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We study Markov processes with values in the space of general two-
dimensional arrays whose distribution is exchangeable. The results of
this paper are inspired by the theory of exchangeable dynamical random
graphs developed by H. Crane in [4, 5].

1. Introduction

The goal of this paper is to survey some of the recent results on the Marko-

vian dynamics of exchangeable random graphs due to Harry Crane [4, 5]

and generalise them to the context of dynamics of exchangeable random

arrays whose entries do not necessarily take values in a finite discrete set.

The paper extends the results presented by the authors in the learning

session “Genealogies of particles on dynamic random networks” during the

Programme “Genealogies of Interacting Particle Systems” of Institute for

Mathematical Sciences in August 2017. The learning session concentrated

on various aspects of the dynamics of random graphs and, in particular, of

particle systems on such graphs. While the original theory due to H. Crane
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cannot be applied directly in this context, the results of this paper could

be relevant, e.g., for exchangeable Markovian dynamics of particle systems

on weighted exchangeable dynamical random graphs.

Our results closely follow [4, 5]. However, as we cannot use the fact

that the entries of the array take values in a finite space, some of the

proofs require non-trivial modifications, which, in our opinion, sometimes

make them cleaner. Many of the results of [4, 5] depend very strongly on

the finiteness of the entry space and can’t be proved easily in the general

context. Those are omitted here.

Acknowledgements. The work was done partially while the authors were

visiting the Institute for Mathematical Sciences, National University of Sin-

gapore in 2017. The visit was supported by the Institute. AK’s visit was also

partially supported by the German Academic Exchange Service (DAAD).

2. Exchangeable random arrays

We will consider arrays with values in an arbitrary Polish space S. This

space will be endowed with its Borel σ-field B(S) and a compatible metric

dS , which we assume to be bounded by 1. We write P(S) for the set of

all probability measures on (S,B(S)) endowed with the topology of weak

convergence, which is a Polish space as well.

A random S-valued array is a collection Y = (Yij)ij∈N of S-valued

random variables on some probability space (Ω,A, P ). Otherwise said, Y is

S := SN2

valued random variable. We endow S with the product topology

and the compatible metric dS(y, y′) =
∑
i,j∈N 2−i−jdS(yij , y

′
ij).

For arbitrary set A ⊂ N, we define Y |A = (Yij)i,j∈A to be restriction

of Y to the index set A. In particular, with [n] := {1, . . . , n}, Y |[n] is its

restriction to the first n coordinates, Y |[n] ∈ Sn := SN
2

.

Similarly, for every probability distribution ν on S (or on Sm, m ≥ n),

we denote by ν|[n] its image under the canonical restriction from S (or

Sm) to Sn. It is a known fact that a sequence of measures µk ∈ P(S)

converges weakly to µ ∈ P(S), iff all its restrictions µk|[n], converge weakly

in P(Sn), or equivalently µk(f) → µ(f), for every bounded continuous

cylinder function f .

Let Σ be the set of all permutations of integers, that is the set of all

bijections of N which fix all but finitely many values; Σn denotes the set of

all permutations of [n]. For an array Y and π = (π1, π2) ∈ Σ2, we define

a new array Y π by Y π
ij = Yπ1(i)π2(j). For π ∈ Σ, we also define Y π by
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Y πij = Yπ(i)π(j). An array Y is called exchangeable if

Y
law
= Y π, for every π ∈ Σ2. (2.1)

An array Y is called weakly exchangeable if it is symmetric (i.e., Yij = Yji)

and

Y
law
= Y π, for every π ∈ Σ. (2.2)

The key result of the theory of random arrays is their characterisation

due to Aldous [1] and Hoover [6] which can be viewed as “two-dimensional

version” of de Finetti’s theorem.

Theorem 2.1: (a) If (Yij)i,j∈N is a S-valued exchangeable array, then there

exists a measurable function f : [0, 1]4 → S such that Y
law
= Y ?, where

Y ?ij = f(U,Ui, U
′
j , Uij), (2.3)

and U , (Ui)i∈N, (U ′i)i∈N, and (Uij)i,j∈N are independent collections of

i.i.d. Uniform([0, 1]) random variables.

(b) If (Yij)i,j∈N is a S-valued weakly exchangeable array, then the analo-

gous statement holds with a function f : [0, 1]4 → S satisfying f(·, x, y, ·) =

f(·, y, x, ·), and with

Y ?ij = Y ?ji = f(U,Ui, Uj , Uij), i ≥ j. (2.4)

The representing function f of the Aldous-Hoover theorem is not

uniquely determined. E.g., in the case (a), if two functions f and f ′ sat-

isfy f(a, b, c, d) = f(T1(a), T2(b), T3(c), T4(d)) for some measure preserving

transformations T1, . . . , T4 of [0, 1], then the corresponding exchangeable

arrays have the same distribution.

A (weakly) exchangeable array is called dissociated if

(Yij : i, j ≤ n) is independent of (Yij : i, j > n), for each n. (2.5)

It is obvious that if the function f in the representation of Theorem 2.1

does not depend on the first coordinate, then Y is dissociated. Converse

statement hold as well, see Corollary 14.13 in [2].

Dissociated arrays play a similar role as i.i.d. sequences do in the theory

of exchangeable sequences: Every (weakly) exchangeable array is a mixture

of (weakly) exchangeable dissociated arrays. To state this more formally,

we need more definitions.

A set A ∈ B(S) is called exchangeable if A = Aπ for every π ∈ Σ2, where

Aπ = {xπ : x ∈ A} and xπij = xπ1(i)π2(j). The collection ES ⊂ B(S) of all
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exchangeable sets is called the exchangeable σ-field. For an exchangeable

array Y , we define EY = {A ∈ A : Y (A) ∈ ES}. We use DS ⊂ P(S) to

denote the set of all distributions of dissociated exchangeable arrays, which

is a closed subset of P(S). We write D̃S for the set of all distributions of

dissociated weakly exchangeable arrays.

The following proposition follows from Proposition 14.8 and Theo-

rem 12.10 of [2].

Proposition 2.2: (a) A (weakly) exchangeable array Y is dissociated iff

P (A) ∈ {0, 1} for every A ∈ EY , that is its exchangeable σ-field is P -trivial.

(b) Let Y be an exchangeable array and α its regular conditional distri-

bution given EY . Then, α(ω) ∈ DS for P -a.e. ω. Moreover, the distribution

µY of Y can be written as

µY (·) =

∫
DS

ν(·)ΛY (dν) (2.6)

for a uniquely determined probability measure ΛY on DS.

Important feature of exchangeable arrays is that regular conditional

distribution α of Y given EY can be recovered from a realisation of Y by

the following procedure. For m ≥ n, and y ∈ S, let ty,nm ∈ P(Sn) be defined

by

ty,nm =
1

((m)n)2

∑
ψ1,ψ2

δ(yψ1(i),ψ2(j))i,j∈[n]
, (2.7)

where the sum runs over all injections ψ1, ψ2 : [n]→ [m] and (m)n = m(m−
1) . . . (m− n+ 1). ty,nm can be viewed as the empirical distribution of n× n
sub-arrays in the array y|[m]. We further define

ty,n = lim
m→∞

ty,nm (2.8)

whenever this limit exists in the weak sense, and set |y| = (ty,n)n≥1 when-

ever all ty,n, n ≥ 1, exist.

It follows from the construction that the probability measures ty,nm , n =

1, . . . ,m, are consistent in the sense that ty,nm |[n−1] = ty,n−1
m for every 2 ≤

n ≤ m. This consistence transfers to the limit, that is

ty,n|[n−1] = ty,n−1, for every n ≥ 2. (2.9)

Therefore, in view of Kolmogorov’s extension theorem, |y|, when it exists,

can be viewed as an element of P(S).
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It will be suitable to define |y| := ∂ for y ∈ S for which some of the

limits ty,n does not exist. Here, ∂ is an arbitrary symbol, and we then view

|y| as a map from S to D?S := DS ∪ {∂}.
In the weakly exchangeable case, we set t̃y,nm by

t̃y,nm =
1

(m)n

∑
ψ

δ(yψ(i),ψ(j))i,j∈[n]
, (2.10)

where the sum runs over all injections π from [n] to [m]. We then define

t̃y,n and |y| = (t̃y,n)n≥1 analogously as in the exchangeable case.

The next proposition establishes the connection between |Y | and its

regular conditional distribution α.

Proposition 2.3: Let Y be an (weakly) exchangeable array and α its reg-

ular conditional distribution given EY . Then, for P -a.e. ω, |Y (ω)| = α(ω).

In particular, |Y (ω)| ∈ DS (resp. |Y (ω)| ∈ D̃S), P -a.s.

As can be seen from the previous results, the differences between ex-

changeable and weakly exchangeable arrays are mostly a matter of notation.

That is why, from now on, we mostly focus on the exchangeable case; the

corresponding statements for the weakly exchangeable case can be derived

easily.

2.1. Relation to exchangeable graphs and graph limits

The above construction is a straightforward generalisation of the graph

limit construction from the theory of dense random graphs, which we recall

briefly.

A (vertex) exchangeable random graph is a random graph G with count-

ably many vertices labelled by N whose distribution is invariant under per-

mutations of the labels. By considering the adjacency matrix (Gij)i,j∈N of

this graph, it can be viewed as a {0, 1}-valued weakly exchangeable array

whose diagonal entries are 0.

Graph limits were introduced by Lovász and Szegedy [7] while studying

sequences of dense graphs. They encode the limiting density of finite sub-

graphs in an infinite graph. Formally, let Gn be the set of all graphs with n

vertices labelled by [n]. For m ≥ n and F ∈ Gn and G ∈ Gm, let ind(F,G)

be the number of injections ψ : [n] → [m] such that Gψ(i)ψ(j) = Fij for all

i, j ∈ [n]. Then, for every infinite graph G with vertices labelled by N, one

can define the “density of F in G”

t(F,G) = lim
m→∞

ind(F,G|[m])

(m)n
, F ∈ Gn. (2.11)
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It can be checked easily that t(·, G), restricted to Gn, if it exists, is a

probability measure on Gn. This probability measure, in fact, coincides with

the measure tG,n that was introduced in (2.8), when graphs are identified

when their adjacency matrices.

By construction, every t(·, G) is invariant under action of Σ,

t(Fπ, G) = t(F,G), for every F ∈ Gn, π ∈ Σn. (2.12)

Similarly, the following consistency relation, corresponding to (2.9) above,

holds:

t(F,G) =
∑

F̄∈Gm:F̄ |[n]=F

t(F̄ , G). (2.13)

That means that (t(F,G))F∈∪nGn , if it exists for every F ∈ ∪nGn, can

be viewed (again in the sense of Kolmogorov’s extension theorem) as a

distribution of a random graph, which must be exchangeable due to (2.12).

This distribution corresponds to |y| of the previous section.

3. Dynamics of exchangeable arrays

We now turn to the main goal of this paper, the investigation of processes

X = (X(t))t∈T taking values in the space S of two-dimensional S-valued

arrays. Here, T denotes the set of times which can be both discrete, T = N0,

or continuous T = [0,∞).

In the continuous-time case, we assume that the sample paths of X are

càdlàg. Since we endowed S with the product topology, this is the case iff

every restriction X|[n] has càdlàg paths in Sn, or equivalently, t 7→ Xij(t)

is càdlàg for every i, j ∈ N. We write, D(S) for the space of all càdlàg

functions from T to S, endowed with the usual Skorokhod topology. The

previous reasoning implies that D(S) = D(S)N
2

.

A S-valued process X is called exchangeable, if

Xπ := (Xπ(t))t∈T
law
= X, for every π ∈ Σ2. (3.1)

Equivalently, viewing X as an array of functions (t 7→ Xij(t))i,j∈N, it is

often useful to regard X as an exchangeable D(S)-valued array.

The process X is a Markov process when the Markov property holds,

that is the past (X(s))s≤t and the future (X(s))s≥t are conditionally inde-

pendent given the present X(t) for all t ∈ T .

We call a S-valued Markov process X exchangeable if
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(a) its initial state X(0) is a S-valued exchangeable array, that is

X(0)π
law
= X(0). (3.2)

(b) its transition kernels

ps,t(x,A) := P [X(t) ∈ A | X(s) = x], s < t ∈ T,A ∈ B(S), (3.3)

are invariant under action of Σ2, that is for every π ∈ Σ2, s < t ∈ T ,

x ∈ S, and A ∈ B(S)

ps,t(x
π, Aπ) = ps,t(x,A). (3.4)

For convenience, we mostly omit “S-valued” from the terminology and

say, e.g., “exchangeable Markov process” instead of “S-valued exchange-

able Markov process”.

The first theorem of this section implies that the “projection” of X to

the space of dissociated arrays is a.s. well defined. Remark that Markov

property is not assumed.

Theorem 3.1: Let X be an exchangeable process with càdlàg sample paths.

Then, P -a.s., |X(t)| ∈ DS, for all t ∈ T .

Proof: In the discrete-time case, it suffices to observe that X(t) is an

exchangeable S-valued array for every t ∈ N0. By Proposition 2.3, |X(t)| ∈
DS , P -a.s., and the claim follows, since N0 is countable.

In the continuous-time case, we first assume that the distribution of X

is dissociated, and use the fact that X can be viewed as D(S)-valued array.

Using Proposition 2.3, with D(S) in place of S, we see that for every n ∈ N,

the sequence tX,nm of probability measures on D(Sn) converges weakly as

m→∞ P -a.s. to some tX,n ∈ P(D(Sn)). Moreover, since we assume that X

is dissociated, tX,n is a.s. deterministic and coincides with the distribution

of X|[n].

Let JXn be the (deterministic) set of times defined by

JXn =
{
t ∈ T : tX,n

(
{x ∈ D(Sn) : t is a jump point of x}

)
> 0
}
. (3.5)

By the general theory of probability measures on Skorokhod spaces, see

Chapter 15 in [3], JXn is at most countable. Therefore, using the same

argument as in the discrete case, P -a.s., |X(t)| ∈ DS for all t ∈ ∪nJXn .

For t ∈ T \∪nJXn , the coordinate projections φt : D(Sn) 3 x 7→ x(t) ∈ Sn
are tX,n-a.s. continuous. By Theorem 5.1 of [3], the weak convergence of

tn,Xm then implies the existence of the weak limit tX(t),n := φt ◦ tX,n =

limm→∞ φt ◦ tX,nm = limm→∞ t
X(t),n
m . The limit measures tX(t),n ∈ P(Sn)
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are consistent and dissociated, as tX,nm are, and thus determine a probability

measure |X(t)| ∈ DS , P -a.s., simultaneously for all t ∈ T \ ∪nJXn .

The last two paragraphs together imply that for a dissociated X,

P [|X(t)| ∈ DS for all t ∈ T ] = 1.

A general exchangeable càdlàg process X can be written as a mixture of

dissociated processes by conditioning on EX , by Proposition 2.2. Therefore,

P [|X(t)| ∈ DS for all t ∈ T ]

=

∫
Ω

P [|X(t)| ∈ DS for all t ∈ T | EX ](ω)P (dω).
(3.6)

Under P [· | EX ], the law of X is dissociated, and thus the integrand equals 1,

a.s., by the previous paragraph. This completes the proof.

From Proposition 2.3, we know that |X(t)| is a regular conditional dis-

tribution of X(t) given its exchangeable σ-field EX(t). For processes, there

is another exchangeable σ-field, EX , associated to the whole process,

EX = {A ∈ A : X(A) ∈ ED(S)}, (3.7)

where ED(S) is defined as ES with D(S) playing the role of S. Obviously,

EX ⊃ EX(t) for every t ∈ T , and EX(t) = EX ∩ σ(X(t)). We now show that

|X(t)| is also a regular conditional distribution of X(t) given EX .

Lemma 3.2: Let αX be the regular conditional distribution of X given EX .

Then, P -a.s.,

αX(ω,X(t) ∈ ·) = |X(t)|(ω, ·). (3.8)

or, equivalently, denoting by φt the projection D(S) 3 x 7→ x(t) ∈ S,

φt ◦ αX = |X(t)|. (3.9)

Proof: Heuristically, the proof uses the fact that |X(t)| is a dissociated

distribution, and dissociated distributions are extremal in the set of all

exchangeable distributions.

By properties of regular conditional distributions, for every C ∈ EX ,

and every bounded measurable f : S→ R,

E[1Cf(X(t))] =

∫
Ω

1C(ω)αX(ω, f ◦ φt)P (dω). (3.10)

By conditioning w.r.t. EX(t), we obtain∫
Ω

P (dω′)

∫
Ω

P (dω | EX(t))(ω
′)1C(ω)αX(ω, f ◦ φt). (3.11)
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Choosing C ∈ EX(t) ⊂ EX and using that 1C(ω) = 1C(ω′), P (· | EX(t))(ω
′)-

a.s., in this case, we get∫
Ω

P (dω′)1C(ω′)

∫
Ω

P (dω | EX(t))(ω
′)αX(ω, f ◦ φt), (3.12)

Observe that, as function of ω′, the inner integral is EX(t) measurable.

Therefore, ∫
Ω

P (dω | EX(t))(φt ◦ αX)(ω) (3.13)

is a version of regular conditional distribution of X(t) given EX(t), that is

it equals |X(t)|, P -a.s. However, |X(t)| is dissociated, and thus extremal in

the set of all exchangeable probability distributions. Therefore, necessarily,

(φt ◦ αX)(ω) = |X(t)|(ω) must hold true for P (· | EX(t))-a.e. ω. This then

implies that φt ◦ αX = |X(t)|, P -a.s., as claimed.

Theorem 3.3: The projection |X| = (|X(t)|)t∈T has P -a.s. càdlàg sample

paths.

Proof: Assume first that the distribution of X is dissociated, that is EX is

trivial. Then |X(t)| exists P -a.s. simultaneously for all t ∈ T , and when it

exists, then it coincides with the distribution of X(t). Since the trajectories

of X are càdlàg, lims↓tX(s) = X(t) pointwise and thus in distribution,

implying |X(t)| is right continuous.

On the other hand, let X−ij (t) = lims↑tXij(t). Then, X−(t) is exchange-

able array, and, by the same arguments as in the proof of Theorem 3.1,

one can show that |X−(t)| exists a.s. simultaneously for all t ∈ T . As the

distribution of X is dissociated, |X−(t)| agrees a.s. with the distribution of

X−(t). Repeating the argument from the first part of the proof, we obtain

lims↑t |X(s)| = |X−(t)|.
For a general exchangeable process X, we write its distribution as a

mixture of dissociated distributions by conditioning on EX ,

P (X ∈ ·) =

∫
Ω

P (dω)P (X ∈ · | EX)(ω). (3.14)

Under P (· | EX), the distribution of X is dissociated, and |X(t)| agrees

with regular conditional distribution of X(t) given EX , by Lemma 3.2. So,

by the previous reasoning, P (t 7→ |X(t)| is càdlàg | EX) = 1 a.s., and the

claim follows.

Theorem 3.4: Let X be an exchangeable Markov process. Then, |X| is a

D?S-valued Markov process with a.s. càdlàg sample paths.
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Proof: The càdlàg property follows from Theorem 3.3. We thus need to

show that the Markov property is preserved by the map S 3 y 7→ |y| ∈ D?S .

To this end, it is sufficient to show that for every s < t, and A ⊂ DS
measurable

ps,t(x,A
←) = ps,t(x

′, A←), for every x, x′ ∈ S with |x| = |x′|, (3.15)

where A← = {x ∈ S : |x| ∈ A}.
To prove this, observe first A← = (A←)π and thus, by the exchange-

ability (3.3) of the transition kernel

ps,t(x,A
←) = ps,t(x

π, (A←)π) = ps,t(x
π, A←), for all π ∈ Σ2. (3.16)

Hence, x 7→ ps,t(x,A
←) is ES measurable. In addition, by the same argu-

ments as in Corollary 3.10 of [2], ES agrees with the σ-field generated by

the map x 7→ |x|, which implies the claim.Is it clear?

4. Jumps of discrete-time Markov processes

In this and the next section, we study in detail the structure of the jumps of

time-homogeneous exchangeable Markov processes. We first consider pro-

cesses in discrete time, where the situation is rather simple.

Lemma 4.1: Let X be an exchangeable Markov process in discrete time.

Then, the array Jij(t) = 1{Xij(t − 1) 6= Xij(t)} encoding its jumps at

time t ≥ 1 is also exchangeable. As consequence, only the following two

possibilities occur a.s.

• X is constant at t, that is Xij(t− 1) = Xij(t) for all (i, j) ∈ N2.

• There is a positive proportion of entries which jump, that is

lim
n→∞

1

n2

∑
1≤i,j≤n

1{Xij(t− 1) 6= Xij(t)} > 0. (4.1)

Proof: The exchangeability of Jij(t) follows directly from the exchange-

ability of X. J(t) is then {0, 1}-valued exchangeable array. The proportion

of ones in this array equals tJ,1({1}) in the notation of Section 2. Therefore,

by Proposition 2.3, it exists a.s. If it is zero, then the array Jij must be

identically 0, a.s. Otherwise, there is a positive proportion of entries that

jump.
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4.1. Restrictions of Markov exchangeable processes are not

Markov

If one is interested not only in the occurrence of jumps, but also in their

“sizes”, this argument can be pushed even further, similarly as in [4]. For

t ≥ 1, consider S2-valued array Zij := (Xij(t − 1), Xij(t)), which is again

exchangeable. By Proposition 2.3 (with S2 in place of S), for every n ∈ N,

the limit tZ,n ∈ P(S2
n) exists a.s.

The measure tZ,n can be used to construct a new Markov transition

kernel qn on Sn, by disintegrating tZ,n with respect to its first marginal

tX(t−1),n,

tZ,n(dy1,dy2) = tX(t−1),n(dy1)qnt−1,t(y1,dy2), (4.2)

or, in the case when S is finite, simply by defining

qnt−1,t(y1, y2) =
tZ,n({(y1, y2)})
tX(t−1),n({y1})

, y1, y2 ∈ Sn. (4.3)

Since, by Proposition 2.3, tX,n agrees with the distribution of X|[n] given

EX , it is tempting to interpret the kernels qn as transition kernels ofX|[n] (at

least conditionally on EX), as is done in [4]: Proposition 4.8 of [4] contains,

among others, the following claim (stated in the notation of the present

paper):

Let X = (Xt)t∈T be a time-homogeneous exchangeable Markov

process, with T being finite. Conditioned on EX , X is dissociated,

and, moreover, for every n ∈ N, the restriction X|[n] of X to Sn
is (conditionally) a time-inhomogeneous Markov chain with tran-

sition probabilities qnt−1,t.

We now provide a counterexample for a part of this claim, namely that

X|[n] is (conditionally) Markov. We will also see that the transition kernel

of X|[n] is not qn.

Example 4.2: We work in the settings exchangeable random graphs, sim-

ilarly as in [4]. That is Xij(t) denotes the adjacency matrix of a random

exchangeable graph, which can thus be viewed as {0, 1}-valued weakly ex-

changeable array with zeros on the diagonal. We fix T = {0, 1, . . . , N} for

a large N .

To construct the process, let ξi, i ∈ N, be i.i.d. Bernoulli( 1
2 ) random

variables. In the initial configuration X(0), we draw an edge between ver-



May 2, 2018 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in exchgraphs page 12
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tices i 6= j (i.e., we set Xij(0) = 1) with probability pij(ξ), where

pij(ξ) =


1
4 , if ξi = ξj = 0,
1
2 , if ξi 6= ξj ,
3
4 , if ξi = ξj = 1.

(4.4)

All edges are drawn independently.

To define the dynamics, for every x ∈ S, we define

ξi(x) = 1
{

lim sup
n→∞

1

n

n∑
j=1

xij >
1
2

}
. (4.5)

Given the configuration of X at time t, we construct X(t+ 1) as follows

• If ξi(X(t)) = ξj(X(t)) = 0, then Xij does not change, that is

Xij(t+ 1) = Xij(t).

• Otherwise, Xij is refreshed according to pij(X(t)), that is Xij(t)

is a Bernoulli(pij(ξ(X(t))) random variable, chosen independently

of all other Xij(t)’s.

It is easy to see that the process X is exchangeable. And, by construc-

tion, it is obviously Markov. In addition, the law of large numbers implies

that ξi(X(0)) = ξi a.s., and thus X(1), and inductively also X(t), t ≥ 1,

have the same distribution as X(0).

The exchangeable σ-field EX is trivial in this example, since X is dis-

sociated by construction. Hence, conditioning on EX does not have any

effect.

On the other hand, the functions ξi(X(t)) cannot be determined from

any finite restriction X(t)|[n]. That is, ξ’s are “hidden variables” for the

restriction X|[n], and while conditionally on ξ, X|[n] is Markov, it is not

Markov unconditionally.

To prove this, fix n = 2, that is consider only the state of the edge

connecting the vertices 1 and 2. Then, by an easy computation taking into

account all possible values of ξ1 and ξ2, we obtain that P (X12(t+ 1) = 1 |
X12(t) = 1) = 21

32 . On the other hand, P (X12(N) = 1 | X12(t) = 1,∀t < N)

can be made arbitrarily close to one by choosing N large, because if we

know that X12(t) = 1 for all t < N , then very likely ξ1 = ξ2 = 0 and thus
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X12 never flips:

P (X12(N) = 1 | X12(t) = 1,∀t < N) =
P (X12(N) = 1,∀t ≤ N)

P (X12(N) = 1,∀t < N)

=
1
4 ·

1
4 · 1 + 1

2 · (
1
2 )N + 1

4 · (
3
4 )N

1
4 ·

1
4 · 1 + 1

2 · (
1
2 )N−1 + 1

4 · (
3
4 )N−1

N→∞−−−−→ 1.

(4.6)

This implies that X12 is not Markov.

On the technical level, the problem of [4] lies in the fact that the rela-

tion (14) therein, which gives certain consistency for the kernels qn, does

not hold true, in general.

5. Jumps of continuous-time Markov processes

We now study exchangeable Markov processes in continuous time. Similarly

as in discrete time (see Lemma 4.1), we describe the possible jumps of this

process. The structure here is richer, because the process is indexed by an

uncountable set of times. So, certain events which have probability 0 in the

discrete settings can occur.

Theorem 5.1: Let X be exchangeable Markov process with càdlàg paths

in continuous time, and let J ⊂ (0,∞) be the (random) set of times when

t 7→ Xt is discontinuous. Then, a.s., J can be written as a disjoint union

J = J1 ∪̇ J2 ∪̇ J3, where

• J1 is the set of times, where a positive proportion of entries of X

jumps,

J1 :=
{
t > 0 : lim

n→∞

1

n2

∑
1≤i,j≤n

1{X−ij (t) 6= Xij(t)} > 0
}
, (5.1)

• J2 is the set of times, where a positive proportion of entries in one

row or column of X jumps, J2 = J2,c ∪̇ J2,r with

J2,r =
{
t > 0 : ∃!i ∈ N s.t. X−i′j(t) = Xi′j(t),∀i′ 6= i, j ∈ N,

and lim
n→∞

1

n

n∑
j=1

1{X−ij (t) 6= Xij(t)} > 0
}
,

(5.2)

J2,c =
{
t > 0 : ∃!j ∈ N s.t.X−ij′(t) = Xij′(t),∀j′ 6= j, i ∈ N,

and lim
n→∞

1

n

n∑
i=1

1{X−ij (t) 6= Xij(t)} > 0
}
,

(5.3)
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• J3 is the set of times, where a unique entry jumps,

J3 =
{
t > 0 : ∃!i, j ∈ N s.t. Xij is discontinuous at t, and

Xi′j′ is continuous at t, ∀(i′, j′) 6= (i, j)
}
.

(5.4)

Proof: We follow the proof of Theorem 3.6 of [4]. By conditioning on EX ,

we may assume without loss of generality that X is dissociated. Similarly

as in the proof of Theorem 3.1, let JX be the set of times when X jumps

with positive probability,

JX := {t > 0 : P (X is discontinuous at t) > 0}. (5.5)

As we remarked previously, this set is at most countable. Hence, by con-

sidering the arrays (1{X−ij (t) 6= Xij(t)})ij , t ∈ JX , and using the same

arguments as in the proof of Lemma 4.1, we obtain that JX ⊂ J1.

We now consider times t ∈ (0,∞) \ JX =: CX . We first claim that for

such t, the proportion of entries that jump must be 0, that is JX ⊃ J1.

Indeed, since X is dissociated, by Proposition 2.3, for every t ∈ (0,∞),

P
(
X−12(t) 6= X12(t)

)
= lim
n→∞

1

n2

∑
1≤i,j≤n

1
{
X−ij (t) 6= Xij(t)

}
, (5.6)

so if the right-hand side is positive, so must be the left-hand side, implying

t ∈ JX .

We further claim that at t ∈ CX it is a.s. impossible that two entries

that are not in the same row or in the same column jump at the same time.

To see this, fix i 6= k and j 6= l and write Jij for the set of times when Xij

jumps. Then,

P (Jij ∩ Jkl ∩ CX 6= ∅) = E
[
P (Jij ∩ Jkl ∩ CX 6= ∅ | Jkl)

]
. (5.7)

The set Jkl is at most countable and Jij and Jkl are independent because

X is dissociated. Therefore, the conditional probability in the last formula

satisfies

P (Jij ∩ Jkl ∩ CX 6= ∅ | Jkl) ≤ P (Jij ∩ CX 6= ∅ | Jkl)
= P (Jij ∩ CX 6= ∅) = 0,

(5.8)

where the last equality follows from the definition of CX . This yields the

claim.

It remains to be shown that if Xij jumps at t, then either it is the

only entry that jumps, or that there is a positive proportion of entries that

jump in i-th row or j-th column. To see this, it is sufficient to observe that

Xi· := (Xij)j∈N is an exchangeable D(S)-valued sequence. In general, Xi· is
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not Markov, but we do not need it to be. By conditioning on its exchange-

able field Ei (which, in general, is not related to EX), Xi· is becomes an

i.i.d. sequence, by de Finetti’s theorem. We may then repeat the arguments

of the previous paragraphs (applied to sequences instead of arrays) to show

that J2,r = ∪̇i∈NJ2,r
i , where J2,r

i is the set of times when the row i jumps

with a positive probability,

J2,r
i = {t > 0 : P (X−i· (t) 6= Xi·(t) | Ei) > 0}. (5.9)

and, out of J2,r
i there are no simultaneous jumps of two entries Xij and

Xij′ with j 6= j′, that is

P ((Jij ∩ Jij′) \ J2,r
i 6= ∅ | Ei) = 0. (5.10)

This completes the proof.

Inspection of the previous proof allows us to deduce the following claim

about the discontinuities of the projection |X|.

Corollary 5.2: Let J |X| be the set of times when t 7→ |X(t)| is discontin-

uous. Then, J |X| ⊂ J1, where J1 is as in Theorem 5.1.

The inclusion in the previous theorem might be strict. As an example,

consider the process started from Xij(0) being i.i.d. Bernoulli( 1
2 ), where all

entries are refreshed simultaneously by an independent i.i.d. Bernoulli( 1
2 )

array at times of jump of a standard Poisson process Nt. In this case, for

every t ≥ 0, |X(t)| is the distribution of the i.i.d. Bernoulli( 1
2 ) array, that

is J |X| = ∅. On the other hand, J1 agrees with the set of jumps of Nt.

6. The Feller property

In the last part of this paper, we discuss the conditions under which ex-

changeable S-valued Markov processes in continuous time have the Feller

property.

Recall that a time-homogeneous S-valued Markov process with transi-

tion kernels pt(·, ·) is called Feller if

(a) For every g ∈ Cb(S), t ≥ 0 and y ∈ S, the map x 7→
∫
g(y)pt(x, dy) is

continuous.

(b) For every x ∈ S and g ∈ Cb(S),

lim
t↓0

∫
g(y)pt(x, dy) = g(x). (6.1)
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It is easy to construct exchangeable Markov processes that are not Feller.

E.g., the process considered in Example 4.2 obviously does not satisfy (a)

of Feller property. To see this, take g(y) = y12, y ∈ S, and observe that for

every t > 0 there is εt > 0 such that if x12 = 1, then∫
g(y)pt(x, dy)

{
= 1, if ξ1(x) = 0 and ξ2(x) = 0,

< 1− ε(t), otherwise.
(6.2)

Inspecting, the definition (4.5) of ξi(x), it is easy to see that it is not

continuous function of x, and thus X(t) is not Feller.

This example indicates one possibility how Feller property can be vio-

lated by exchangeable Markov processes: If the transition kernel depends

on “non-local exchangeable quantities”, then the process is not Feller. We

now show that this is essentially only mechanism, how the Feller property

can be violated.

The following definition imposes very strong “locality” of the distribu-

tion of X.

Definition 6.1: An exchangeable Markov process X is called consistent

its every restriction X|[n] to Sn is Markov with respect to its own natural

filtration.

Let Bn ⊂ B(S) be the σ-field generated by the canonical projection from

S to Sn. If X is consistent, then its transition kernel must satisfy

x 7→ pt(x,A) is Bn-measurable for every A ∈ Bn and t ≥ 0, (6.3)

or, in the case when S is finite,

P [X|[n](t) = y | X(0) = x] = P [X|[n](t) = y | X(0) = x′] (6.4)

for every t ≥ 0, y ∈ Sn and x, x′ ∈ S such that x|[n] = x′[n].

Theorem 6.2: For a time-homogeneous exchangeable Markov process X,

the following are equivalent:

(i) X is consistent and every X|[n] is a Feller process on Sn.

(ii) X is Feller.

Proof: (i) =⇒ (ii): Part (a) of the Feller property is equivalent to x 7→
pt(x, ·) is continuous when P(S) is endowed with the topology of weak

convergence. As remarked in the introduction, this is equivalent to x 7→∫
g(y)pt(x,dy) is continuous for every t ≥ 0 and every cylinder function
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g, that is for every Bn-measurable g, n ≥ 1. Since the restriction X|[n] is

Markov by assumption, denoting by pnt (·, ·) its transition kernel, for g ∈ Bn,∫
S
g(y)pt(x, dy) =

∫
Sn
g(y)pnt (x|[n],dy) (6.5)

Since X|[n] is assumed to be Feller, the right-hand side is a continuous func-

tion of x|[n]. Since xk → x in S implies xk|[n] → x|[n] in Sn, the continuity

of the left-hand side follows.

(ii) =⇒ (i): We first show that X is consistent, that it satisfy (6.3). This

is equivalent to ∫
g(y)pt(x, dy) =

∫
g(y)pt(x

′,dy) (6.6)

for all x′ with x′|[n] = x|[n] and for all bounded continuous Bn-measurable

functions g. X is assumed to be Feller, so the right-hand side is continuous

in x′, so it is sufficient to verify (6.6) for a dense set of x′ satisfying x′|[n] =

x|[n].

To this end, we use the exchangeability (3.4). Let

Σ(n) = {π ∈ Σ : π(i) = i,∀i ≤ n} (6.7)

be the set of permutations of N that coincide with the identity on [n]. Let g

be a bounded continuous Bn-measurable function. Then, g(y) = g(yπ) for

every y ∈ S and π ∈ Σ2
(n). Therefore, (3.4) implies that∫

g(y)pt(x, dy) =

∫
g(y)pt(x

π,dy), for every π ∈ Σ2
(n). (6.8)

Hence, to prove (6.6) it suffices show that there is ȳ ∈ S with ȳ|[n] = x|[n]

such that the set {ȳπ : π ∈ Σ2
(n)} is dense in {x′ : x′|[n] = x|[n]}.

We construct such ȳ by picking it randomly. To this end, let U ⊂ S

be a countable dense subset of S, and let ρ be a probability measure on U

such that ρ(x) > 0 for every x ∈ U . Let Y be a S-valued random variable

on some auxiliary probability space (Ω̃, P̃ ) such that Y |[n] = x|[n] and Yij ,

i > n or j > n, are i.i.d. ρ-distributed.

Then, for m ≥ n and z ∈ Sm such that z|[n] = x[n] and zij ∈ U for

(i, j) ∈ [m]2 \ [n]2, we have P̃ (Y |[m] = z) > 0. So, by the 0-1 law, there is

P̃ -a.s. π ∈ Σ2
(n) such that Y π|[m] = z. This implies that {Y π : π ∈ Σ2

(n)}
is dense in {x′ : x′|[n] = x|[n]}, P -a.s., which is more then sufficient for the

existence of ȳ of the last paragraph. This completes the proof that X is

consistent.
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The consistency then implies that X|[n] is Markov with respect to its

natural filtration for every n ≥ 1. The Feller property of X[n] is then a

direct consequence of the Feller property of X.

Remark 6.3: If S is finite, then Sn is finite as well. Every càdlàg Markov

process on a finite state space is Feller. Therefore, in this case, the con-

sistency of X is equivalent to Feller property. This was proved in the ex-

changeable random graph case in [5].
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