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Abstract

We consider the zero-average Gaussian free field on a certain class of finite d-
regular graphs for fixed d > 3. This class includes d-regular expanders of large girth
and typical realisations of random d-regular graphs. We show that the level set of
the zero-average Gaussian free field above level h exhibits a phase transition at level
h,, which agrees with the critical value for level-set percolation of the Gaussian free
field on the infinite d-reqular tree. More precisely, we show that, with probability
tending to one as the size of the finite graphs tends to infinity, the level set above
level h does not contain any connected component of larger than logarithmic size
whenever h > h,, and on the contrary, whenever h < h,, a linear fraction of the
vertices is contained in connected components of the level set above level i having a
size of at least a small fractional power of the total size of the graph. It remains open
whether in the supercritical phase h < hy, as the size of the graphs tends to infinity,
one observes the emergence of a (potentially unique) giant connected component of
the level set above level h. The proofs in this article make use of results from the
accompanying paper [AC19).

0 Introduction

In this article we study level-set percolation of the zero-average Gaussian free field on
a class of large d-regular graphs with d > 3. This class contains d-regular expanders of
large girth and typical realisations of random d-regular graphs. Through suitable local
approximations of the zero-average Gaussian free field by the Gaussian free field on the
infinite d-regular tree we are able to establish a phase transition for level-set percolation
of the zero-average Gaussian free field which occurs at the critical value for level-set
percolation in the infinite model, that is, on the d-regular tree.

Level-set percolation and the local picture of the zero-average Gaussian free field
have been previously studied by the first author in [Aba19] for the situation where the
underlying sequence of finite graphs is given by the discrete tori of growing side length in
dimension d > 3. The motivation for investigating the zero-average Gaussian free field
on the different class of finite graphs considered here (see (0.1)—(0.3) below) stems from
the insight that analysing probabilistic models on these types of finite graphs has led to
often very explicit and strong results over the years. Examples include the emergence of a
giant connected component for Bernoulli bond percolation (see e.g. [ABS04] and recently
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[KLS18]), cutoff phenomena for random walks (see e.g. [LLS10]) and the appearance of a
giant connected component in the vacant set of simple random walk (see e.g. [CTW11]).
Actually, we will borrow the assumptions (0.1)-(0.3) on the finite graphs from [CTW11].

From a more general perspective, level-set percolation of the Gaussian free field is a
significant representative of a percolation model with long-range dependencies and it has
attracted attention for a long time, dating back to [MS83], [LS86] and [BLMS87]. More
recent developments can be found for instance in [RS13], [PR15], [Sznl5], [DPR18b] and
[DPR18a]. For the particular case of the Gaussian free field on regular trees we also refer
to [Szn16], [Szn19] and [AC19]; for more general transient trees to [AS18].

We now describe our results more precisely. We let d > 3 and assume that (G,)n>1
is a sequence of graphs satisfying the following conditions.

Assumptions. There exist some «, 8 > 0 and an increasing sequence of positive integers
(Np)n>1 with N, 272 o such that for all n > 1

e G, is d-regular, connected and has IV,, vertices (0.1)
e for all x € G,, there is at most one cycle in the ball of radius |alog,_; (V)]
around x (0.2)

e the spectral gap of G,,, denoted by \g,, satisfies Ag, > . (0.3

Here by spectral gap we mean the smallest non-zero eigenvalue of I — P, where [ is
the identity matrix and P is the transition matrix of the simple random walk on the
graph (see also [SC97], Definition 2.1.3 and beneath it). For an explanation of why these
assumptions are satisfied by d-regular expanders of large girth and by typical realisations
of random d-regular graphs we refer to [CTW11], Section 2.2 and Remark 1.4.

On G,, we consider the zero-average Gaussian free field (see Section 1.2 for more
details about it) with law P9 on R9* and canonical coordinate process (¥g, (2))zeg, SO
that,

under P97 (Vg (7))zeg, is a centred Gaussian field on G,, with covariance
E"[¥g, (2)¥g, (y)] = Gg, (z,y) for all z,y € Gy, where Gg, (-,-) is the  (0.4)
zero-average Green function on G, (see (1.16)).

The zero-average Gaussian free field is a natural version of the Gaussian free field for
finite graphs. However, due to the zero-average property (see below (1.18)), it comes
with some peculiarities like the lack of an FKG-inequality and of the domain Markov
property.

Our main interest lies in analysing the size (i.e. the number of contained vertices) of
the connected components of the level sets of Ug, , i.e. of

Eg! = {z € Ga|¥g,(x) > h} for hER. (0.5)

In order to do so, it will be helpful to locally describe ¥g, via the Gaussian free field
on the infinite d-regular tree T4 with root denoted by o, that is, the centred Gaussian
field on Ty with law PT¢ on RT¢ and canonical coordinate process (¢1,(2))zeT, S0 that,

under PT¢, (o7 (7)) et, is a centred Gaussian field on Ty with covariance

Ef (o1, (z)e1,(y)] = g1,(7,y) for all z,y € T4, where gr,(-,-) is the (0.6)
Green function of simple random walk on Ty (see (1.6)).
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The Gaussian free field on T, has first been studied in [Szn16]. Recently, more refined
results have been obtained by the authors in the accompanying paper [ACIQ]. These
results lay the groundwork for the present article and they will be central in our analysis
of the zero-average Gaussian free field on the graphs (G,)n>1. For now, we only recall
the critical value of level-set percolation of o, that is,

= o0] = 0}, (0.7)

where Cp " is the connected component of the level set Eah ={z € Tyq|er,(x) > h} of
¢, above level h containing the root o € T4. There is a crudcial spectral characterisation
of h, derived in [Sznl16], which leads to the proof of 0 < h, < oo on Ty for d > 3 (see
[Szn16], Proposition 3.3 and Corollary 4.5). Actually, in the accompanying paper [AC19]
we make heavy use of this characterisation to obtain new results about ¢1, on T,.

h = inf {h € R| PT4[|cTo"

Our main results concerning the size of the connected components of the level sets
of Wg, on the finite graphs (Gy)n>1 satisfying (0.1)—(0.3) are the following: we show in
essence that (see Section 3, Theorem 3.1, for the precise statement)

in the subcrltlcal phase h > hy, with high probability for large n, the
level set E* of Wg, only contains microscopic connected components (0.8)
(i.e. contalmng at most a logarithmic number of vertices of G,);

and furthermore that (see Section 4, Theorem 4.1, for the precise statement)

in the supercritical phase h < hy, with high probability for large n, a
linear fraction of the vertices of G, is contained in at least mesoscopic 0.9
connected components of the level set Eg Z of Wg, (i.e. containing a (0.9)

fractional power of the number of vertices of G,,).

Although giving a strong hint to, the result (0.9) leaves open whether in the super-
critical phase h < hy, with high probability for large n, there actually is a macroscopic
(giant) connected component in the level set above level h, i.e. containing a number of
vertices comparable to G,. Furthermore, in the affirmative, one could ask if this giant
component is unique, that is, if the second-largest connected component of the level set
above level h < h, only contains a negligible number of vertices compared to G, (see also
Remark 4.7).

As a comparison, the emergence of a unique giant connected component in the
supercritical phase has been shown for Bernoulli bond percolation on d-regular expanders
of large girth in [ABS04] (see also [KLS18]) and for vacant-set percolation of simple
random walk on exactly the same graphs (G, ),>1 like here in [CTW11]. In the latter, this
result is achieved by relating the model to vacant-set percolation of random interlacements
on Ty. Subsequently, more refined results have been obtained about the vacant set of
simple random walk on random regular graphs in [CF13] and [CT13].

In the models mentioned above, the assertion of existence and uniqueness of a giant
component in the supercritical phase is achieved by a ‘sprinkling argument’ starting from
a statement like (0.9). In our situation, it would correspond to showing that distinct
mesoscopic connected components of E— for a supercritical level h < h, are going to
be connected at a slightly smaller level h' < h with high probability, thus forming large
clusters. As [CTW11] shows, it can be very involved to carry out sprinkling arguments
in the non-i.i.d. setting. At present we have not been able to do it in our context, one of



the main restrictions stemming from the defining zero-average property of the fields we
are considering (see below (1.18)). We point out that sprinkling techniques have been
already applied in the discussion of level-set percolation of the Gaussian free field in
[DR15] to construct an infinite connected component with the underlying graph being
Z% for high dimension d.

Let us now comment on the proofs of Theorem 3.1 and Theorem 4.1 (corresponding
to (0.8) and (0.9)). In both cases, the general philosophy is to locally approximate ¥g,
on the finite graphs by ¢r, on the d-regular tree and by that reduce the analysis to the
infinite model, which is easier to understand. A similar strategy has been successfully
carried out in [ABS04] and [CTW11] where the connected components in question are
locally approximated by Galton-Watson trees. In our setting the situation is considerably
more complicated since neither the connected components of the level sets of ¥g nor
the connected components of the level sets of ¢, (used in the approximation) are
locally Galton-Watson trees, even if the connected components of qurhd share some global

properties with them, as shown in [AClQ]. The exact way how the local approximation
by ¢, is performed differs considerably between the subcritical and supercritical phase.

In the supercritical phase h < h,, we use an approximation of ¥g, by ¢r, via
local charts around vertices of G,, with a tree-like neighbourhood (Theorem 2.1). Then
the proof of Theorem 4.1 (corresponding to (0.9)) is, roughly said, a second moment
computation based on this local approximation and involving a good control of the
supercritical level sets of ¢7,, obtained in the accompanying paper [AC19)].

More precisely, to show (0.9) we prove that the number of vertices contained in meso-
scopic connected components of the level set qu,h concentrates around its expectation,
which we show to grow linearly in the total number of vertices. The concentration follows
by a variance computation and a second moment inequality. Actually, when estimating
the expectation and variance, it is enough to consider only vertices with a tree-like neigh-
bourhood since the assumption (0.2) (together with (0.1)) guarantees that the number of
vertices having a tree-like neighbourhood is comparable to the total number of vertices
in G, (Remark 4.3). Thanks to the approximation of g, by ¢r, around such vertices
(Theorem 2.1 mentioned above), we are able to transfer the computations to the regular
tree. The linear lower bound on the expectation ((4.9) in Lemma 4.4) now follows rather
direct from this approximation and from [AC19], Theorem 4.3, showing that connected
components of the level sets of o7, are mesoscopic with positive probability in the su-
percritical phase. The control of the variance follows along similar lines (Lemma 4.6). It
requires the approximation of Wr, by (T, on neighbourhoods of vertices with a tree-like
and disjoint neighbourhood. This is provided by Theorem 2.1 as well. Once we have
reduced the computations to quantities for pr, on T4, we can apply a decoupling inequal-
ity ([PR15], Corollary 1.3) and deduce the bound on the variance again from results on
or, developed in the accompanying paper [AC19].

For the subcritical phase h > h, (Theorem 3.1 corresponding to (0.8)) the local
approximation of ¥g, by ¢r, around vertices with tree-like neighbourhood is not good
enough. On the one hand, the connected components of Eég may have a diameter that
is larger than the diameter of those neighbourhoods (at least if h is close to hy). On the
other hand, one expects that the connected components are typically ‘thin’. These two
points of ‘thinness’ and of ‘escaping the local charts’ suggest that the approximation of
Vg, by ¢r, should rather be carried out along the connected components of qu,gn We
achieve this by employing an exploration process uncovering the connected component



of the level set containing a given vertex (Algorithm 1 in Section 3). Roughly said, by
exploring Wg, vertex by vertex we are able to couple it vertex by vertex to a number of
independent copies of p1, on Ty, hence bringing back the problem to the tree. Results
from [AC19] on 7 , in the subcritical phase then conclude the proof.

More precisely, the exploration process aggregates the vertices found in the connected
component of E\%gn containing a fixed z € G, into a union of disjoint subtrees of G,.
The decomposition into a union of disjoint subtrees is determined during the exploration
and it is dictated by the geometric properties of the graph G, and of the evolving set
of explored vertices. These geometric conditions guarantee that for each of the disjoint
subtrees we can approximate the zero-average Gaussian free field Ug on the subtree
by an independent copy of the Gaussian free field ¢, on Ty (Lemma 3.4). In order to
do so, it is crucial to have a good understanding of the conditional distribution of the
zero-average Gaussian free field (Lemma 2.6 and Proposition 2.7). As a consequence, the
size of each disjoint subtree of G, constructed by the exploration process is dominated
by the size of the connected component containing the root o € Ty of the level set of o,
above a slightly lower level h — ¢ (Corollary 3.5). The last two ingredients for the proof
of (0.8) are now a control on the number of disjoint subtrees (Lemma 3.3, already proven
in [CTW11]) and a control on the exponential moments of the size of the connected
component of the level set of ¢, containing the root o € T4 in the subcritical phase (see
[AC19], Theorem 5.1).

Incidentally, let us point out that exploration processes are frequently used in the
Bernoulli percolation literature and actually, a variant of such an algorithm was applied
in [CTW11] to deal with the vacant set of simple random walk in the subcritical phase.
However, in our setting we cannot follow the ‘standard’ procedure. Usually, to show
statements like (0.8), a good control on the termination time of the exploration process
is necessary, i.e. on the time by when the connected component is completely uncovered.
This is typically done by comparing the number of yet unexplored vertices to a random
walk of negative drift. In our case this is not possible, essentially again because locally
the connected components of E\%gn are not approximated by Galton-Watson trees (as
mentioned earlier).

The structure of the article is as follows. In Section 1 we collect the notation and
some results on the Gaussian free fields on both the finite graphs and the infinite tree.
In particular, in Section 1.1 we recall results on ¢, from [Szn16] and [AC19]. Then in
Section 2 we investigate the local picture of the zero-average Gaussian free field on G,
and its connection to the Gaussian free field on T4. The content of these first two sections
will be subsequently used to show Theorem 3.1 (corresponding to (0.8)) and Theorem 4.1
(corresponding to (0.9)). More precisely, in Section 3 we deal with the subcritical phase,
ultimately proving the non-existence of connected components of E\Iz,g for h > h, of
larger than logarithmic size (Theorem 3.1). Finally, in Section 4 we conclude with the
proof of Theorem 4.1 showing that for A < h, most vertices of G, live in a connected
component of E%g of at least mesoscopic size.

n
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1 Notation and useful results

In this section we introduce our main notation and recall the essential material about
the Gaussian free field on the d-regular tree T, that will be needed in the study of the
zero-average Gaussian free field on the finite graphs (G, ),>1 (Section 1.1). We end the
section with results on the zero-average Green function and some basic properties of the
zero-average Gaussian free field on G,, (Section 1.2).

As mentioned earlier, we consider for fixed d > 3 the d-regular graphs (G,)n>1,
satisfying the assumptions (0.1)—(0.3). For the constants « and (8 appearing in these
assumptions we assume without loss of generality that

a<l1 and 6 <2 (1.1)

Indeed, for « this is trivial and for 3 it follows from the fact that the matrix P (see below
(0.3)) is a symmetric stochastic matrix and thus all its eigenvalues are contained in the
interval [—1,1]. Consequently the eigenvalues of I — P are contained in [0, 2].

For the general graph notation introduced in the next two paragraphs, G stands either
for G,, or for T, with root o.

By x € G resp. U C G we mean a vertex resp. a subset of vertices of the graph G. We
let dg(-,-) denote the graph distance on G. For any U C G, |U| stands for its cardinality,
and OgU = {y € G\ U |y has some neighbour x € U in G} denotes its (outer) boundary
in G. For any R > 0 and = € G we define the balls and spheres of radius R around =z
to be Bg(z,R) == {y € G|dg(z,y) < R} and Sg(z,R) = {y € G|dg(z,y) = R}. The
maximum number of edges that can be deleted from the subgraph of G induced by some
connected subset U C G while keeping it connected is called tree excess of U and we denote
it by tx(U). Note that tx(U) = 0 if and only if (the subgraph induced by) U is a tree.
(In particular, the assumption (0.2) could be rewritten as tx(Bg,, (z, |alog,;_1(N,)])) <1
foraln > 1 and = € G,.) For z,z € G a path from x to z is a sequence of vertices
T =Y0,Yl,---,Ym = 2z in G for some m > 0 such that y; and y;_1 are neighbours for all
i=1,...,m (if m > 1). It is a non-backtracking path from z to z if in addition y; # y;—2
forall i =2,...,m (if m > 2).

‘We write ng for the canonical law of the simple random walk on G starting at x € G as
well as Eg for the corresponding expectation. The canonical process for the discrete-time
walk is denoted by (Xj)r>0. For the continuous-time walk with i.i.d. mean-one exponen-
tial holding times we write (X¢)i>0. Given U C G we write Ty = inf{k > 0| Xy ¢ U}
for the exit time from U and Hy := inf{k > 0| X} € U} for the entrance time in U of
the discrete-time walk (here we set inf () := 00). For the continuous-time simple random
walk Ty and Hy are defined accordingly. In the special case of U = {z} we use H, in
place of H;.

For G = T, we need some extra notation. In this case, there is a unique non-
backtracking path of length dr,(x, z) between any two vertices z,z € T4 (namely the
geodesic path). For z € T;\{o} let T be the unique neighbour of  on the non-backtracking
path from x to o. Moreover, let 6 € T4 denote a fixed neighbour of the root o € T4. For
z € T, we define

U, = {z € Ty | the non-backtracking path from z to = does not contain z}.  (1.2)

In particular Ty = {o} UU?:1 Uy, if St,(0,1) = {x1,...,24}. In the special case of x = o



we write TS = U,. We also set B{lfd (o,R) == {y € T |dr,(0,y) < R} and similarly
S{d(o,R) = {y € T] |dr,(0,y) = R} for R > 0.

Finally, some notation for the finite graphs (G, )n>1. For alln > 1 and = € G,, we fix a
cover tree m, , of G, at x, that is, a surjective map 7, 5 : Tq — G, such that 7, ,(0) =
and such that for all y € Ty one has 7, 5 (ST,(y,1)) = Sg, (7n2(y), 1), meaning that m, ,
preserves the neighbourhood of radius 1 of any y € T4. Note that:

e if z € G, with tx(Bg, (z, R)) = 0 for some R > 0, then the map m, , restricted

to Br, (0, R) induces a graph isomorphism from Br, (o, R) to Bg, (z, R) (1.3)
e a sequence of vertices o = yo,y1,.--,Ym € Tq, m > 0, is a non-backtracking

path in T, starting at o if and only if © = 7, 2(v0), Tz (Y1), - - -, Tn2(Um) € Gn

is a non-backtracking path in G, starting at x. (1.4)

Furthermore, for the cover tree m, , of G, at x, the process (my, 5(Xx))r>0 under PTa has
the same law as (Xj)r>0 under PYn. Hence

P Xy, € U] = P)[mn0(Xi) € Ul = PY4[Xy € mp L(U)] for U C Gn, k>0. (15)

A final word on the convention followed concerning constants: by c,c, ... we denote
positive constants with values changing from place to place and which only depend on
the dimension d and the constants o and 8 from the assumptions (0.1)—(0.3). Numbered
constants cg, ¢1, ... are defined in the place of first occurrence and thereafter remain fixed.
The dependence of constants on additional parameters appears in the notation.

1.1 Some properties of the Gaussian free field on regular trees

In this section we recall basic facts related to the Green function and the Gaussian free
field on T4. We also restate a couple of results about (T, that were derived by the
authors in the accompanying paper [AC19] and that will be used in several occasions
throughout the rest of this article.

The Green function gr,(-,-) of simple random walk on T is (see [Woe00], Lemma
1.24, for the explicit computation)

gr,(2,y) = E,° [Z 1{Xk:y}] = Z:;(dil)%(z’y) for z,y € Tg.  (1.6)
k=0

For U C T4 the Green function g%d(-, -) of simple random walk on Ty killed when exiting
Uis g%d (z,y) = Eld [Zogk<TU 1{x,—y}]- The functions gr,(-,-) and g%d(-, -) are related
by the identity

gra(2,y) = 9%, (@, 9) + By [91,(X 1, 9) L {1 <00}]  for 2,y € Ta. (1.7)
We continue by collecting known results and properties of ¢r,. Recall from (0.6)
that (¢1,())gzer, is the centred Gaussian field with covariance given by gr,(-,-). An
important feature of the Gaussian free field is the domain Markov property: for U C Ty
let ((p%d (2))zer, be a new field defined by
w%d () = ¢1,(z) — E;Td [gon(XTU)l{TU@o}] for x € Ty.
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Then,

under PTe, (cp%d (x))zeT, is a centred Gaussian field on Ty which is in-
dependent from (¢r,(7))zer,\v and has covariance ETa [go%d (:L‘)gp%d (y)] = (1.8)
g![r]d(x,y) for all z,y € Ty.

As a consequence of (1.8), the Gaussian free field on Ty can be obtained by the follow-
ing recursive construction (explained in detail in [AC19], Section 1.1). Let (Y3)zet, be a
collection of independent centred Gaussian variables defined on some auxiliary probability

space (Q,.A,P) such that Y, ~ N(0, gr,(0,0)) = N(0, %=2) and Y, ~ N(0, g2 (z,2)) =
N(0, 7%4) for z # o. Define recursively

3(0) =Y, and 3(z) = ﬁa@) +Y, foraeTy\ {o}. (1.9)

Then,
under P, the law of ($(z))zer, is PT4, (1.10)

so that (1.9) can be used as an alternative description of (¢r,(2))zet,. In particular, it
gives a representation of the conditional distribution of @1, given ¢1,(0) =a € R,

Po[(er,(y))yer, € - | =P [(¢r,(y))yer, € - | o1,4(0) = 0], (1.11)

with corresponding expectation EL¢.

We turn to known results about level-set percolation of the Gaussian free field on
T? from [Szn16] and [AC19]. First, there is a characterisation of the critical value
h, through eigenvalues (Ap)per of certain self-adjoint operators (Lp)ner (see [Sznl6],
Section 3, summarised in [AC19], Proposition 1.1). Tmportant for us will be that (see
[Szn16], Proposition 3.3)

the map h — A, is a decreasing homeomorphism from R to (0,d — 1)

and h, is the unique value in R such that A\p, = 1. (1.12)

To restate the other results we remind that Co®" denotes the connected component of

the level set E%Thd above level h containing the root o € Ty (see below (0.7)). The second
result says that (see [AC19], Theorem 4.1)
the ‘forward percolation probability’ h — nT(h) given by n*(h) =

]P’TdHCgrd’h N TS| = oo is continuous and positive on (—oc,h,) and (1.13)
vanishes on (hy, 00).

The third result controls the subcritical behaviour (see [AC19], Theorem 5.1). Tt shows
that

Ty ot
for h > h, there exists 6, > 0 such that gj(a) = EL¢[(1 + op)ICo 0T, |]
defines a finite function, continuous on [h,c0). Furthermore, g,(a) =
(14 0)EY [gn(3% +Y)]" " for all a > h, where Y ~ N(0, 747) and B (1.14)
is taken with respect to Y. Moreover, there exist ¢p, ¢}, > 0 such that
gn(a) < cp exp(c),a®?) for all a > h.
Finally, the last result about ¢r, needed in the sequel in the supercritical regime is the
following fact in which the Aj,, h € R, from (1.12) appear: by [AC19], Theorem 4.3,

)\k
for h < h, it holds that lim P™ [\cgfd»h NSt (0.k)| = /?ﬂ =0T (h)>0.  (1.15)
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1.2 The Green function and the zero-average Gaussian free field on G,

We now introduce the zero-average Green function associated to the simple random walk
on G, and prove an upper bound on it (Proposition 1.1). Along the way we also remind
of a basic property of the zero-average Gaussian free field on G, of similar type as (1.8)
(see (1.19) and (1.20)).

The zero-average Green function Gg, (-, ) associated with the simple random walk
on G, is given by

Gg, (z,y) = /OOO (an[Xt . D

Nn) dt for z,y € Gy. (1.16)

It is symmetric, finite and positive-semidefinite, i.e. for any f : G, — R one has
> wyeg, [ (@)Gg, (z,y)f(y) = 0 (see [Abdl9], Remark 1.2). For U C G, we define

ggUn(-, -) to be the Green function of simple random walk on G, killed when exiting U,
that is,

95, (z,y) = Ef"[ Z l{Xk:y}] = prg" (Xe =y, k <Ty] forx,yeG, (117)
0<k<Ty k=0

As gﬂqd(-, -) it is symmetric, finite and vanishes for z ¢ U or y ¢ U. The functions

Gg, (-,-) and g_g (+,+) are related by a similar expression as the identity (1.7) for the
Green functions on T4. More precisely, for U C G, it holds (see [Abdl9], Lemma 1.4)

1
Ga, (2,y) = 66, (2, y) + 7" [Gg, (Xny,9)] — 5 B [TU] for 2,y € G (118)
n
(Lemma 1.4 in [Abal9] is stated in the case of a discrete d-dimensional torus as underlying
graph. However, its proof applies as well to the graph G,.)

Recall from (0.4) that (¥g, (z))zeg, is the centred Gaussian field with covariance
given by Gg, (+,-). We point out that the Green function Gg, (-,-) is called 'zero-average
since its average over G, in any of the two arguments is zero. This implies that the average
of ¥g, (x) over x € G, vanishes PY#-almost surely and explains the name ’zero-average
Gaussian free field’.

)

In the same way as the identity (1.7) allows for the property (1.8) of the Gaussian
free field 1, on Ty, the identity (1.18) implies a similar (but not equal) property of the
zero-average Gaussian free field Ug, on G,. It is given below and follows from [Ab&19],
Lemma 1.7. There it is stated and proved for the zero-average Gaussian free field on the
discrete d-dimensional torus but the proof applies, with the obvious adjustments, also
to our situation. For U C G, set

gogn () = Vg, (x) — Eg" Vg, (X1,)] for z € Gy,. (1.19)
Then,

under P97 (95 (x))zeg, is a centred Gaussian field on G, with covariance

1.20
E9 (oY (2)el ()] = 6Y. (z,y) for all 2,y € Gy, (1.20)

Note that (cpgn (7))zeg, cannot be independent from (¥g, (7)),eg,\v due to the zero-
average property of Ug, .



We conclude Section 1 with an upper bound on Gg, (-,-) which is going to be of
particular use in the proof of Proposition 2.5 needed for the supercritical phase. Note
that the obtained bound (1.23) resembles the expression for the Green function gr, (-, )
on Ty (see (1.6)). We first define the new constant

e = -2 0,1), (1.21)

Proposition 1.1. For alln > 1 and x,y € G, it holds that

d—1

16d—1< 1 >dgn(%y) -9 1

B
<=1 5 + 21In(N,) N, +BN,§0' (1.22)

Gg,(z,y) <

In particular, for all n large enough and x,y € G, with dg, (z,y) < % logy_1(Ny) it holds
that

d—1 1 \dgn(zy)

(1.1)
Proof. We set tg, = CF“ln(]\fn) = ﬁln(]\fn)ig In(N,,). By [SC97], Corollary 2.1.5,
one then has (the stationary distribution of (X4)¢>o is the uniform distribution on G,
due to (0.1))

o
J.
On the other hand, by switching to the discrete-time walk (X )x>0 and with M; ~ Poi(t)

for ¢ > 0 describing the number of jumps of the continuous-time simple random walk up
to time ¢, we have

/tgn
0

lalogy 1 (Nn)]

o0 tk _ tgn t
< Y POX= y]/o ¢ tdt—|—/0 P[M; > alogy_y (Na)] dt + <.
n

=1

— 1
X, =y — —

o0 e~ onton (03) 1
dt g/ e Aot dt = < . 1.24

tgn
PI" (X, = / ZIP’ K| P9 (X = ]dt+]\gf"

(1.25)

Note that for 0 < t < tg, by Markov’s inequality one has P[M; > alog,; ;(Ny)] =
P[(d — 1)M > Ng] < N eE[e™DM] = N exp(t(d — 2)) < Ny exp(t, (d — 2)) =
N, ¥exp(aln(N,,))exp(—tg,) = exp(—tg,) = N, /?  Therefore (1.25) implies

lalogg—_1(Nn))

tgn CO
PI[X, =q] — —|dt < P9 [X, = ta. Ny, I
A L S s 7
- (1.26)
(15) \_O‘h)gd 1(N")J <o
< > PBlXpem, L ({yh)] + 2In(N,)N,, 7

for the cover tree m, , of G, at . To bound the sum appearing on the right hand side
of (1.26) we consider different cases for 7, L({y}) N Br, (o, [alogy_;(Nn)]).

If |7T ({y}) N By, (o, [alogg_+( ‘ = 0, then the sum on the last line of (1.26)
vanishes and together with (1.24) thls shows (1.22).
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If |7T;31U({y}) N Br, (o, |« logd,l(Nn)j)’ = 1, say the intersection is {u} (this is in
particular the case if y € Bg, (z, [alogy_1(Ny)]) and tx(Bg, (z, [alogy_1(Ny)])) = 0),
then the sum appearing on the right hand side of (1.26) can be rewritten as

lalogg_1(Nn)] lalogg_1(Nn)] ;
T -1 T (1.6)
Z F, d[Xk € Wn,x({y})] = Z B, d[Xk = u] < gTd(Oﬂ u)
k=0 k=0
(1_6) d - 1 1 de (O7u) . d - 1 1 dgn (Cﬂ,y)
d—2(d—1) _d—2(d—1>

and together with (1.24) this shows (1.22).

It remains to consider the last case, that is, {W;i({y}) N Br, (o, lalogy 1 (Nn)])| > 2.
Then Bg, (z, |alog;_;(Ny,)]|) contains a (unique by (0.2)) cycle of some length ¢. Let
us abbreviate B := Br, (o, (alogy_;(/Ny)]) and define for m > 0 the disjoint intervals
I = [dg, (z,y)+ml, dg, (z,y)+ (m+1)f) of length £. We claim that one has the disjoint
union

b () N B = | {z € mh({u}) 0 Bdr,(0.2) € I}

m=0

with [{z € ﬂ';i({y}) N B|dr,(0,2) € I, }| < 2 for m > 0.

(1.27)

This fact is a direct consequence of Lemma 1.2 stated and proved below. We first conclude
the proof of Proposition 1.1 assuming (1.27). The sum on the last line of (1.26) can be
bounded, in case ‘ng({y}) N Br, (o, lalogy_1(Nn)])| = 2, by

lalogg_1(Nn)]

Y, PHXpemi(yhl < Yo Y RXp=4

k=0 k=0 zem, L ({y})NB
(1.6) d—17 1 \drylo2) (127) 41 & L \don(ew)tmt oo
B 12 d—2(d—1) = 2d—22<d—1> (1.28)
zemy - ({y})NB m=0
d—1/7 1 \don(zy) 1 16d—17 1 \do,(zy)
- 2d—2<d—1> 1 (L) = 7d—2<d—1> ’

where in the last step we use that d > 3 and ¢ > 3, too, since ¢ is the length of a cycle.
The combination of (1.24), (1.26) and (1.28) concludes the proof of (1.22) also in this
case, once (1.27) is asserted. To derive (1.23) from (1.22) it is enough to recall that
¢o <1 and § <2 (see (1.21) and (1.1)). Hence one has @ < min{co, %} and therefore
for n large enough also

- 1 1 1\ Flogg_1(Na)  5d—1 1 \dg,(z:y)
2NN+ v <~ = (=) <iis(og) o 029)
n Ny? N——

>1

assuming x,y € G, are such that dg, (z,y) < % log;_1(Ny). We can combine (1.22) with
(1.29) to obtain (1.23).

To conclude the proof of Proposition 1.1 it only remains to show (1.27), which follows
directly from the next lemma.
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Lemma 1.2. Let x € G,, R > 0 and assume Bg, (x, R) contains a unique cycle of length
0. Recall that m, 5 is the fized cover tree of G, at x and assume y € Bg, (x,R). Then

{z € mt({y}) N Br, (0, R) | dr, (0, 2) € [0,dg, (,9))}| = 0. (1.30)
Moreover, for all k > 0 one has

){z € 1 ({y}) N Br, (0, R) | dr,(0,2) € [k, k + 4)}\ <2. (1.31)

Proof. For any vertex z € m, % ({y}) N Br,(o, R) there is a unique non-backtracking path
of length dr, (0, z) from o to z in By, (o, R). Therefore, by the one-to-one correspondence
from (1.4), every such z uniquely determines a non-backtracking path of length dr, (o, 2)
connecting z to y in Bg, (x, R). Thus (1.30) is clear and for (1.31) it is enough to show
that for all £ > 0 one has

‘{non—backtracking paths from z to y in Bg, (x, R) of length in [k, k+€)}) < 2. (1.32)

Let us denote by C = {cj,...,¢;} € G, the unique cycle of length ¢ in Bg, (x, R)
and by x = xg,...,z; for some i > 0 the unique non-backtracking path in Bg, (z, R)
from z to C such that z; € C and xg,...,z;—1 ¢ C (if i > 1). This path is unique for
if v = Zg,...,7; was another such path, then one could find a cycle different from C
in {zo,..., 2, Zo,...,Tj,c1,...,¢c} C Bg, (x, R). Analogously, we let y = yo,...,y; for
some j > 0 be the unique non-backtracking path in Bg, (z, R) from y to C such that
yj € C and yo,...,yj—1 ¢ C (if j > 1). We distinguish two cases: either {zq,...,z;} N
{yo,...,y;} = 0 or the intersection is not empty.

In the first case any non-backtracking path from z to y in Bg, (x, R) starts with the
segment o, . . ., ; from x to C' and ends with the segment y;, ..., yo from C' to y because a
non-backtracking path vy, ..., vs from x to y in Bg, (x, R) with (vo, ..., v;) # (xo, ..., ;)
or (Vs—j,...,vs) # (Yj,...,y0) would imply the existence of a cycle different from C
in {vo,...,vs,C1,...,¢0, %0, Ti,Y0,---,Y;} € Bg,(z,R). In between the segments
Zo,...,x; and y;,...,yo any of those non-backtracking paths can only visit vertices in
C (else there would be another cycle in Bg, (z, R)) and they can only do so in clockwise
or anti-clockwise direction (because they are non-backtracking). To wrap up: any non-
backtracking path from x to y in Bg, (x, R) starts with the segment xo, ..., x;, then goes
M times (for some M > 0 and some direction) around the cycle C' from x; to z;, then
continues (in the same direction) along the cycle from z; to y; (note that z; # y; by
assumption) and then ends with the segment y;, ..., 0.

In the second case, i.e. if {zo,...,z;} N {yo,...,y;} # 0, let m € {0,...,i} and
m’ € {0,...,j} besuch that z,, = y,y and {0, ..., Zm-1}N{Y0,- -, Ym—1} = 0. In other
words, T, = Yy is the first common vertex of the paths xo,...,z; and yo,...,y;. Any
non-backtracking path from z to y in Bg, (z, R) starts with the segment zo, ..., z, and
ends with the segment y,,,...,yo because a non-backtracking path vy, ...,vs from z to
y in Bg, (z, R) with (vo,...,vm) # (Toy ..., ZTm) OF (Vs_msy .oy Vs) Z (Ymry - -+, Yo) would
imply the existence of a cycle in {vy,...,vs,c1,..., ¢, %0,..., 25,90, ..,Yj} € Bg, (z, R)
different from C. In between the segments xg, ..., Z, and Y, ..., yo any of those non-
backtracking paths either does not do anything (possible since z,, = y,,,» by definition,
i.e. the full path is o, ..., Zm, Ym/—1,---,yo) or it has to form a non-backtracking path
from x,, to itself of non-zero length. Note that in any graph a non-backtracking path
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(of non-zero length) from a vertex to itself necessarily contains vertices of a cycle. In
our situation C is the only cycle in Bg, (x, R) and so any non-backtracking path (of
non-zero length) from x,, to x,, necessarily touches C. Therefore, it has to start with

the segment z,,,...,x; from x,, to C and end with the segment x;, ..., x,, from C to
Zm (else there would be a cycle different from C' in Bg, (z, R)). Between the segments
Ty -+, T and x4, ..., Ty, it can only visit vertices in C' (else there would be another

cycle in Bg, (z, R)) and it has to do at least one full turn around the cycle in clockwise or
anti-clockwise direction (because non-backtracking). To wrap up: any non-backtracking
path from z to y in Bg, (x, R) is either of the form xq, ..., Zm, Ym/—1,. .., Yo Or between
the initial segment xg,...,x, and the final segment y,,,...,yo it continues with the
segment Ty, ..., x;, then goes M times (for some M > 1 and some direction) around the
cycle C from x; to x; and then goes back to y,,,» through z;, ..., zy,.

In any of the two cases, different non-backtracking paths from z to y in Bg, (z, R)
differ by at least ¢ in length (the length of the cycle) except if they go around the full
cycle both M times but in different directions (clockwise or anti-clockwise). This shows
(1.32) and concludes the proof of Lemma 1.2 and hence also of Proposition 1.1. O

2 The local picture of the zero-average Gaussian free field

In this section we investigate the local behaviour of the zero-average Gaussian free field
and we derive key results and estimates that will be used in Section 3 and Section 4 for
proving the main theorems of this article (Theorem 3.1 and Theorem 4.1 corresponding
to (0.8) and (0.9)). The results in this section support the intuition that the local picture
of the zero-average Gaussian free field Ug, on G, is given by the Gaussian free field o7,
on Ty. We will see two instances here: first we show in Section 2.1 that one can locally
approximate Wg, around vertices of G, with a tree-like neighbourhood (Theorem 2.1).
This will be the type of approximation of Wg, by ¢, needed to deal with the supercritical
phase in Section 4 and to prove Theorem 4.1 (corresponding to (0.9)). Then in Section 2.2
we compute conditional distributions of ¥g, (Lemma 2.6) and we derive that in certain
situations they resemble conditional distributions of ¢, (Proposition 2.7, see also (2.24)).
This will be the crucial ingredient for approximating ¥g, by ¢r, along the connected
components of subcritical level sets and ultimately proving Theorem 3.1 (corresponding
to (0.8)) in Section 3.

2.1 A local approximation of ¥g, by ¢, on tree-like neighbourhoods

The goal of this section is to prove Theorem 2.1 below, stating the approximation of
the zero-average Gaussian free field Wg, on neighbourhoods of vertices with tree-like
surroundings by the Gaussian free field ¢, on T4. This supports the intuition that
the local picture of ¥g, on G, is given by ¢, on Tgq. The approximation derived here
will be used in Section 4 to prove the main result (0.9), i.e. that a linear fraction of the
vertices of G, is contained in mesoscopic connected components of the level set above
level h if h < h,. Theorem 2.1 will allow us to reduce the required computations on ¥g,
to computations on ¢r,,.

For the remainder of Section 2.1 we introduce some notation. If n > 1, z € G,
and R > 1 with tx(Bg, (z,R)) = 0, then (see (1.3)) let p; r : Bg,(z,R) — Br,(0, R)
denote the graph isomorphism given by (ﬂ'nx‘ Br (o R))*l. Furthermore, for all n > 1

d K
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and pairs =,z € G, we fix z; ,» € W;é({:n’}) C Ty. Finally, if n > 1, 2,2’ € G,, R> 1
with tx(Bg, (z,R)) = 0, tx(Bg, (¢', R)) = 0 and Bg, (z, R) N Bg, (', R) = 0, then let
pza' R : Bg, (x, R)UBg, («', R) — Br,(0, R)UBr,(24,4, R) denote the graph isomorphism
given by (7 2 ~1. Finally, recall the constant cq from (1.21). The

Bjyd (O,R)UBTd (zz,z”R))
main result of this section is the following

Theorem 2.1. For all n large enough, z,2’' € Gy, 1 <r < R < Qlogy_1(Nyp) such that
tx(Bg, (z,2R)) =0, tx(Bg, (',2R)) = 0 and Bg, (z,2R) N Bg, (¢',2R) = 0, there exists
a coupling Q,, of Vg, and pt, such that for all ¢ > 0

Qn sSup ‘\I/gn (y) — PTy (px,z’,ZR(y))‘ > 5:|
y€Bg,, (Z‘,T)UBgn (x/’,,.)

(2.1)
e2(d—1)(d - 2)
242
In particular, for all n large enough, x € G,, 1 < r < R < @log,; 1(Ny,) such that
tx(Bg, (z,2R)) = 0, there exists a coupling Qp, of Wg, and p1, such that for all e > 0

the same bound as in (2.1) applies to Qy, [supyeBgn ) |Wg, (y) — o1,(pz2r¥))| > €]

< 8d(d—1)"exp ( - (d— 1)R_2T).

We now proceed with some preparations for the proof of Theorem 2.1. The first
goal is an easy preliminary coupling of ¥g, and ¢, around vertices of G, with tree-like
neighbourhood (Lemma 2.3). In its proof we use the following observation.

Remark 2.2. Let z,2’ € G, and R > 1 satisfy tx(Bg, (z, R)) = 0, tx(Bg, (', R)) = 0
and Bg, (z,R) N Bg, (z', R) = 0. Assume U C Bg, (z,R — 1)U Bg, (2/, R — 1), so that
g, U C Bg, (x,R) U Bg, (z',R). Then for any y € Bg, (z,R) U Bg, (¢, R) C G, the
image under , , of the law of the simple random walk on T, started at p, . r(y) €
Br, (0, R)UBr, (24,4, R) C Tq and stopped when exiting p, ,» g(U) is the same as the law
of the simple random walk on G,, started at y and stopped when exiting U. In particular,
the hitting distribution of the boundary Jg,U of the walk on G,, is the image under m, ,
of the hitting distribution of Or,ps . r(U) of the walk on Ty, that is

(X7,

Pz’I/’R(U)

P9 [ X, = 2] = p;Td = pra,rR(2)] forally €U and z € 9g,U. (2.2)

z,z/,R(y)

Similarly, for any x € G, with tx(Bg,(z,R)) = 0, U C Bg,(z,R —1), and y €
Bg, (z,R) C G, the image under m,, of the law of the simple random walk on Ty
started at p, r(y) € Br,(0o, R) C T4 and stopped when exiting p, r(U) is the same as
the law of the simple random walk on G,, started at y and stopped when exiting U. So
(2.2) holds for p, ./ r replaced by py g. O

As a direct implication of the above Remark 2.2 we obtain a straightforward way to
couple Wg, on Bg, (z, R) U Bg, (¢/, R) with ¢, on Bt,(0, R) U Br, (234, R).

Lemma 2.3. Assume x,2’ € G, with tx(Bg, (z,R)) =0 and tx(Bg, (', R)) = 0 satisfy
Bg, (z,R) N Bg, (x',R) = 0 for some R > 1. Let U C Bg, (x,R—1)U Bg, (z/,R—1).
Then there exists a coupling of Vg, and T, such that
T
Vg, (y) — Eygn (g, (X1,)] = @1, (Pr2r,R(Y)) — Epacd,ac’,R(y) [SOTd(XTpLI/7R(U))]

(2.3)
for all y € Bg, (z,R) U Bg, (2, R).

Similarly, if we only have x € G, with tx(Bg, (x,R)) = 0 for some R > 1 and U C
Bg, (z,R — 1), then (2.3) holds for all y € Bg, (x, R) with ps » r replaced by py. .
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Proof. The proof is analogous to the proof of Lemma 1.10 in [Abd19]. Since both sides
of (2.3) describe centred Gaussian fields, it is enough to check that the covariance is the
same. By (1.20) resp. by (1.8) the covariance of the field for y, z € Bg, (z, R) U Bg, («', R)

1 (U
is ggn (y, z) on the left resp. gqprﬂ;’”” &l )(pw,x/,R(y), pza k(7)) on the right hand side. These
two covariances are equal by Remark 2.2 and hence the proof is complete. 0

We can now lay out the strategy for proving Theorem 2.1. The idea is to combine the
coupling of g, and ¢, from Lemma 2.3 (for some suitable choice of U) with uniform
bounds on the variance of the expectations appearing in (2.3). These uniform bounds
are shown in Proposition 2.5 and will ultimately lead to the proof of Theorem 2.1. Before
that, we show a simple estimate of the hitting distribution of a sphere by the simple
random walk on T4 (Lemma 2.4). This estimate is needed for the proof of the bounds
in Proposition 2.5.

Lemma 2.4. Let R > 0. Then for all y € Bt (o, R) and z € St (0, R) one has

1 )R—de (2470)'

T
Pyd[XHSTd<OvR) - Z] S (

— (2.4)

Proof. Note that the statement we need to prove only depends on the distance of the ver-
tex y to the centre of Bt (o, R). We denote by o = yo,y1, ..., yr a fixed non-backtracking
path from o to St,(0, R) =: S, so that dr,(yx,0) = k for k =0,..., R. First, we argue
that Pl;ﬂ;d[XHS =2z| < P;l;d[XHS =yg| forall z€ S and k=0,...,R. Indeed, fix z € S
and k € {0,..., R} and let

ip == max{i € {0,..., R} |y; is on the non-backtracking path from o to z},

so that y;, is the last common vertex of the two non-backtracking paths from o to z
resp. to yr. Note that any path from y; to z in T4 has to pass through y;, and also
that P;Eg Xug = 2] = P@Ei [XHs = yr] because z,yr € S and dr,(yiy, 2) = dr,(Yiy,YR)
by definition of y;,. As claimed, one obtains

Pli(Xpy, = 2| = FJi[Xy, = 2. H,, < Hs| 2 PJ¢[H,, < Hs|PJ[Xp, =]

(%)
= P,[Hy, < Hs|P,4[Xpy =yr] = P, [Xny = yr, Hy, < Hs] < P,4[Xpg = yrl,

where in both (x) we use the strong Markov property.

It remains to show P;Ej Xz =ygr] < (d—1)"8B "k for k =0,..., R. To this end, let
Ay, = St,(0, R) N Uy, (see (1.2)). By definition we have yp € Ay and |Ay| = (d — 1)EF,
Moreover, by symmetry it holds P;Ej (Xpg =2] = P;Ej [Xrg = yg| for all z € A. Hence

1> PlXy, € A= Y Pl[Xpy =2 = (d— 1) Pl[Xp, = ynl,
zE€AL
from which the required claim follows directly. O

Proposition 2.5. For all R > 1 and y € Bt (o, R) one has

d? ( 1 )R—Qdﬂrd(y@)
y .

Var]PTd (E;Td [@Td(XHsTd(o,R))]) < (d _ 1)(d _ 2) -1
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Also, for all n large enough, x € G, and 1 < R < @ logy_1(Ny,) with tx(Bg, (z,2R)) =0
and y € Bg, (xz,R) one has

3d? ( 1 )R*ngn(y»w)
g .

") (d—2)\d—1 (26)

Varpen ( B Vg, (Xn,, (%R))]) =7

Proof. We start with (2.5). Let us abbreviate S := St (o, R). We first expand the
variance to obtain

Varpr, (E;rd [SOTd(XHs)]) = Z Py Xpg = 21]P,) [ Xus = 2]gr,(21, 22)
21,22€8
2.7)
(24) d—1 1 2(R—dr,(y,0)) 1 dr,(21,22) (
< o (— _t .
(ﬁ;)d—?(d—l) zlge <d—1)

Fix z; € S. Note that all vertices of S are at even distance from z; and more precisely
that in S

there is one vertex at distance 0 from z; (namely 2 itself),
there are (d —2)(d — 1)7~! vertices at distance 2j from z; for 1 <j < R—1, (2.8)

there are (d — 1) vertices at distance 2R from z;.

This implies that for fixed z; € S it holds

S (Clil)d“(“’”) 14 Z(d —9)(d — 1)1 (ﬁ)% +(d- 1)R(ﬁ)2R

20€8 j=1

-

—1+(d-2) ~ (ﬁ)ﬂl + <d7i1>R (2.9)

1+ (7Z9) (- G5) )+ ) -

Since |S| = d(d — 1)1, we can combine (2.7) and (2.9) to obtain

<.
Il
-

—_

., d
d(d—1)f 1ﬁ,

d—1 ( 1 )2(R—drd(y70))
d—1

Varpr, (Egd [eT, (XHs)]> < 1-92

which is equal to the right hand side of (2.5) and concludes the proof of the first part.

For the proof of (2.6) we proceed similarly. Let us abbreviate S’ = Sg, (z, R)
and note that Pyg”—almost surely Hgr = T, (4,r—1)- Since by assumption we have
tx(Bg, (z,2R)) = 0, Remark 2.2 implies that for every z € S’ we have

n _ _ pT _
POrXny =2 = P Xn = pen()

d—1 d—1

Furthermore, for n large enough, the inequality (1.23) in Proposition 1.1 applies to
Gg, (21, 22) with 21, 22 € S’ since dg, (21, z2) < 2R < % log, 1(N,) by assumption on R.
Therefore, by expanding the variance we obtain similarly to (2.7) the inequality

e (85 0,0) <54 () S (e

(2<4)( 1 )R*d'ﬂ"d(ﬁ’x,R(y):O) ( 1 )R*dgn(y»w)'

(2.10)
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assuming n is large enough. We now argue that for fixed z; € S’ the vertices in S’ can
be again characterised by (2.8). Indeed, the assumption tx(Bg, (x,2R)) = 0 implies that
any shortest path from z; to some zo € S’ necessarily remains in Bg, (z, R) for which
tx(Bg, (x, R)) = 0 holds. Therefore, dg, (21, 22) can be computed by only considering the

shortest connection in Bg, (=, R) between z; and z2 and so we are in the tree-like situation

of (2.8). Thus, the same computation as in (2.9) leads to > _ o (ﬁ)dg”(zl’”) = d%‘ll.

This combined with (2.10) concludes the proof of (2.6) since |S'| = d(d — 1)1 as
tx(Bg, (z, R)) = 0. O

We now have all the ingredients for the proof of Theorem 2.1, by which we conclude
Section 2.1.

Proof of Theorem 2.1. Let us abbreviate V := Bg, (x,r)U Bg, (z',7). Under the assump-
tions of the theorem we can apply Lemma 2.3 with U := Bg, (¢, R—1)UBg, (2/, R—1) D V.
Thus we obtain a coupling Q,, of ¥g, and ¢, such that for all € > 0

Qn [sup W6, (1) — o (prwr 2 (@) > } (2.11)
yeVv

< Qn [sup ET

€ €
ciy | Peatr() lra(Xz, R(U))]‘ - 2] +Q [Sup ’Eyg" Vg, (XTU)]‘ > ]7
Y ] x',

yeVv 2
where p; o r(U) = Br,(0,R — 1)U Br,(24,4,R —1) C Br,(0,2R) U Bt (2 4, 2R). We
now consider the two terms on the right hand side of (2.11) separately. For the first term
a union bound leads to, abbreviating S := St, (o, R) and S’ := St, (24,4, R),

Qn [sup ETd

g
yev pz,z’,R(y) [SOTd (Xsz,z’,R(U>)]‘ o 2:|

= Pl [ sup 3

yeBTd (O’T)UBTd (Zmyz-/ ’r)

< ¥ PTd{EEd[md(XHS)]P;]JF 3 PT{

yGqud (o,7) yeBTd (Zw,w/’r)

S
=2 Z Pt |: E;Td[SDTd(XHs)]‘ > 2:|a
yEBTd(O,T‘)

3
Efler, (X o)l| > 5]

2.12
Bt > 5|

where the last equality follows by symmetry. Now for each y € B, (o, r) the expectation
appearing inside the probability on the right hand side of (2.12) is a centred Gaussian
variable with respect to PTe. Thus the exponential Markov inequality implies that

2 Y o (=/2)" )

2Varpr, (Ey*lor, (Xm,)))

Ede[md(XHS)]’ > ;} <4 Z eXp(_

yEB'JI‘d(O,T) yEBTd(O,T)
(2.5) 2(4 — _
< 4|Br,(o,7)|exp ( _ed Sggd 2) (d — 1)R—2’“>. (2.13)

For the second term on the right hand side of (2.11) we similarly have by a union bound
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that, abbreviating S := Sg, (x, R) and S = Sg, (', R),

. E9 [T, (X ’ £l = pon ngn\Iz Xi ’ £

< ) Pg"[

y€Bg,, (z,r)

B W, (Xuy)l| > 5.

;} (2.14)

9
Eygn[\I/gn(XHg)]‘ > 2:| + Z Pgn|:
y€Bg,, (z',r)

The expectations appearing inside the probabilities on the right hand side of (2.14) are
centred Gaussian variables with respect to P92, By (2.6) their variance can be bounded
by #‘@_2)( ﬁ)R_z’". Hence the exponential Markov inequality implies that

> |

y€Bg,, (z,r)

v, | 5] ¢ 3 2o ||rvs. o>

y€Bg,, (z',r) (2.15)

< 2(|Bg, (x, )| + | Bg, (@', 7)]) exp ( 2 —221(;5 2, 1)R_2T>'

The combination of (2.11)—(2.15) concludes the proof of Theorem 2.1 since |Bg,, (z,7)| =
B, (',7)| = | Br,(0,r)] = G52 < d(d —1)" as tx(Bg, (x,7)) = tx(Bg, (+',7)) = 0
by assumption. O

2.2 Conditional distribution of the zero-average Gaussian free field

In this section we investigate the conditional distributions of the zero-average Gaussian
free field. Their detailed understanding will be needed in Section 3 to control the
behaviour of the exploration process used in the proof of the main subcritical result (0.8).
We start with the exact computation of the conditional distribution of ¥g () for x € G,
given Wg, on some A C G, (Lemma 2.6). We then see that, under certain geometric
conditions on z and A (see (2.26)—(2.28)), the conditional distribution of ¥g, () given
Vg, on A C G, shows strong similarities with the conditional distribution of the Gaussian
free field o1, on Ty (Proposition 2.7, see also (2.24)). This feature reflects the general
philosophy that the local picture of ¥g, on G, is given by @1, on T,.

Lemma 2.6. Let A C G, non-empty and x € G,. Then P9 _almost surely

EJn[H 4

m&?" (g, (Xp,)] (2.16)

E9 (g, (2)|o(¥g, (y),y € A)] = EZ*[Vg, (Xm,)] —

and
Varpgn (‘I’gn (1‘) ‘O’(\I/gn (y)v Y€ A))
E9n[H 4|

= Gg, (z,x) — E9"[Gg, (X, )] + —%——=
g, (@, @) [Gg,(Xn,, )] £ (1]

B9 (Go, (Xpp ). )

Here Eg” 1s the expectation with respect to N%L Zzegn Pzg”, i.e. the canonical law of simple
random walk on G, starting at a uniformly chosen vertex.

Proof. We will abbreviate U = G, \ A € G,. In particular Ty = Hy4. Note that by

(1.19) one can write g, (z) = @5 () + Eg"[Vg, (Xp,)], the second term actually being
o(Vg (y),y € A)-measurable. Hence E9» [\Ilgn (az)‘o(\llgn (y),y € A)] = E9[Wg, (Xm, )]+
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E9n [gpgn (x)’a(\lfgn (y),y € A)] and moreover also Varpg, (\I/gn (x)’a(\lign (y),y € A)) =
Varpg, (gogn (x)}a(\llgn (y),y € A)). For (2.16) it is therefore enough to show that P9
almost surely

Eg [Ty]

_Egn [TU]ETQFn [\Ifgn (XTU)]' (2.18)

E [, (2) | 0(Yg, (y),y € A)] =

On the other hand, for (2.17) it is enough to show (use (1.18) to manipulate the first
two terms on the right hand side of (2.17))

Gn
Varpe, (G, (#)|o(¥g, (y),y € A)) = gg, (z,x) + % (Eg" (Ge, (X1, 2)] = ETE\[ZU] )
(2.19)

Let us fix zg € A. We claim that

o(¥g,(y).y € A) = U(ZzeU #g,(2), ¥, (y) = ¥g, (w0),y € A)- (2.20)

To see (2.20) first note that o(¥g, (v),y € A4) = o(¥g, (x0), Vg, (y) — Vg, (x0),y € A).
Moreover, by the zero-average property of Wg, (see below (1.18)), one P97-almost surely
has

Vg, (z0) = —NL > (g, (2) — Vg, (x0))
™ 2€Gn
2 S (el () + B (g, (X, )] - W, (x0)
" 2€Gy,
= ) X B, (Xn,) — g, ()]
" oeU ™ 2€Gn

The latter sum is o(¥g, (v) — Vg, (z0),y € A)-measurable. Thus o(¥g, (x0), Vg, (y) —
Vg, (z0),y € A) =0 (X .cy ©5, (2), Vg, (y) — Vg, (x0),y € A), which shows (2.20).
Now note that

for z € G, and y € A the Gaussian random variables gogn (z) and

2.21
Vg, (y) — Yg, (vo) are independent. ( )

Indeed, E9" (g (2)(¥g, (y) — ¥g, (20))] = Gg,(2,y) — EZ"[Gg, (X1y,,9)] — Gg, (2, w0) +
EY"Gg, (X1,,20)] by (1.19) and (0.4), which is equal to g5 (z,4) — g5 (2,20) = 0 by
(1.18) and (1.17) (since y,zo ¢ U).

Recall that for random variables U, Y, Z such that U is integrable and Z is independent
of o(U,Y) one has E[U|o(Y, Z)] = E[U|o(Y)] almost surely (see e.g. [Wil91], 9.7(k)).
Hence we get E9» [ (x) lo(Vg, (y),y € A)] =E9 (g (x) lo(X.cv 07 (2))] P97 -almost
surely by (2.20) and (2.21). Due to the general formula Var(X|o(Y)) = E[X?|o(Y)] —
E[X|o(Y)]?, the same observation also shows that Varpe, (g ()]0 (¥g, (y),y € A)) =
Varpg, (cpgn (:c)}a(ZzGU gogn (z))). Therefore, the conditional expectation/variance to
be considered in (2.18) and (2.19) are actually only with respect to the sigma-algebra
generated by the single Gaussian random variable »__;; wgn (z). So by the formula for
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conditional expectation/variance of the bivariate centred Gaussian distribution we have

Gn U (y
B9 [ () | (W, (1) € A)] — EEg[fﬁ”(z) Lt f@;i]” S ),
zeU g, \# 2€U
E9 [0f, () Toev 96, (2)]”

E [(L.ev 06, ()]
(2.22)

Varpe, (¢, (z)|0(¥g, (y),y € A)) =E9[p§ (z)?] —

We observe that for u € G, one has Y, E9 [gogn(u)cpgn(z)] = > .U ggUn(u, z) =
E9[Ty] by (1.20) and (1.17). By applying this and (1.8) inside (2.22) we obtain

E9[Ty]
E9 [0Y (2)|0(Wg,(y),y € A)] = 3 ng S0l (2)
zeU ZGU
2.23
ESn[Ty)? (223)

U _ U . Tx 7Yl
VarIP’Qn (ﬁﬂgn (m)}a(\pgu (y)a Yy e A)) =9g, (J}, 1‘) ZzEU E‘gn [TU]

We are almost done. Observe that by (1.20), (1.19) and the zero-average property of
g, it P9 -almost surely holds

D06, (2) =D ¢G.(2) = Y (¥g,(2) — E9"[Vg, (X1,)]) = = D EZ"[Wg,(Xn,)]:
2€U 2€Gn 2€Gn 2€Gn

This combined with (2.23) shows (2.18). On the other hand, by the formula above (2.23),
(1.18) and the zero-average property of Gg, (-, -) (see below (1.18)) one has

Eg[Ty]
7(]: Zggn2$ N Zggnz'r
" zeU 2€Gn
1
= 3 (B9 (G, (Xn, )] — 5 E9[Tu] - G, (=)
" 2€Gn n
Ex[Ty]
= Egn [ng (XTUa 33')] - 7;\7. .
n
This combined with (2.23) shows (2.19) and concludes the proof of Lemma 2.6. O

Lemma 2.6 above shows that for any « € G,, Vg, (z) conditionally on (¥g, (v))yca
for A C G, non-empty is a Gaussian random variable with mean and variance given by
the right hand sides of (2.16) and (2.17). Comparable (but easier) statements for the
Gaussian free field ¢, on Tq follow directly from (1.8). In particular, if ' € T4 and
A":=Ty\ Uy (recall definition (1.2)), then by (1.9) and (1.10) one has

E' [pr, () |o (o1, (y),y € A)]
Varpr, (qurd(a?/)‘U(SDTd(y%y € A)) =

1 —

d;l(p'ﬂ‘d(aj)v (224)
a—1-
As we will show in Proposition 2.7 below, a similar behaviour can be observed for the zero-
average Gaussian free field ¥g, on G, at least in specific situations. We now introduce
the requirements on = € G, and A C G,,. Define for A C G,, non-empty and r > 1 the set
Bg, (A,r) ={z € G, |z € Bg, (w,r) for some w € A}. Moreover, for x € dg, A we set

Fa(z,r):={z € Bg, (A,r)\ A|z is connected to = in Bg, (A,r)\ A}.
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In particular z € Fy(x,r). We set
sp, == max{1l, [8log,; ;(logy_1(Ny))]} forn>1. (2.25)

and say that = € dg, A is a good vertex at the boundary of A if the following properties
hold

e |Bg, (x,1)NA| =1, write T € A for the unique vertex in this intersection

(note that for 2’ € Ty the notation Z’ has been defined above (1.2)) (2.26)
o tx(Fa(z,s,)) =0 (2.27)
e for all y € dg, A\ {z} every path in G, \ A from y to = leaves Bg, (A, sn). (2.28)

Equivalently, F(x,s,) is proper in the notation of [CTW11] (see Figure 1 for an illus-
tration of the conditions (2.26)—(2.28)).

Figure 1: (adapted from [CTWT11]) The point = € dg, A is a good vertex at the boundary
of A, the points in F(z, s,) are marked grey.

For A C G,, non-empty we set
G 4 = {good vertices at the boundary of A}. (2.29)

We are now ready to state Proposition 2.7. Observe the analogies between its statement
and (2.24).

Proposition 2.7. For every b,b’ > 0 there exists ey > 0 such that forn >1, ACG,
non-empty with |A| < bIn(N,,), v € G4 and on the event { sup,c 4 |¥g, ()] < V'\/In(N,) }
it holds

B (g, () | 0(Wg, (1), y € A)] ~ — Vg, (@] < cop((N) 2, (2:30)

‘Val“pgn (Yg, (2)|0(Pg,(y),y € A)) — d%dl < cpy (In(Ny))~, (2.31)

Recall that T € A denotes the unique neighbour of x in A (see (2.26)).
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To show Proposition 2.7 and conclude this section we will manipulate the explicit
expressions for the conditional expectation and variance obtained in Lemma 2.6. In these
expressions one considers the hitting time of A for the simple random walk on G,, and
in the proof of Proposition 2.7 we will look at different situations for when the hitting
happens (see the beginning of the proof of Proposition 2.7 below). Since z € G4 in the
statement, the simple random walk started at x has to leave F4(z,s,) to hit A and so
PYn-almost surely either H, = Tr,(z,5,) OF Ha > Tp,(z,5,)- We will further split the
latter case into whether H 4 happens before or after an additional time

= 1 (n(N,)*, (2.32)
Gn

by which the distribution of the simple random walk is very close to the stationary
distribution (here the uniform distribution on G,). This follows from e.g. [SC97], Corol-
lary 2.1.5. So in the proof of Proposition 2.7 we will consider the three situations
Ha =Tr,(2,50) Tra(e,sn) < Ha < Tpy(zs,) +tn and Ha > Tr,(4s,) T tn separately.
Before that, we collect in Lemma 2.8 some preliminary observations about the simple
random walk on G,, and subsequently start with the proof of Proposition 2.7. For the
rest of this section we will abbreviate Fy :== F4(z,sy,). It is also convenient to consider
the continuous-time simple random walk (Yt)tzo- We remind that for the exit time from
U C G, (resp. for the entrance time in U C G,) of this walk we use the same notation
Ty (resp. Hy) as for the discrete-time simple random walk.

Lemma 2.8. Forn > 1, A C G, non-empty and x € G4 one has

(i) 75 —c(In(N,) " < PI"[Ha=Tr,| < 755 and E"[Tr,] < cln(N,) (2.33)

(i) PI"[HA>Tr,)= Y. PI[Xr,, =2 Ha>Tr,). (2.34)
2€Bg,, (A,sn)¢

Moreover, for every b > 0 there exists ¢, > 0 such that forn > 1, A C G, non-empty
with |A| < bln(N,) and x € G4 one has

(iti) PI"[Tr, < Ha < Tr, +tn] < cp(In(N,)) ™0 (2.35)
(iv) > |PI[Xy, =w,Ha > tn] — | < a(In(Nn)) ™ for z € Gy (2.36)
weGn
EZ" [Ha]

(v) — P9[Hy > Tr,)| < ey(n(,) ™ (2.37)

ES7[H 4]

Proof. Due to (2.27), the probability P9»[H4 = Tr,] is equal to the probability that a
(discrete-time) random walk on Z started at 1 and jumping with probability d%dl to the
right and % to the left hits 0 before hitting s,, + 1. Similarly, E9»[Tr,] is equal to the
expected time until this random walk hits 0 or s, + 1. Thus (see e.g. [Fel68], (2.4) and

(3.4) in Chapter 14) it holds

Pir[Hy =Tr,) =1 - 431 - (5" ) < 1- 5 = 4y,
_ 1
B ([Tr,] = 325 (s + V3 —
d

Since (1 — (7)) 71 < (1 = (logg_1(Na)) ™)™t < 1+ ¢(In(N,,))~7, one also has

+
P9n[Hp=Tp,] >1— %(1 + c(In(Ny))™") > 745 — ¢(In(N,,)) ™", Thus (2.33) is shown.



To see (2.34) observe that on the event {H4 > Tp,}, at the moment the simple
random walk started at = leaves Fjy, it is in some z € Jg, F4 N Bg, (A, s,)¢ (note that
indeed z ¢ Bg, (A, sp) since else there would exist a path like those excluded by (2.28)).
In other words,

P9 _almost surely YTFA € 0g, FaNBg, (A, sp)" on the event {Hs >Tr,}. (2.38)

This shows (2.34). To derive (2.35) we apply the strong Markov property of simple
random walk for time Tx, and obtain for n > 1

(2.38)
PonTp, < Ha < Tr, +t,] < sup P9 [H, < t,). (2.39)
z€Bg,, (A,sn)°
Roughly speaking, the right hand side of (2.39) is small since it is difficult for the simple
random walk to hit A within time ¢,, because it starts at distance larger than s,, from A
and the environment is nearly treelike (see (0.2)). More precisely, we can apply [CTW11],
Lemma 3.4 (for T :=t,, r :== 0, s := s, and using (0.2)) to find ¢,¢ > 0 such that for
z € Bg, (A, sp)¢ one has for n > 1
. (2:25)
PO [Hy < ty] <Y PI"[H, < ty] < |Al(cta(d — 1)~ + e ) < ey(In(N,)) 2,
yeA

where the last inequality also uses the assumption on A, (2.32) and (0.3). This combined
with (2.39) gives (2.35).

For (2.36) the idea is that on the event { H4 > t,,} the simple random walk started at
z has, roughly speaking, reached the stationary distribution by time ¢,, without having
hit A. We observe that for z,w € G,, one has

| PO (X1, =w,Hp >ty — 3| < PI"[Xy, =w,Hy < tn] + |P9[Xy, = w] — -]

< Pzg” (X, =w,Ha < t,] +exp(—=Ag, tn)

(232) pGn (X1, = w, Ha < ty] + exp(—(In(Ny))?),

z

where in (%) we apply [SC97], Corollary 2.1.5. Hence for n > 1, z € G,,, one has
> | PIMXy, =w, Ha > tn] — 5| < PI"[Ha < tn] + Ny exp(—(In(Ny))?),

wegn

which together with the above estimate on P97[H 4 < t,] gives (2.36). It remains to show
(2.37). We start by computing (using also (3.20) of [CTW11] in the second inequality)

Emg”[HAlHAzTFA] _ E9n[Tp,] (239)

41A]  ep(In(Ny))?
B < B (] < cln(Vy) < )

N, — Ny

(2.40)

Now by (2.38) and the strong Markov property £f simple random walk for time Tr,
one has EJ"[Halm,>rp,] = Yocpg (asn) P2 [ X1e, = 2,Ha > Tp,JEI"[Ha]. This
combined with (2.34) shows
Exgn [HA]‘HA>TFA]
EF"[H ]

E9n[H 4
ESn[H

< sw
z€Bg,,(A,sn)°

— P9 [Hp > Tp,]

- 1‘. (2.41)
By [CTW11], Proposition 3.5, we can bound the absolute value on the right hand side
of (2.41) by c|A|(d — 1)7**(In(N,,))* < ¢p(In(N,,)) 3. Since PY7-almost surely either
Hjy=Tp, or Hy > Tf,, the combination of (2.40) and (2.41) concludes the proof. [
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Proof of Proposition 2.7. We start with the basic observation that by (2.16) one has
B9 [Wg, (2) | 0(Vg, (y),y € A)] — 727V, ()] < U, + VEn + Wi, where

, T

)

U, = | B9 9, (X)L a=ri )] — 7Y, ()
VAg,?c = ‘Exg" Vg, (YHA)l{TFA<HA<TFA+tn}] B

no. n ~ En[H . e

Hence the proof of (2.30) follows once we show that

there exists ¢, > 0 such that for n > 1, A C G,, non-empty with |A| <

bIn(Ny,), z € G4 and on the event {sup.c, [¥g, (2)| < b'y/In(Ny)} one (2.42)
has U, + Vi + W < cpp (In(Ny,)) 2.

Similarly we have ‘Varpgn (\I/gn () ‘ o(Yg, (y),y € A)) — d%‘l1| < Ui?x + Virfx + Wifx by
(2.17), where

)

*gn
Uiy = ‘ng (2,2) = EJ"[Gg, (Xr o 2) 1 ima=1p 3] — 755

—Gn )
Ve = E7" [Go, (X4, 0) 11y, <t a<Tp, 10}

=7Gn ES"H o
WAJ = ‘Ewgn [ng(XHA7x)1{HAZTFA+tn}:| - Eg"{Hf:}Eg [ng(XH/Ux)] .

Thus the proof of (2.31) follows once we show that

there exists ¢, > 0 such that for n > 1, A C G,, non-empty with |A| < 543
bln(N,) and = € G4 one has Uifx +Vi7fx —i—Wi’:z < cp(In(N,,)) 3. (243)

It remains to show (2.42) and (2.43). For (2.42) we bound the three terms Ugnx, VAQ*;
and Wg"x separately. On {H4 = Tr,} one has P9n-almost surely Vg, (Xy,) = Vg, (7)
due to x € G4. Therefore we deduce Uy", = |Vg, (T)| - ‘ngn [Hy = Tr,] — ﬁ‘ <
v'\/In(Ny,)e(In(N,,))~7 by (2.33), where in the last inequality we also use that T € A.
This shows Ug"x < ¢y (In(Ny,))~C.

We turn to VAg’ufE. By (2.35) we have VAg’; < supyea |¥g, (v) - P9 [Tp, < Ha <
Tr, + tn] < \/In(Ny,)cp(In(Ny,)) 5. This shows V™ < ¢ (In(N,,)) ™%

Finally, we consider W3" . Let us define

Gn .
Ax "

ES"[H o
Tonin — P HA > Tr,]

zy, = ‘Ef” (Y6, (X)L (ta>1p, +10y] — PP [Ha > Tp EZ" [Vg, (X )] ‘

)

(2.44)

1 Eﬁ" [HA]Eg"
On On X
Py [Ha>Tr,] EZ" [Hal

expression for ng we obtain

By adding and subtracting [\I’gn (X DliH A>Tr, +tn}] inside the

|EZ" [Wg (YHA)]-{HA>TF Ttn ]l Gn
n - A n gn 1 Ez [HA} gn
P [HA>Tr ] Yiat 23z (245)

Wgn <
Az = PE" Ha>Tr | ES™ [Ha)

To the first term on the right hand side of (2.45) we apply PI"[Ha > Tr,] > d=2 (by
t

d—1
(2.33)) as well as (2.37) and the assumption on the supremum of Wg, on A. For the
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second term we first observe (2.37) and then again use PIn[Hq > Tr,] > %. In this

way we obtain
W < oy ((N,)) 7> + (1 + 6 (In(N,)) )25, (2.46)

We proceed to bound Zg”z. By (2.38) and the strong Markov property for time Tp, it
holds
Egn [\I/gn (YHA)]‘{HAZTFA+tn}]

= Z Pg"[YTFA = Z,HA > TFA]EZQ” [\Ijgn(yHA)l{HAZtn}]'
z€Bg,, (A,sn)°

bi1 Edn [\I]gn(YHA)l{HAZtn}] -
E9n[Wg, (XHA)”‘ Now for z € Bg, (A, sp), by the Markov property applied at time ¢,
and the definition of E9n,

This combined with (2.34) implies Z7", < sup.cp; (A.s,)

|E9" (g, (X)) — B9 (g, (Xu,)]]

_ o (2.36)
< B, (Xu)l| - [P Xy, =w, Ha > ] — -] < o (In(N,)) 74,

weGn
where in the last inequality we also use the assumption on the supremum of ¥g on

A. All in all we have shown Zf{;t’m < epp (In(N,)) ™% Thus by (2.46) we deduce Wgnx <
b (In(N,)) 72 and the proof of (2.42) is complete.

We come to the proof of (2.43) for which we bound the three terms Uf{jx, Vifgﬁ and
Wi"x separately. For UZ’; we first note that one has E9»[Gg, (Xp,,z)1 (H A:TFA}] =

B9 [Gg, (X1p,, ¥) i y=1p y] = EJ[Gg,(X1p,,7)] — B9 [Ga, (X1p,, %) 1,510 -
By (2.38), on the event {H4 > TF, } the simple random walk started at x is at distance
sy, from x when it leaves 4. Therefore
G G (1.23) e
B [Gg, (X1, 0) g ystpe 3] £ sup Gg,(2,20) P [Ha > Tr,] < c(In(Ny)) ™"
2€8g,, (,5n) —————(2.25)

(&3

<1

Thus we have

U%e < |Gau(@,2) — B9 [Ga, (Xry, @)] = 2| + clin(Na))~®

2.47)
(1.18) F cIn(N, — (
< oG o, w) = g+ R + cin(Na))
(2:33)
Note that by assumption tx(F4) = 0. So if we define B := B{Fd (0,8n) \ {o} € Ty and

take x1 € SL (0,1), then by definition we have ggf (x,z) = gi (x1,21). From (1.7) we
see that
B _ Ty
gr,(x1,21) = g1, (21, 71) — B [g1,( X758, 21)]
= g1,(z1,21) — g1,(0,21) P [Ho = T) — gr,(2,21) Pr [Ho > Ts)

for any fixed z € S%’d (0,8n, +1). By (1.6) this shows that

d—1 d-1 1
B PoniH, =T
= — n — i
97,(@1,21) d—2 d—2d—-1° [Ha Fa)

d—1, 1 .,
TG PI"[Ha > Tr,].
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So we have obtained

|5 = g P (Ha = Try) = g% + 55 (20) " P [Ha > Tr]

9, (2, 2) = %] &

This, together with (2.47) shows Ui"x < c(ln(Ny,))~".

We turn to Vi’:x. By (1.22) there exists ¢ > 0 such that sup, .cg, Gg,(y,2) < c.
Therefore V', < ¢ P9 [Tp, < Ha < T, +1,] and so (2.35) implies 75", < c(In(N,)) .

Finally, we consider Wi"x Let us define
Z5, = |E9[Gg, (X, 7)1 | = P9"[Ha > Tr,|E9 [Gg, (X, )]
T [ n A {HAZTFA+tn} x A Faltr Gn Hps

Gn . T79n 1 E§"[Ha] |
and recall Y from (2.44). Inside Wy, we can add and subtract PO i 4> Tr ] B9 (Ha

ES"Gg,(Xu,, ) LiH\>Ty, +t,1] to obtain

EZ"[Gg, (XHAvm)l{HAZTFA +tn}]
PE" HA>Tr,]

YO 4 gL B HAl 7O
s

79

To the first term on the right hand side of (2.48) we apply PI"[Ha > Tr,] > % (by
(2.33)) as well as (2.37) and sup, ,eg, Gg,(y,2) < c (by (1.22)). For the second term we
first observe (2.37) and then again use PI"[Ha > Tr,] > %. In this way we obtain

W < ep(In(Nw) 3 + (1 + ep(In(N)) ) 25 (2.49)
We proceed to bound Zi’;. By (2.38) and the strong Markov property it holds

EJ [ng (X, 13)1{HA2TFA+tn}]

= Z ngn [YTFA =z, Hy> TFA]Ezgn [ng(XHAvx>1{HA2tn}]-
ZEBgn(AvS’ﬂ)C

This combined with (2.34) gives Zifx < SUD.cBg, (Asn)c

Egn [ng(XHA7$)1{HA2tn}] -
E$"Gg,(Xn,,2)]|. Now for z € Bg, (4, s,)¢, by the Markov property applied at time
t, and the definition of EI",

|E"[Gg, (Xp, )1, 5t,y] — B9 (Gg,(Xn,, )|

— (2.36)
< Z Eg"[ng(XHA,x)] ) ‘Pzgn[th =w,Ha > tn] — NLn{ < Cb(ln(Nn))ig)?

’u)egn

where in the last inequality we again use sup, g, Gg,(y,w) < ¢ by (1.22). All in all

we have shown Zifx < ¢p(In(N,,))~5. Thus by (2.49) we deduce Wi"x < cp(In(N,)) ™3
and (2.43) is shown. This concludes the proof of Proposition 2.7 and Section 2.2. O
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3 Microscopic components in the subcritical phase

We start the analysis of level-set percolation of the zero-average Gaussian free field ¥g,
on G,. The goal of this section is to show (0.8) in the form of Theorem 3.1 below, i.e. the
existence of a subcritical phase in which, with high probability for large n, level sets of
W, only have connected components of cardinality at most logarithmic in the size of
the graph. To precisely state the result, we recall from the introduction the critical value
h, for level-set percolation of the Gaussian free field ¢r, on Ty (see (0.7)) and also the
notation E\%Zn for the level set of Ug, above level h € R (see (0.5)). For h € R we further

denote by Cg{;f an arbitrary connected component of E,Iz,h with maximal number of
vertices. We will only be interested in its cardinality. More%ver, for x € G, and h € R
we define CY"" to be the connected component of E‘%Z containing x. The main result
of this section is !

Theorem 3.1. Let h > h,. Then for all k > 0 there exist ¢y, > 0 and Ky, .. > 0 such
that for allm > 1
P9 [|Conl| > Ko In(Ny)] < chuN,, "

max

In particular, for some Kj, >0 one has lim,_,o, P9 UCE{;’Q < K, In(N,)] = 1.

Before explaining the details of the proof of Theorem 3.1, let us make the basic
observation that a union bound reduces the problem to show that for A > h, and for all
x > 0 there exist ¢p . > 0 and Kj, ,, > 0 such that for all n > 1 and z € G,

P9 [|CY" " > K In(N,)] < e Ny 0 (3.1)

So it remains to show (3.1). We will make use of a certain exploration process exploring
csm" for a fixed & € G,. This will enable us to control P9 [|ng"’h| > KpoIn(N,)]. A
similar approach has for example been followed in [CTWl 1] to prove a result analogous
to the above Theorem 3.1 but for the vacant set of simple random walk on G,, in place
of the level set of the zero-average Gaussian free field.

We now give the idea of the proof of (3.1). The details of the exploration process itself
are given afterwards. A crucial ingredient is the precise understanding of the conditional
distribution of the zero-average Gaussian free field on non-explored vertices given its
value on already explored vertices. As we have seen in Proposition 2.7 in Section 2.2,
under certain geometric conditions the conditional distribution of Wg,  shows strong
similarities with the conditional distribution of the Gaussian free field ¢, on Ty. While
exploring Cag;”’h, the exploration process will separate the vertices found in cImM into a
union of rooted disjoint subtrees of G,, in which all vertices except for the root satisfy the
aforementioned geometric conditions. In this way we reduce the proof of (3.1) to a control
of the number of vertices contained in these union of subtrees (Proposition 3.2). As a
result from [CTW11] shows (see also Lemma 3.3), the number of steps the exploration
process encounters a situation in which the geometric assumptions fail to be satisfied is
not too large. This controls the number of distinct subtrees created by the exploration
process because in each subtree there is exactly one vertex which does not satisfy the
conditions (its root). Since the other vertices of a subtree satisfy the geometric conditions,
we can employ the similarity between the conditional distribution of ¥g, and ¢, to
couple the zero-average Gaussian free field on each distinct subtree separately with an
independent copy of the Gaussian free field ¢, on Ty (Lemma 3.4). This translates the
question about the number of vertices contained in the disjoint subtrees into the number
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of vertices contained in connected components of the level set of ¢, (Corollary 3.5). A
result from [AC19] (recalled in (1.14)) about exponential moments of the size of these
connected components then ultimately leads to the proof of Proposition 3.2 and hence

of (3.1).

We now describe the exploration process exploring Cg"’h for a fixed z € G, and to
facilitate the discussion we include a concrete algorithm implementing it (Algorithm 1).
The exploration process is a modified breadth-first-search that discovers the field Vg,
on the graph step by step. It employs two queues (a primary and a secondary one) that
work in the usual first-in-first-out manner and store the vertices to be explored. The
exploration process starts by revealing Wg (x). The vertices where Wg  has been revealed
are called explored and they can be either part of ng »" or not. If a vertex is explored and
is revealed to be part of cd "’h, then its neighbours which are neither already explored nor
already in one of the two queues are added to the primary queue. To avoid ambiguity,
we suppose that the vertices of G,, are equipped with some ordering and that they are
added to the queue following this ordering. Vertices taken out of the primary queue are
first checked to be good vertices at the boundary of the so far explored vertices (recall
(2.29) and above it for the definition): if they are, the exploration process proceeds with
their exploration; if they are not, they are transferred to the secondary queue and their
exploration is postponed. The first vertex in the secondary queue is only taken out to
be explored if the primary queue is empty.

To formalise this exploration process we now give an algorithm implementing it
(see Algorithm 1 below). The algorithm constructs on some auxiliary probability space
(Q, A, P) a family of random variables (¢(2)).ep such that (¢(z)).ep under P has the
same distribution as (¥g, (2)).ep under P9+, Here B C G, is some (random) connected
set of vertices containing x. We use PQ, SQ and E to denote the evolving sets of vertices
in the primary queue, vertices in the secondary queue and explored vertices during the
run of the algorithm. Furthermore, we also keep track of the explored vertices z € E
for which ¢(z) > h using the set C C E. Additionally to the exploration, the algorithm
aggregates the vertices discovered to be in C into disjoint subtrees (T¥), of G,, indexed by
bad vertices y € G, (meaning they were in SQ at some point of the algorithm). Moreover,
the algorithm stops for one of two reasons: either because both the primary and secondary
queue are empty, or because it already discovered that C has at least size K}, , In(Ny,)
for some K}, ,, to be specified later (below (3.22)).

We need some more notation for the algorithm. Let (§,).eg, be i.i.d. standard normal
random variables on the auxiliary probability space (€2, A,P). For A C G,, non-empty
and u € G, we abbreviate by a(u, 1, A) the right hand side of (2.16) where z and ¥g,
are replaced by u and 1. In particular, a(u,, A) is a random variable measurable with
respect to o(¢(w),w € A). By b(u, A) we abbreviate the right hand side of (2.17) where z
is replaced by u. For A = ) and u € G,, we define a(u, v, ) := 0 and b(u, 0) :== Gg, (u, u).
By Lemma 2.6 and the fact that 1 is a Gaussian field, we have that

for A C G,, and u € G,, the random variable a(u, 1, A)+&,-b(u, A)% under
P has the same distribution as Vg, (u) conditional on o(¥g, (w),w € A) (32)
under P97,

The algorithm is as follows:

28



Algorithm 1
1: set PQ:=0,SQ :={z}, E:=0, C:= 0 and also T* :={) for all w € G,
2: while secondary queue SQ is not empty do
3 take vertex y out of SQ

[N

4: generate the random variable ¢ (y) = a(y, ¥, E) + &, - b(y, E)
5: add y to the set E of explored vertices
6: if ¥(y) > h then
7 add y to the subtree TY and to the set C
8: if |C| > K, In(V,,) then stop the algorithm
9: end if
10: add all neighbours of y which are neither already explored nor in any of the
two queues to the primary queue PQ
11: while primary queue PQ is not empty do
12: take vertex z out of PQ
13: if z is not a good vertex at the boundary of E, that is, z ¢ Gg, then
14: add z to the secondary queue SQ
15: else
16: generate the random variable ¥ (2) == a(z, ¢, E) + &, - b(z, E)%
17: add z to the set E of explored vertices
18: if ¢(z) > h then
19: add z to the subtree TY and to the set C
20: if |C| > K}, .. In(V,,) then stop the algorithm
21: end if
22: add all neighbours of z which are neither already explored nor in
any of the two queues to the primary queue PQ
23: end if
24: end if
25: end while
26: end if

27: end while

Let Eend, Ceng and Tg 4, w € Gy, denote the sets E, C and T, w € G, at the end of
the algorithm. By that moment we have constructed (v(2)).cg_,, and (see (3.2))

(1(2)).eE,,, under P has the same distribution as (¥g, (2)).eg,,, under P9, (3.3)
By construction of the algorithm one has |Ceng| < Kp, . In(Ny,) + 1 and so by (0.1) also
|Eend| < d(Kp, o In(Ny) +1). (3.4)

This is due to E C Bg,(C,1) with Bg,(0,1) := {z} holding at any moment of the
algorithm since a vertex can only get explored (except for z) if at some point it was
added to a queue, meaning it was a neighbour of a vertex added to C.

Note that, whenever some y € G, is taken out of SQ on line 3 of the algorithm (a
bad vertex), one has PQ = () at that moment by construction. Until the next bad vertex
is taken out of SQ, all vertices z € G,, considered by the algorithm and which are found
to be good and in C will be part of Tgnd. So if y1,..., Yk, denote the successive vertices
that were taken out of SQ during the algorithm, then Cepg = Ufi“ld TY . In particular,

end’
y1 = x and kepnq is the total number of bad vertices encountered by the algorithm.
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Furthermore, on the event that the algorithm terminates because both queues become
empty (and not because at some point |Ceng| > Kp, . In(Ny,)), note that |Cepg| has the

C9""| under P9 by (3.3). Therefore P[|Cend| < K, In(N,)] =

same distribution as |
P9 [|CT™"| < Kp» In(N,)].

We want to distinguish the situation in which the field ¥ produced by the algorithm
has anomalous values, meaning |¢)(z)| > M, for some z € E¢nq and M,, > 0. We are
going to specify this value now. Note that for any x > 0 there is ¢, > 0 such that

pY~ [ sup [Wg. (2)] > e ln(Nn)] <ONTI=F forallm > 1. (3.5)
Zegn

This can be shown by the same computations as in [RS13], equations (2.35)—(2.38),
replacing ¢(0) therein with sup,.g Gg, (%, ), which is bounded by 3% (see (1.23)).
Use also use P9 [sup,.g Vg, (2)| > a] < 2P9 [sup,g, Vg, (2) > a] for (3.5). We set

M,, == cx\/In(Ny,).

So one has

P9 [|CI" > K In(N)] = P[|Cond| > Kp In(N,)]

< P[|Cend| > Kp o In(Ny,), sup [¥(2)] < Mn] +P[|¢(z)| > M,, for some z € Eend]

ZeEend
(33) kend .
< PTG = K In(Na), sup [0(2)] < My + 2N, 17"
(35) i=1 ZeEend

Thus in order to show (3.1) and ultimately Theorem 3.1 we need to show

Proposition 3.2. Let h > h,. Then for all Kk > 0 there exist ¢, > 0 and Ky, > 0
such that for alln > 1 and x € G,, one has for the Algorithm 1 above

kcnd
]P’[Z Thal = KnsIn(No), sup [5(2)] < Mn} < en o NTI7F, (3.6)
=1 zZ€Eend

The proof of Proposition 3.2 relies on the following two lemmas. The first one
(Lemma 3.3, already proven in [CTW11]) bounds the number of bad vertices kenq en-
countered by Algorithm 1, that is, the number of vertices of G,, that at some point during
the run of the algorithm were in the secondary queue SQ. The second one (Lemma 3.4)
constructs for each i = 1,..., keng & coupling of ¢ on Tg;d with an independent copy of
©T,, showing that ¢ on Tgﬁld can be approximated by ¢t,. This makes use of Proposi-
tion 2.7. Via Corollary 3.5 of Lemma 3.4 we then prove Proposition 3.2.

Lemma 3.3. There exists ¢c; > 0 such that for alln > 1 and x € G, one has for the
above Algorithm 1 that keng < ClKh,nS?L =: kmax (Tecall that s, is given in (2.25)).

Proof. This follows from [CTWl 1], Proposition 5.4. Although the algorithm employed
there does not exactly match our algorithm, the proof does not rely on a specific algorithm
(as explained in the proof of Proposition 5.4 in [CTWT11]). It is purely deterministic and
only uses the properties (0.1)—(0.3) of G,,. O
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Lemma 3.4. Let h € R and ¢ > 0. Consider Algorithm 1 and recall kmax from
Lemma 3.5. Then on the same auziliary space (Q, A,P) as 1) one can define centred
Gaussian fields ', ..., ¢Fm=x on Ty such that, conditionally on ¥(y1), ..., ¥ (Yk..,), the
following properties hold (see (1.11) for notation):

o for all n large enough and alli =1,. .., keng there exists a set B with (3.7)
TY € B' C Bg, (T% ,,1) and an injection 7* : B — Ty such that 7/(T¥ )

s a connected subset of Ty containing the root o € Ty and on the event

{sup.ce_, [¥(2)] < My} one has WJ — ¢! (T(2 ))‘ <e¢ forall z€ B!

o ¢ has the same distribution as e, under IP d for alli=1,...,kend, (3.8)
qﬁl has the same distribution as 1, under IP’]\/;In for all i =keng + 1, ..., kmax
o ¢!, ... ¢Fmax gre independent. (3.9)

Proof. Let Y} for x € Ty \ {o} and 1 < ¢ < kpax be a sequence of i.i.d. random

variables of distribution A/ (0, ¢ 1) defined on the auxiliary probability space (2, A, P).
Let i € {1,...,kena}. As explained below (3.4), the subtree TY , of G, is constructed
between line 3 (when y; is taken out of SQ) and line 26 of the algorithm (after which the
next bad vertex y;41 is taken out of SQ or the algorithm terminates because i = kepq).
The injection 7 and the random field ¢* will be defined according to the behaviour of
the algorithm during this time.

On line 4 of the algorithm we generate ¥ (y;). If ¥(y;) < h, then the algorithm
continues back on line 2 and TY ; = ). In this case define recursively ¢’(o) := ¢(y;) and
¢'(z) = 75 ¢(2)+Y, for z € Td\{o} Then (3.8) holds for ¢ by (1.9)—(1.11). Moreover
(3.7) is trivially satisfied since T | = @) (set B’ := (). Otherwise we have ¥(y;) > h
and y; is added to TY. If the algonthm terminates on line 8, then Tend = {y;}. In this
case set BY := {y;} and 7%(y;) := o € Ty and again recursively define ¢*(0) := 1 (y;) and
¢'(2) = gy ¢'(2) + Yy for 2 € Ty \ {0} Then (3.8) holds for ¢* by (1.9)(1.11) and also
(3.7) is satisfied since ‘1/} yi) — & (T (ys) ’ = 0. If the algorithm does not terminate on line
8, then on line 10 we now add all neither explored nor already queuing neighbours of y;
to PQ (which before that was empty). Consider the while-loop on line 11. During this
while-loop, if z is taken out of PQ and z ¢ Gg, then it is transferred to SQ and it will

not be part of Tgl’ld Let z1,..., zm be the successive vertices taken out of PQ during the
while-loop which are in Gg at the moment they are checked (on line 13). Possibly there
are no such vertices, so we might have {z1,...,2,} =0 and T% ; = {y;}. In any case,
Tyld ={yi} U{z1,...,2m |¥(zi) > h} C {yi,zl, ..»2m} C Bg, (TY ,1). The injection
7' we are going to construct now, will map B* = {y;, 21,...,2m} to Tq. By definition
one has Z; = y; whereas for j = 2,...,m one has Z; = z for some z € {y;, 21,...,2j-1}.

More precisely, Z; is the unique neighbour of z; in E at the moment z; was added to PQ
(which happened on line 10 or line 22). There cannot be more than one since at a later
point z; € G and the set of explored vertices only grows. Since there are at most d — 1
not explored neighbours that can be added on line 10 or 22 (except if ¢ = 1 when y; = =
and on line 10 there are added exactly d neighbours), this shows that for z € B’ there

are at most d — 1 elements w € {z1,..., 2y} such that W = z (exactly d elements if i = 1
and z = y1). Therefore, we can define 7 : B* — Ty inductively by 7¢(y;) := o and such
that 7° restricted to {w € {#1,...,2m} |W = 2} is an injective map to St,(o,1) for z = y;

and an injective map to St,(7%(2),1) \ {7%(2)} for 2 € {21,...,2m}. Note that 7*(B?)
is a connected subset of Ty containing the root o € T4. By construction also 7¢(TY ;)
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is a connected subset of T; containing o € Ty because y; € Tyl nq With 7 ‘(y;) = o and
B' C Bg, (TY .. 1). We now define ¢’ on 7/(B*) C T, and check the remaining properties

end’

n (3.7) and (3.8) for this case.

Set ¢'(0) = ¢ (7' (y;)) == 1 (y;) and for j = 1,...,m define inductively ¢'(7%(z;)) ==
A0l (Ti(z))) + & (d%‘ll)% Recall that here &,; for j =1,...,m are the i.i.d. standard
Gaussian random variables used to define ¥ (z1),...,1(zy) at the respective moments
on line 16 of the algorithm. Note that conditionally on ¥ (y;), the field (¢'(7°(2))).epi
has the same distribution as (¢1,(7%(2))),cpi under Pic(lyi). This follows by (1.9)—(1.11)

since 7! is defined in such a way that 7¢(%) (in the notation of (2.26)) for z € {21,..., zm}
is equal to 7i(2) (in the notation above (1.2)). We extend ¢' to all w € U := Ty \ B
by recursively defining ¢'(w) := 2 ¢(w) + Y,i. Then (3.8) holds for ¢’ by (1.9)-(1.11).

We proceed to show the remamlng claim of (3.7). Note that |¢(y;) — ¢'(7"(y:))| =
{w(yz-) — ¢i(0)| = ‘w(yi) - w(yi)‘ = 0 by definition. For j =1,...,m one has

|0(2)) — ¢ (2 >>\=\a<zj7¢,E>+sz, <z],E>%—d (7)) — &, - (3%)7
< |a(zj, 4, E) — 759 (Z)| + 16,1 [0z, E)2 — (3%9) 3] + 71 [0 (z5) — ¢' (7' ().

To the first two differences on the right hand side we can apply (2.30) and (2.31) (on
the event {sup,cg_, |¥(2)] < M,}) since at any moment of the algorithm |E| < [Ecpq| <

chx In(Ny,) by (3.4). We also use the inequality |v/s — V| = \/‘f+i|[ \/\s —t|. So by

Proposition 2.7 (for b := ¢, and V' := ¢,) we find ¢, . > 0 such that forall j =1,...,m

D=

[(2) = &' (7 ()| < (L4 1€, el (I(Na)) 72 + 5[0 (Z5) — 6'(7' (7). (3.10)

Now note that on the event {sup,cg_, |¢(2)| < M,} one has, again by using Proposi-
tion 2.7 for the same b := ¢, and b’ == ¢, that for j=1,...,m

M, > [(z)] = |a(zj,,E) + &, - b(z;,E)3| > |&,,] - [b(2j,E)?| — |a(z),, E)|
(2.30)

(2251) €21+ (g5 = che(In(Nn)) ™ 7~ (o) + Chw(I0(N2))72) 2 [€;| = My,

where the last inequality holds if n is large enough. Combine this with (3.10) to obtain
that for n large enough, j = 1,...,m and on the event {sup,cg_, [¢(2)| < My}

[ (25) = &'(7'(2)))] < (1+2Mp)ch, «(In(Na)) 72 + g5 [0(z) — ¢'(7'(z)))].  (3.11)

This is the main ingredient to show the remainder of (3.7). By induction we will now
show that for n large enough and on the event {sup,cg_ [¥)(2)] < M.} one has

[(z;) — ¢'(T'(2))| <3 (1 + 2My)d), . (In(N,)) ™2 for j=1,...,m. (3.12)

For j = 1 one has Z; = y; and the last summand on the right hand side of (3.11) van-
ishes by definition of ¢!(7%(y;)). Assume the statement holds for 1 < j < m. Then
either Z;41 = y; and therefore the last summand on the right hand side of (3.11) van-
ishes again, or Z;41 = zj, for some k € {1,...,j} and the induction hypothesis implies
[0)11) — ' (7 (Zj40))] < k(L +2M,)), (In(N,) 2 < (L +2M,,)¢}, (In(N,)) 2 In
any case by (3.11), |¢ Zj41) — ¢i(7'i(2j+1))| < (14 2Mn)0§w(1n(Nn))_2 + ﬁj(l +
2My)c), . (In(Ny))~ > <G+ + 2Mn)c’h’ﬁ(ln(Nn))*2. This concludes the induction.
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Let € > 0. Since {z1,... zm} C Eend, one has m < |Eepd| < ¢ In(N,,) by (3.4).
Moreover, M, = c.;+/In(N, So by (3.12) we obtain that for n large enough and
on the event {sup,cg_ |¢)( )| < M,} one has ’1/)(,2]-) - gZ)Z(TZ(zJ))‘ < cpeIn(Ny) (1 +
2¢e/In(Ny))e),  (In(N,)) 72 < e for j = 1,...,m. We deduce (3.7).

It remains to show (3.8) for i = kenqa+1, .. ., kmax and (3.9). For i = kena+1, . . ., kmax
define recursively ¢'(0) := M, and ¢'(z) = 725¢'(z) + Y for z € Ty \ {0}, so that (3.8)
holds for ¢* by (1.9)-(1.11). Finally, note that for each i = 1,..., kpax the field ¢*
is constructed using (Y;)zer,\ o} and possibly the ii.d. random variables (£.),cpi and
U(y;). Since for j = 1,..., kmax With j # i one has that (Y} )mer\{o} is independent of
(ij)xer\{o} and B'N BJ = {), this shows (3.9) conditionally on ¥(y1),..., ¥(y,,,) (all
random variables are Gaussian). The proof is complete. O

Corollary 3.5. Let h € R and € > 0. Consider Algorithm 1 and recall kyax from
Lemma 3.3. Then on the same auziliary space (Q, A,P) as 1 one can define random
variables Z1, ..., Z*m>x such that, conditionally on ¥(y1), ..., ¥ (yk,,,), the following prop-
erties hold (see (1.11) and below (0.7) for notation):

o for all n large enough and alli =1,. .. keng one has Z° > ITZ 4
on the event {sup,cg_ . |[¥(2)| < My} (3.13)

o 7' is distributed as \CTd’h | under IP’ d for alli=1,...,kend,
Z' is distributed as |CE4"¢| under Pz\/l[in for all i =kenga +1,. .., kmax (3.14)
o Z', ..., ZFmax gre independent. (3.15)

Proof. We consider Lemma 3.4 and define Z' as the size of the connected component
of {w € Ty|¢'(w) > h — ¢} containing the root o € Ty. Then (3.14) and (3.15) follow
from (3. 8) and (3.9). We turn to (3.13). Note that for i =1,...,kenq and z € T | one
has ’w ¢i(7i(z))| < ¢ by (3.7) under the assumptions of (3.13). This shows that
gb’( “(2)) > h — € since ¥(z) > h due to z € T ;. Hence 7/(T¥ ,) C {w € Tq| ¢*(w) >

—e}. As 7(T¥% ) is also a connected subset of Ty containing o € T4, we conclude
\Ti(Tg; ¢)| £ Z" by definition of Z*. The proof of (3.13) follows since 7* is an injection
and hence |7¢(TY )| = |T¥ O

end end!”

We are now ready to show Proposition 3.2, which as explained above its statement
implies Theorem 3.1 and thereby concludes Section 3.

Proof of Proposition 3.2. Let h > h, and x > 0. Choose £ > 0 small enough such that
h —& > hy. Moreover, let §,_. > 0 be such that g;,_. defined in (1.14) has the properties
explained therein. Let K = Kj, ., > 0 to be fixed later (below (3.22)). By conditioning
on o(¥(y1),--.,%(Yk,.,,)) and then applying (3.13), one has for n large enough

end

P2 el = K (), sup [(2)] < Mo

2€Eenq

IN

E[P[k"fzfzmnuvn), sup [602)] < My | a0, 0] (310
=1

2€Eenda

kmax

<E |:1{¢(yi)<Mn for all § = 1,..,,kend}P[ Z Z'> KIn(N,)
=1

o(P(y1), ... ,w(ykend))]] :
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Since {3 Zi > K In(N,)} = {[1F0 (146 _2) 7" > (140,_) KV} the conditional
Markov inequality leads to P-almost surely

kmax
P[Y 2> Kin(No) [ o(@(u). - ¥ (yhna)|
=1
kmax .
< (140 IR [T+ 8007 [o(ln), - Y (raa))]
i=1
(3.15) —KIn(N, )kcnd T, e ctah— ‘| Fma Ty |CTd’h7€|
oy (LT One) DTTE (a4 a0 @] T ER [+ oo ].
. i=1 1=kena+1

(3.17)

h—¢e T j,h—e
For i = 1,...,kenq one has ET@ V(L 0p—c)l o 1 <E3 [(1+6,-)%"" 1] on the
event {sup,cg_ [¥(2)| < My} by (1.9)-(1.11). This combined with (3.16) and (3.17)
shows that for n large enough

end

Pl > | Tenal = KIn(Ny), sup [¢(2)] < My
2T a0, WO <2 o

Tg,h—e 7 kmax
<(1+ 5h,€)7K1n(N”)E’H]\‘/?n [(1 + Op—c )|C v q .

Let us write St,(0,1) = {z1,..., 24} so that Tg = {o} U ngl Uz, (see (1.2)). Note that
for n large enough one has M,, > h. Therefore [AC19], equation (1.11), implies that

d
E}}n (1+6h—5)lcfd,h | = (1+6,_0)E} [H(1+5h— )\Co mUxi\]
= . (319)
= (14 6,_o)EY [Ejgjn [(1 + Ope )\CTd e Emr;qH ,

d—1

Tq.h—e

+Y

where Y ~ N(0, 7%;) and the expectation EY is taken with respect to Y. The inner
), see (1.14). Thus

expectation on the right hand side of (3.19) is equal to gh,s(é\{"l
(3.19) shows that for n large enough

Eyf, [(1+ 5h—5)‘cgd,h_5‘] < (14802 BY [gno(3 + 1) d_l) - (3.20)

For n large enough (so M,, > h) one has that (1+6;,_.) EY [gh_a(%+Y)]d_l = gn_e(M,)
by (1.14). Hence (3.20) and (3.18) imply that for n large enough

kend d
P[> ITh | = KIn(Va), sup [0(2)] < M| < (14 0p-) 75200 (g () 75775,
i=1 2€Eeng

(3.21)
By (1.14) we know that there exist ¢;, > 0 and ¢}, > 0 such that for n large enough one

has gn_(M,) < ¢y, exp(cﬁlM,‘Z’/Z) = ¢, exp (C;L(cm/ln(Nn)):)’/Q) < exp(chﬁ(ln(Nn))‘g/‘l)
for some ¢y, . > 0. Now recall that kyax = cle%. Therefore due to (2.25), we can find

d
Ch, €, > 0 for which (gh,E(Mn))ﬁkmax <cp exp(chvnK(ln(Nn))WS). So for some ¢, > 0
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4
and ¢, > 0 we obtain (148_2) K20 (g, (M) 7T < ¢y, exp (— 1,0 K In(N,))
for all n large enough. Hence by (3.21), for n > 1,

kend
) D
}P’[Z |Tze”;ld| > KIn(N,,), sup |¢(2)| < Mn} < ¢pxNn Chat (3.22)
i=1 ZEEend

—c Knx
Take K = Kj, ,, > 0 large enough such that cj, , Ny, o R < N,/17%. Then by (3.22) we
can find ¢, > 0 large enough such that (3.6) holds for all n > 1. This concludes the
proof of Proposition 3.2 and ultimately of Theorem 3.1. O

4 Mesoscopic components in the supercritical phase

The last section of this article concerns the proof of (0.9) in the form of Theorem 4.1
below, that is, the existence of a supercritical phase (complementary to the subcritical
situation in Section 3) in which the connected components of the levels sets of g,
of at least mesoscopic size contain a non-negligible fraction of the vertices of G,,. By
mesoscopic size we mean that the number of vertices contained is a fractional power of
the total number of vertices of G,,. To be more specific, we recall the critical value hy
(see (0.7)) and the notation Cm" for the connected component of the level set of Vg,
above level h € R containing = € G,, (see beginning of Section 3). Similarly, we denote
by Cg = Tyq and h € R the connected component of the level set of T, above
level h containing x. We also remind of the function n* given in (1.13). The main result
of this section is the following

Theorem 4.1. Let h < hy. Then there exist ¢, > 0 (see beginning of the proof of
Lemma /.4) such that

+
. G n*(h) _

am P [Zg Liegnmongy =2 75— M = 1. (41)
x€Un

As explained in the introduction below (0.9), it remains open whether in the super-
critical phase h < hy, as the size of the graphs tends to infinity, one actually observes
the emergence of a (unique) giant connected component of the level set above level h
(see also Remark 4.7).

We now give the idea of the proof of Theorem 4.1. Roughly, the strategy is to control
the expectation and variance of the sum in (4.1) and then to deduce Theorem 4.1 via a
second moment inequality. Now recall that by (0.2) all vertices of G,, have an almost tree-
like neighbourhood. One can also show that only a negligible fraction does not have an
exactly tree-like neighbourhood of smaller size (Remark 4.3). So essentially we can con-
sider only vertices with a tree-like neighbourhood in the sum in (4.1). Moreover, instead
of counting the vertices z € G,, with ‘Cf”’h} > N, for some fixed v > 0 (i.e. contained in

. > . . . . .
a mesoscopic connected component of Eq_/g ), it will be easier to only consider the vertices
n

x € G, for which the connected component Cf”’h is already mesoscopic when intersected
with the tree-like neighbourhood of x (see (4.3)). We show that the expected number of
such vertices grows linearly in the total number of vertices of the graph G, as n tends to
infinity (Lemma 4.4). A variance computation then implies that the number of vertices
contained in mesoscopic components concentrates around its expectation as n goes to
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infinity (Lemma 4.6). The computations concerning the expectation and variance rely
on the local approximation of Wg, by ¢, around vertices with tree-like neighbourhood
that we developed in Section 2.1, which allows us to reduce the computations about ¥g,
to computations about ¢, and apply results from Section 1.1 on ¢T,. With a second
moment inequality Theorem 4.1 promptly follows. The section ends with open questions
in the supercritical regime h < h, (Remark 4.7).

It will be convenient to introduce some additional notation. For z € G,,, n > 1 and
R > 0 we set Sgn (,R) =Tz (S{fd (0,R)) (see below (1.2) for the notation). We also
define

rp = max{1, | {glogy 1 (Nn)|} and Ry, = max{1, [ ¥ log; 1(Nn)]}. (4.2)
For n > 1, h € R and v > 0 we define the events

Agn,hn/ — {‘ngn,h N S_cjn(%rnﬂ > Ng} for x € Gy,

4.3
Afeh = {|CF N SY, (2, ra)| 2 N} for 2 € Ta. Y

Note that the dependency on n in the definition of ALY i (4.3) does not appear in
the notation. Finally, we define (with ¢ as in (1.21))

By (1.12) note that ~y, is decreasing in h and v, > 0 for h < h,.

In the remainder of this section we will apply several times Theorem 2.1 for r = r,,
and R = R,, given in (4.2). Note that, for n large enough, 1 <r, < R, < T logy_1(Ny)
as required by Theorem 2.1 and furthermore 7, < {%log; (N,) and R, — 2r, >
(2logy 1 (Ny) — 1) — 258 logy 1 (Nn) = Cologdli‘sl(N") — 1. Therefore Theorem 2.1 di-
rectly implies (with the notation from the beginning of Section 2.1)

Lemma 4.2 (Corollary of Theorem 2.1). There exist ¢c,¢’ > 0 such that for alln > 1
and z,2' € G, with tx(Bg, (z,2R,)) = 0, tx(Bg,(z',2R,)) = 0 and Bg, (z,2R;) N
Bg, (2',2R,) = 0, there is a coupling Q,, of Yg, and @1, satisfying for all e >0

c

| sup 96, () = ralprarar, ()| > €] < cexp (= ENE). (1)
y€Bg,, (x,rn)UBg,, (z',1n)

In particular, there exist ¢, ¢’ > 0 such that for alln > 1, z € G,, withtx(Bg, (z,2R,)) =0,

there is a coupling Qp of Wg, and 1, such that for all € > 0 the same bound as in (4.5)

applies to Qn[suDyep, (o) Y6, (¥) — or,(Pr 2R, ()| > €].

As the following remark explains, the assumptions on the vertices in the statement
of Lemma 4.2 are typical.

Remark 4.3. Recall R,, from (4.2). For n large enough the number of vertices z € G,
that do not satisfy tx(Bg, (z,2R,)) = 0 is negligible when compared to the total number
of vertices of G,. Indeed, for n large enough one has 2R,, < |alog; {(N,)| by (1.21)
and (1.1) and thus tx(Bg, (z,2Ry)) < 1 for all x € G, by assumption (0.2). Now by
[CTW11], Lemma 6.1, we have for n large enough

(%) _2a
{x € Gn| tx(Bg, (#,2Ry)) = 1}| < (d — 1)~ (o)l 2R) (@ — )N, 7,
(4.6)

36



where in (x) we use that [alogy {(Nn)| — 2R, > alogy 1(Nn) — 1 — Flogy 1(Np) >
2 Jog,_1(Nn) — 1 (because ¢g < v by (1.21) and (1.1)). Moreover, for n large enough,
also the number of pairs of vertices z, 2’ € G, for which Bg, (x,2R,) N Bg, (¢/,2R,,) # 0
is negligible when compared to the total number N2 of pairs of vertices of G,,. Indeed,
for n large enough and for such z,z’ € G, one has 2’ € Bg, (z,4R,) and hence

{z,2" € Gn | B, (z,2R,) N Bg, (2',2Ry) # 0} < > |Bg, (x,4Ry)|
2E0n (4.7)

(0.1) d(d — 1)4n — 2 (42) A 5
<" N,|Br,(0,4R,)| = N, ( y ) 5 < Npd(d—1)5 0B (Nn) < gN 3|
where the last inequality follows because ¢ < 1 (see (1.21)). O

We are now ready to proceed with the expectation and variance computation an-
nounced after the statement of Theorem 4.1.

Lemma 4.4. Let h < h,. There exists ¢, > 0 such that for all 0 < e < "==h and ¢ >0
one has for n large enough

PYn [Ag’“h’ch] >nt(h+¢e)—C( forx € G, with tx(Bg, (z,2R,)) = 0. (4.8)

As a consequence, one has

lim inf Eg"[ Y1 gnhch] > nt(h) > 0. (4.9)

n—o0
Z‘egn

Proof. Let h < hy and take § = h*Q—_h > 0 so that h + < h,. Let ¢ < §. Set also
¢p = Yh+s. For x € G, as in the statement of (4.8) we can apply Lemma 4.2 and obtain
that for n > 1 one has (recall that p; 2p, is a graph isomorphism from Bg, (z,2R,,) to
Br,(0,2R;,), see beginning of Section 2.1)

G b,
PO [Agren] > Qn[Az T sup \‘I’gn(y)—wd(ﬂm,mn(y))\SE}
yGBgn(CE,Tn)

(4.3)

gTahte,
> Qn[ ahtemes g |‘I’gn(y)—<ﬁﬂrd(ﬂz,23n(y))|Ss} (4.10)
y€Bg,, (,mn)

<o
> pla [All“d,h+6,7h+s] — cexp ( _ C/(C:QNT%S).
Note that since 0 < &€ < é one has y,15 < Yp1. and hence

. Ty h o Toh
lim inf IP)Td [Aodv +577h+6] Z lim inf ]P)Td [Aod, +87’Yh+5]

A i inf T [‘CTdvh‘*‘a NSt (o, ra)| > /\20 5 loga— 1(Nn)]

(4.4) n—voo hte (4.11)
(%) DYEAR NGH 15)
> hnniloréf PpTa UCTd’h+5 N Sifd (o, rn)’ > ?—g} nt(h+e),

where in (%) we use that Ay > 1 (see (1.12)) and the definition of r,, (see (4.2)). By

combining (4.10) and (4.11) we find (4.8). For (4.9) we only need to notice that, for
_2a

| tx(Bg, (z,2Rn)) = 0}| > N, — (d— 1)N,_ by (4.6). So

(4.9) follows from (4.8) by summing only over z € G, with tx(Bg, (z,2R,)) = 0 and

applying (1.13). O
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As a next step we want to show that ergn 1Agn,h,ch for h < hy and the ¢; > 0 from
Lemma 4.4 concentrates around its expectation. A variance computation will be enough.
The main ingredient is contained in the next lemma.

Lemma 4.5. Let h < hy. There exist ¢, > 0 such that for alln > 1, z,2’ € G, with
tx(Bg, (z,2R,)) = 0, tx(Bg, (2/,2R;,)) = 0 and Bg, (xz,2R,) N Bg, (z',2R,,) = 0 one has
for ally >0 and e >0

P9 [Ag"’h” , AZ,”’h’ﬁ’] < Pl [Alrd’h_a’”’] >4 cexp (- c'sQN,?g). (4.12)

Proof. Let us abbreviate V' := Bg, (z,1,) U Bg, (2',1y,). For z, 2’ € G,, as in the assump-
tions we can apply Lemma 4.2 and obtain that for all » > 1, v > 0 and € > 0 one has
(recall the notation py 4 2p, and 2, from the beginning of Section 2.1)

PIn [AGnhy | AT

(4.5) h £ 0
< Qu[Agh, AGh sup g, (y) = ¢, (peram, (1)] < o] cexp (= e2NE)
ye
h—3% h—% co
< pla [AE”” 2’7, Alrjy;, 277] + cexp ( — c’ezNﬁg). (4.13)

To further bound the probability on the right hand side of (4.13) we apply the decoupling
inequality [PR15], Corollary 1.3, with

— £
T2
J1((ery(2))zer,) = 1Agd,h—%,'\/ and fo((er,(2))zer,) =1

0 , K1 = Br,(0,my), K2 = Br,(25.2/,m) and fi, fo : RT¢ — [0, 1] such that

Tg:h—5y
A,

T,x

(the decoupling inequality [PR15], Corollary 1.3, is stated for the Gaussian free field on
74 but its proof directly applies also for the Gaussian free field o , on Ty). We obtain
that for allm > 1,v>0and € > 0

pTa [Agd,h—%,’y ’ AE:Z’;—%V] (4.14)
Tyh—<, _ £
< PT AP AT ] 4 2T sup | BT o, (X, L, <oe)] | > 5]

yeKo

Note that, since we are on a tree and K; and K» are two disjoint connected sets, there is
a unique pair of vertices z1 € K1, 22 € Ky with dr, (K1, K2) = inf e, »ex, dr,(z,2") =
dr, (21, 22). Moreover, on the event {Hg, < oo} one P, 4-almost surely has ¢, (Xng,) =
or,(21) for y € Ky. Therefore,

PTa { sup
yeKso

€
By [oma Xt sy <o | > 3] = P74 sup

PR H., < od]pr,(a1)] > ]

4
(- (=4 )
2PL[H., < 0] gr,(0,0)

3 -1
< Ppla [|@Td(zl)| > ZP};d [HZ1 < oo} } < 2exp

(+5)
< 2exp ( —ce?(d - 1)2de(Z1vZ2)>, (4.15)
(1.6)

where in (x) we use the exponential Markov inequality for the centred Gaussian random
variable o1, (21) and in (#x) we use that PL¢[H,, < oo] = (ﬁ)de (21.22) (gee e.g. [Woe00)],
proof of Lemma 1.24). Since K; C Br,(0,2R,,), K2 C Bt,(234,2R,) and Br,(0,2R,) N
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Br, (24,2, 2R,) = 0 by assumption, one has the estimate dr,(z1,22) = dr, (K1, K2) >
2(2Rp,—1n) > 2% logy_;(Ny,)—4 for n large enough. Hence exp (—CEQ(d—l)MTd(zl’Z?)) <
10c¢,

10co
cexp (— e?N,,° ). Therefore we can combine (4.13), (4.14) and (4.15) to obtain that
for all m > 1, v > 0 and € > 0 (using also the symmetry of T)

Tgq,h—

]P)g" [A%hh”y ) Ag’rhhﬂ] < P [Ao %’W]PTd [Agdyhfsﬂ] + cexp ( - c’gQNn[%g) .

This concludes the proof of (4.12) since by (4.3) it holds AnthTa c pTah—en, O

We are now ready to for the variance computation. This is the last ingredient for the
proof of Theorem 4.1.

Lemma 4.6. Let h < h,. Then for the ¢, > 0 from Lemma 4.4 one has

lim 7Var]pgn< > 1 hch> —0. (4.16)
z€Gn

Proof. By expanding the variance one finds that for all v > 0

Varge, (30 Lyguns ) = 30 (B [AGR7, AG-7] — B [AG ] p0 [407])

z€Gn z,x’' €Gn
2
= Z ]PJgn [Agnyh:'77Ag/717hv’7] _ Egn|: Z 1Ag”’h’{| . (417)
z,2'€Gn xE€Gn

We define W C G,, x G,, to be the set of pairs (z,2') € G, x G, with tx(Bg, (z,2R,,)) = 0,
tx(Bg, (¢',2R,)) = 0 and Bg, (x,2R,) N Bg, («',2R,,) = 0. For z,2’ € G, such that
(x,2") ¢ W we can bound the probability on the right hand side of (4. 17) by one. ThlS

will be good enough since for n large enough |(G,, x G,)\W| < 2N,,- (d— 1)N % +dN3

_2a 2
cl]\7n(2]\/71L 5 + N;j) by (4.6) and (4.7). For z,2’ € G, such that (z,2’) € W we use

4.12) instead. There are at most N2 such pairs. Thus we obtain for all n > 1, v > 0
n
and € >0

Var]pgn< Y 1. M) (4.18)

x€Gn
< pla [Agd’h_aﬁ]z + cexp (— c/azNjg) + d(QNn_%& + Nn_é [ Z 1 jgn.n 7} ‘
z€Gn

Now we apply (4.18) to v := ¢, > 0 for the ¢;, from Lemma 4.4 and deduce that for all
O<e< %

lim Sup Varpgn ( Z 1 AT Ch)

n—0o0

J/‘Egn

(4.18) 2

< limsup P [ATd h—e, ch] — lim inf —Eg" [ Z 1 AGnh ch:|

n—00 n—00
Iegn

(1.13)

< ot (h—e)? =t (h)*.
(4.9)

The statement follows by letting € tend to zero and applying (1.13). O
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Proof of Theorem /.1. We will show that the probability of the complementary event
tends to zero. For n > 1 let us define anh = Zzegn 1Agn,h,ch with ¢, > 0 as in
Lemma 4.4. Then we can estimate

> Hiegnhzvin} < n+2(h) No| < B [t < n+2(h) N
z€Gn =

1

1 1 T(h
— PYn [FEQH [WnZh] -5 anh > FEgn [anh] _n 2( )}

and therefore

lim sup Pgn[ Z 1y 6. g < nJr(h) Nn}

oo 45 {icgnh=nyr } 2
(4.9) 1 1 7]+(h)
< PYn [7Egn w2h _ ks 1Y
< limsup PP | < W] N Wi 5

*) 4 1 <\ (4.16)
< i > Varpe, (—wzh) ULV,
= (2 (Nn )

where in (*) we use Chebyshev’s inequality. This concludes the proof of Theorem 4.1. [

Remark 4.7. It remains open whether in the supercritical phase h < h,, with high
probability for large n, there actually is a macroscopic (giant) connected component of
the level set above level h (i.e. containing a number of vertices comparable to G, ), and
whether this giant component is unique (meaning the size of the second-largest connected
component is negligible compared to G,). For other probabilistic models on essentially
the same class of graphs this has been shown. One example is the emergence of a unique
giant connected component for Bernoulli bond percolation on d-regular expanders of large
girth (see [ABS04] and also [KLS18]). A second example is the emergence of a unique
giant connected component in the vacant set of simple random walk on the same graphs
(Gn)n>1 as considered here (see [CTW11]). As briefly mentioned in the introduction below
(0.9), such results are typically obtained by a sprinkling argument out of an intermediary
result like Theorem 4.1. In our setting, the zero-average property of Ug, (see below
(1.18)) prevents us from easily implementing such a strategy. In particular, due to the
zero-average property, the field Ug, neither satisfies an FKG-inequality nor does it possess
the domain Markov property of the Gaussian free field ¢, (compare (1.20) with (1.8)).
In contrast, the sprinkling argument in [DR15] for constructing an infinite connected
component for the Gaussian free field on Z? for high-dimension d crucially relies on the
domain Markov property of the Gaussian free field on Z? for d > 3. O
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