =

∫
P̄d[G ∈ · ]Qun,d(dd)

(
=
∑
d

Pd[G ∈ · ]Qun,d(d)
)
. (7.32)
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Proof. The full proof is given in [15] and [13], here we give a less rigorous
but more transparent explanation. The main observation behind this proof
is the following joint construction of a P̄n,d distributed multi-graph and a
(discrete-time) random walk on it.

1. Pick X0 in V uniformly.

2. Pair all half-edges incident to X0 according to the pairing construc-
tion given above.

3. Pick uniformly a number Z0 in [d] and set X1 to be the vertex paired
with (X0, Z0).

4. Pair all not-yet paired half-edges incident to X1 according to the
pairing construction.

5. Pick uniformly a number Z1 in [d] and set X2 to be the vertex paired
with (X1, Z1).

6. . . .

7. Stop when X|V |u and its neighbors are known.

At this moment we have constructed the first |V |u steps of the random
walk trajectory and determined all edges in the graph that are incident to
vertices visited by this trajectory. To finish the construction of the graph
we should

(8) Pair all remaining half-edges according to the pairing construction.

It is not hard to observe that the edges created in step (8) are exactly
the edges of the vacant graph Vu and that the degree of x in Vu is known
already at step (7). Using the restriction property of partial matchings
(7.29), it is then not difficult to prove the proposition.

Due to the last proposition, in order to show Theorem 7.5 we need an
information about two objects: the maximal connected component of a
Pd-distributed random graph, and about the distribution Qun,d. We deal
with them in the next two subsections.

7.2.3 Random graphs with a given degree sequence.

The random graphs with a given (deterministic) degree sequence are well
studied. A rather surprising fact, due to Molloy and Reed [30] is that the
phase transition in its behavior is characterized by a single real parameter
computed from a degree sequence. We give a very weak version of result
of [30]:
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Theorem 7.8. For a degree sequence d : [n]→ N, let

Q(d) =

∑n
x=1 d

2
x∑n

x=1 dx
− 2. (7.33)

Consider now a sequence of degree sequences (dn)n≥1, dn : [n] → N,
and assume that the degrees dnx are uniformly bounded by some ∆ and that
|{x ∈ [n] : dnx = 1}| ≥ ζn for a ζ > 0. Then

• If lim inf Q(dn) > 0, then there is c > 0 such that with P̄d probability
tending to one the maximal connected component of the graph is larger
than cn.

• When lim supQ(dn) < 0, then the size of the maximal connected
component of P̄d-distributed graph is with high probability o(n).

Later works, see e.g. [23, 21], give a more detailed description of random
graphs with given degree sequences, including the description of the critical
window which allows to deduce Theorem 7.6.

7.2.4 The degree sequence of the vacant graph

We will show that the distribution of the degree sequence of the vacant
graph is the same as the distribution of the number of vacant neighbors of
any given vertex x in a random interlacements on Td. More precisely, it
follows from Remark 7.4 that the probability that x ∈ VuTd and its degree
in VuTd is i, i = 0, . . . , d, is given by

dui := e−u
d−2
d−1

(
d

i

)
piu(1− pu)d−i, (7.34)

with pu = exp{−u (d−2)2

d(d−1)}.
Recall Du denotes the degree sequence of the vacant graph Vu. For

any degree sequence d, ni(d) denotes the number of vertices with degree
i in d. The following theorem states that quenched expectation of ni(Du)
concentrates around ndui .

Theorem 7.9. For every u > 0 and every i ∈ {0, . . . , d},∣∣EG[ni(Du)]− ndui
∣∣ ≤ c(log5 n)n1/2, P̄n,d-a.a.s. (7.35)

We decided to not to present the proof of this theorem in these notes, as
it uses very similar arguments as the proofs in Chapter 2. The full proof
can be found in [49].

In order to controlQun,d we need to show that ni(Du) concentrates around
its mean. This is the result of the following theorem that holds for deter-
ministic graphs.
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Theorem 7.10. Let G be a d-regular (multi)graph on n vertices whose
spectral gap λG is larger than some α > 0. Then, for every ε ∈ (0, 1

4 ), and
for every i ∈ {0, . . . , d},

PG
[
|ni(Du)− EG[ni(Du)]| ≥ n1/2+ε

]
≤ cα,εe−cα,εn

ε

. (7.36)

The proof of this theorem uses concentration inequalities for Lipschitz
functions of sequences of not-independent random variables, and can be
found in [13].

From Theorems 7.9 and 7.10, it is easy to compute the typical value of
Q(Du). It turns out that it is positive when u < u? and negative when
u > u?. This proves via Theorem 7.8 and Proposition 7.7 the existence of
a phase transition of the vacant set.

In fact, the above results allow to compute Q(Du) up to an additive
error which is o(n−1/2+ε). This precision is more than enough to apply
the stronger results on the behavior of random graphs with given degree
sequences [21] and to show Theorem 7.6.

7.3 Notes

Theorem 7.1, that is the comparison of the cluster of the vacant set contain-
ing a given point with the cluster of Bernoulli percolation, can be general-
ized to arbitrary locally finite (weighted) trees. However, as the invariant
measure of the random walk is then in general not uniform, a slight care
should be taken in defining the random interlacements, see [46].

Apart Td, there is to our knowledge only one other case where the critical
value of random interlacements can be computed explicitly (and is non-
trivial), namely for the base graph being a Galton-Watson tree. In this
case, it was shown in [45] that u? is a.s. constant (i.e. ‘does not depend’ on
the realization of the Galton-Watson tree) and can be computed implicitly
as a solution to a particular equation.

As we have already mentioned, a result very similar to Theorem 7.5 was
first proved in [14] (see Theorems 1.2 and 1.3). In [14], the proof strategy
follows a description of the local measure, with a flavor similar to that of
Chapter 2, therefore it is very different from the techniques sketched in this
chapter. Although we believe that the local picture approach can hardly
work to the level of precision obtained in Theorem 7.6, the class of graphs
for which this technique applies is much broader: Let us informally mention
that Theorems 1.2 and 1.3 of [14] apply to any sequence of graphs (Gn)n≥1

such that for each n ≥ 1,

• Gn are d-regular,

• the spectral gap of Gn is bounded from below by a constant and

• there exists an ε > 0 such that every ball B(x, ε log n) in Gn has at
most one cycle.
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In [48] the interlacement set Iu was studied in various different graphs.
There, special emphasis was given to the connectivity of Iu on different
classes of graphs. More precisely, it was proven that

if G is a vertex-transitive, non-amenable graph,
then, for u > 0 small enough,

the interlacement set Iu is almost surely disconnected.
(7.37)

On the other hand,

if G is a vertex-transitive, amenable, transient graph,
then, for all u ≥ 0, Iu is a.s. connected.

(7.38)

An interesting example is given by the product Td × Zd′ of a d-regular
tree with a d′-dimensional lattice, with d ≥ 3 and d′ ≥ 1. In this case, we
know that there is a transition between a disconnected and a connected
phase for Iu as u crosses a critical threshold uc. It is worth mentioning
that this critical value has been proven in [48] to be unique, despite the
absence of monotonicity in connectivity properties of Iu.
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