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Abstract

We consider the zero-average Gaussian free field on a certain class of finite d-
regular graphs for fixed d ≥ 3. This class includes d-regular expanders of large girth
and typical realisations of random d-regular graphs. We show that the level set of
the zero-average Gaussian free field above level h exhibits a phase transition at level
h?, which agrees with the critical value for level-set percolation of the Gaussian free
field on the infinite d-regular tree. More precisely, we show that, with probability
tending to one as the size of the finite graphs tends to infinity, the level set above
level h does not contain any connected component of larger than logarithmic size
whenever h > h?, and on the contrary, whenever h < h?, a linear fraction of the
vertices is contained in connected components of the level set above level h having a
size of at least a small fractional power of the total size of the graph. It remains open
whether in the supercritical phase h < h?, as the size of the graphs tends to infinity,
one observes the emergence of a (potentially unique) giant connected component of
the level set above level h. The proofs in this article make use of results from the
accompanying paper [AČ19].

0 Introduction

In this article we study level-set percolation of the zero-average Gaussian free field on
a class of large d-regular graphs with d ≥ 3. This class contains d-regular expanders of
large girth and typical realisations of random d-regular graphs. Through suitable local
approximations of the zero-average Gaussian free field by the Gaussian free field on the
infinite d-regular tree we are able to establish a phase transition for level-set percolation
of the zero-average Gaussian free field which occurs at the critical value for level-set
percolation in the infinite model, that is, on the d-regular tree.

Level-set percolation and the local picture of the zero-average Gaussian free field
have been previously studied by the first author in [Abä19] for the situation where the
underlying sequence of finite graphs is given by the discrete tori of growing side length in
dimension d ≥ 3. The motivation for investigating the zero-average Gaussian free field
on the different class of finite graphs considered here (see (0.1)–(0.3) below) stems from
the insight that analysing probabilistic models on these types of finite graphs has led to
often very explicit and strong results over the years. Examples include the emergence of a
giant connected component for Bernoulli bond percolation (see e.g. [ABS04] and recently
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[KLS18]), cutoff phenomena for random walks (see e.g. [LS10]) and the appearance of a
giant connected component in the vacant set of simple random walk (see e.g. [ČTW11]).
Actually, we will borrow the assumptions (0.1)–(0.3) on the finite graphs from [ČTW11].

From a more general perspective, level-set percolation of the Gaussian free field is a
significant representative of a percolation model with long-range dependencies and it has
attracted attention for a long time, dating back to [MS83], [LS86] and [BLM87]. More
recent developments can be found for instance in [RS13], [PR15], [Szn15], [DPR18b] and
[DPR18a]. For the particular case of the Gaussian free field on regular trees we also refer
to [Szn16], [Szn19] and [AČ19]; for more general transient trees to [AS18].

We now describe our results more precisely. We let d ≥ 3 and assume that (Gn)n≥1

is a sequence of graphs satisfying the following conditions.

Assumptions. There exist some α, β > 0 and an increasing sequence of positive integers
(Nn)n≥1 with Nn

n→∞−−−→∞ such that for all n ≥ 1

• Gn is d-regular, connected and has Nn vertices (0.1)

• for all x ∈ Gn there is at most one cycle in the ball of radius bα logd−1(Nn)c
around x (0.2)

• the spectral gap of Gn, denoted by λGn , satisfies λGn ≥ β. (0.3)

Here by spectral gap we mean the smallest non-zero eigenvalue of I − P , where I is
the identity matrix and P is the transition matrix of the simple random walk on the
graph (see also [SC97], Definition 2.1.3 and beneath it). For an explanation of why these
assumptions are satisfied by d-regular expanders of large girth and by typical realisations
of random d-regular graphs we refer to [ČTW11], Section 2.2 and Remark 1.4.

On Gn we consider the zero-average Gaussian free field (see Section 1.2 for more
details about it) with law PGn on RGn and canonical coordinate process (ΨGn(x))x∈Gn so
that,

under PGn , (ΨGn(x))x∈Gn is a centred Gaussian field on Gn with covariance
EGn [ΨGn(x)ΨGn(y)] = GGn(x, y) for all x, y ∈ Gn, where GGn(·, ·) is the
zero-average Green function on Gn (see (1.16)).

(0.4)

The zero-average Gaussian free field is a natural version of the Gaussian free field for
finite graphs. However, due to the zero-average property (see below (1.18)), it comes
with some peculiarities like the lack of an FKG-inequality and of the domain Markov
property.

Our main interest lies in analysing the size (i.e. the number of contained vertices) of
the connected components of the level sets of ΨGn , i.e. of

E≥hΨGn
:= {x ∈ Gn |ΨGn(x) ≥ h} for h ∈ R. (0.5)

In order to do so, it will be helpful to locally describe ΨGn via the Gaussian free field
on the infinite d-regular tree Td with root denoted by o, that is, the centred Gaussian
field on Td with law PTd on RTd and canonical coordinate process (ϕTd(x))x∈Td so that,

under PTd , (ϕTd(x))x∈Td is a centred Gaussian field on Td with covariance
ETd [ϕTd(x)ϕTd(y)] = gTd(x, y) for all x, y ∈ Td, where gTd(·, ·) is the
Green function of simple random walk on Td (see (1.6)).

(0.6)
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The Gaussian free field on Td has first been studied in [Szn16]. Recently, more refined
results have been obtained by the authors in the accompanying paper [AČ19]. These
results lay the groundwork for the present article and they will be central in our analysis
of the zero-average Gaussian free field on the graphs (Gn)n≥1. For now, we only recall
the critical value of level-set percolation of ϕTd , that is,

h? := inf
{
h ∈ R

∣∣∣PTd
[∣∣CTd,ho

∣∣ =∞
]

= 0
}
, (0.7)

where CTd,ho is the connected component of the level set E≥hϕTd
:= {x ∈ Td |ϕTd(x) ≥ h} of

ϕTd above level h containing the root o ∈ Td. There is a crucial spectral characterisation
of h? derived in [Szn16], which leads to the proof of 0 < h? < ∞ on Td for d ≥ 3 (see
[Szn16], Proposition 3.3 and Corollary 4.5). Actually, in the accompanying paper [AČ19]
we make heavy use of this characterisation to obtain new results about ϕTd on Td.

Our main results concerning the size of the connected components of the level sets
of ΨGn on the finite graphs (Gn)n≥1 satisfying (0.1)–(0.3) are the following: we show in
essence that (see Section 3, Theorem 3.1, for the precise statement)

in the subcritical phase h > h?, with high probability for large n, the
level set E≥hΨGn

of ΨGn only contains microscopic connected components

(i.e. containing at most a logarithmic number of vertices of Gn);

(0.8)

and furthermore that (see Section 4, Theorem 4.1, for the precise statement)

in the supercritical phase h < h?, with high probability for large n, a
linear fraction of the vertices of Gn is contained in at least mesoscopic
connected components of the level set E≥hΨGn

of ΨGn (i.e. containing a

fractional power of the number of vertices of Gn).

(0.9)

Although giving a strong hint to, the result (0.9) leaves open whether in the super-
critical phase h < h?, with high probability for large n, there actually is a macroscopic
(giant) connected component in the level set above level h, i.e. containing a number of
vertices comparable to Gn. Furthermore, in the affirmative, one could ask if this giant
component is unique, that is, if the second-largest connected component of the level set
above level h < h? only contains a negligible number of vertices compared to Gn (see also
Remark 4.7).

As a comparison, the emergence of a unique giant connected component in the
supercritical phase has been shown for Bernoulli bond percolation on d-regular expanders
of large girth in [ABS04] (see also [KLS18]) and for vacant-set percolation of simple
random walk on exactly the same graphs (Gn)n≥1 like here in [ČTW11]. In the latter, this
result is achieved by relating the model to vacant-set percolation of random interlacements
on Td. Subsequently, more refined results have been obtained about the vacant set of
simple random walk on random regular graphs in [CF13] and [ČT13].

In the models mentioned above, the assertion of existence and uniqueness of a giant
component in the supercritical phase is achieved by a ‘sprinkling argument’ starting from
a statement like (0.9). In our situation, it would correspond to showing that distinct
mesoscopic connected components of E≥hΨGn

for a supercritical level h < h? are going to

be connected at a slightly smaller level h′ < h with high probability, thus forming large
clusters. As [ČTW11] shows, it can be very involved to carry out sprinkling arguments
in the non-i.i.d. setting. At present we have not been able to do it in our context, one of
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the main restrictions stemming from the defining zero-average property of the fields we
are considering (see below (1.18)). We point out that sprinkling techniques have been
already applied in the discussion of level-set percolation of the Gaussian free field in
[DR15] to construct an infinite connected component with the underlying graph being
Zd for high dimension d.

Let us now comment on the proofs of Theorem 3.1 and Theorem 4.1 (corresponding
to (0.8) and (0.9)). In both cases, the general philosophy is to locally approximate ΨGn
on the finite graphs by ϕTd on the d-regular tree and by that reduce the analysis to the
infinite model, which is easier to understand. A similar strategy has been successfully
carried out in [ABS04] and [ČTW11] where the connected components in question are
locally approximated by Galton-Watson trees. In our setting the situation is considerably
more complicated since neither the connected components of the level sets of ΨGn nor
the connected components of the level sets of ϕTd (used in the approximation) are
locally Galton-Watson trees, even if the connected components of E≥hϕTd

share some global

properties with them, as shown in [AČ19]. The exact way how the local approximation
by ϕTd is performed differs considerably between the subcritical and supercritical phase.

In the supercritical phase h < h?, we use an approximation of ΨGn by ϕTd via
local charts around vertices of Gn with a tree-like neighbourhood (Theorem 2.1). Then
the proof of Theorem 4.1 (corresponding to (0.9)) is, roughly said, a second moment
computation based on this local approximation and involving a good control of the
supercritical level sets of ϕTd , obtained in the accompanying paper [AČ19].

More precisely, to show (0.9) we prove that the number of vertices contained in meso-
scopic connected components of the level set E≥hΨGn

concentrates around its expectation,
which we show to grow linearly in the total number of vertices. The concentration follows
by a variance computation and a second moment inequality. Actually, when estimating
the expectation and variance, it is enough to consider only vertices with a tree-like neigh-
bourhood since the assumption (0.2) (together with (0.1)) guarantees that the number of
vertices having a tree-like neighbourhood is comparable to the total number of vertices
in Gn (Remark 4.3). Thanks to the approximation of ΨGn by ϕTd around such vertices
(Theorem 2.1 mentioned above), we are able to transfer the computations to the regular
tree. The linear lower bound on the expectation ((4.9) in Lemma 4.4) now follows rather
direct from this approximation and from [AČ19], Theorem 4.3, showing that connected
components of the level sets of ϕTd are mesoscopic with positive probability in the su-
percritical phase. The control of the variance follows along similar lines (Lemma 4.6). It
requires the approximation of ΨTd by ϕTd on neighbourhoods of vertices with a tree-like
and disjoint neighbourhood. This is provided by Theorem 2.1 as well. Once we have
reduced the computations to quantities for ϕTd on Td, we can apply a decoupling inequal-
ity ([PR15], Corollary 1.3) and deduce the bound on the variance again from results on
ϕTd developed in the accompanying paper [AČ19].

For the subcritical phase h > h? (Theorem 3.1 corresponding to (0.8)) the local
approximation of ΨGn by ϕTd around vertices with tree-like neighbourhood is not good

enough. On the one hand, the connected components of E≥hΨGn
may have a diameter that

is larger than the diameter of those neighbourhoods (at least if h is close to h?). On the
other hand, one expects that the connected components are typically ‘thin’. These two
points of ‘thinness’ and of ‘escaping the local charts’ suggest that the approximation of
ΨGn by ϕTd should rather be carried out along the connected components of E≥hΨGn

. We
achieve this by employing an exploration process uncovering the connected component
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of the level set containing a given vertex (Algorithm 1 in Section 3). Roughly said, by
exploring ΨGn vertex by vertex we are able to couple it vertex by vertex to a number of
independent copies of ϕTd on Td, hence bringing back the problem to the tree. Results
from [AČ19] on ϕTd in the subcritical phase then conclude the proof.

More precisely, the exploration process aggregates the vertices found in the connected
component of E≥hΨGn

containing a fixed x ∈ Gn into a union of disjoint subtrees of Gn.
The decomposition into a union of disjoint subtrees is determined during the exploration
and it is dictated by the geometric properties of the graph Gn and of the evolving set
of explored vertices. These geometric conditions guarantee that for each of the disjoint
subtrees we can approximate the zero-average Gaussian free field ΨGn on the subtree
by an independent copy of the Gaussian free field ϕTd on Td (Lemma 3.4). In order to
do so, it is crucial to have a good understanding of the conditional distribution of the
zero-average Gaussian free field (Lemma 2.6 and Proposition 2.7). As a consequence, the
size of each disjoint subtree of Gn constructed by the exploration process is dominated
by the size of the connected component containing the root o ∈ Td of the level set of ϕTd
above a slightly lower level h− ε (Corollary 3.5). The last two ingredients for the proof
of (0.8) are now a control on the number of disjoint subtrees (Lemma 3.3, already proven
in [ČTW11]) and a control on the exponential moments of the size of the connected
component of the level set of ϕTd containing the root o ∈ Td in the subcritical phase (see
[AČ19], Theorem 5.1).

Incidentally, let us point out that exploration processes are frequently used in the
Bernoulli percolation literature and actually, a variant of such an algorithm was applied
in [ČTW11] to deal with the vacant set of simple random walk in the subcritical phase.
However, in our setting we cannot follow the ‘standard’ procedure. Usually, to show
statements like (0.8), a good control on the termination time of the exploration process
is necessary, i.e. on the time by when the connected component is completely uncovered.
This is typically done by comparing the number of yet unexplored vertices to a random
walk of negative drift. In our case this is not possible, essentially again because locally
the connected components of E≥hΨGn

are not approximated by Galton-Watson trees (as

mentioned earlier).

The structure of the article is as follows. In Section 1 we collect the notation and
some results on the Gaussian free fields on both the finite graphs and the infinite tree.
In particular, in Section 1.1 we recall results on ϕTd from [Szn16] and [AČ19]. Then in
Section 2 we investigate the local picture of the zero-average Gaussian free field on Gn
and its connection to the Gaussian free field on Td. The content of these first two sections
will be subsequently used to show Theorem 3.1 (corresponding to (0.8)) and Theorem 4.1
(corresponding to (0.9)). More precisely, in Section 3 we deal with the subcritical phase,
ultimately proving the non-existence of connected components of E≥hΨGn

for h > h? of

larger than logarithmic size (Theorem 3.1). Finally, in Section 4 we conclude with the
proof of Theorem 4.1 showing that for h < h? most vertices of Gn live in a connected
component of E≥hΨGn

of at least mesoscopic size.

Acknowledgements. The authors wish to express their gratitude to A.-S. Sznitman
for suggesting the problem and for the valuable comments made at various stages of the
project.
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1 Notation and useful results

In this section we introduce our main notation and recall the essential material about
the Gaussian free field on the d-regular tree Td that will be needed in the study of the
zero-average Gaussian free field on the finite graphs (Gn)n≥1 (Section 1.1). We end the
section with results on the zero-average Green function and some basic properties of the
zero-average Gaussian free field on Gn (Section 1.2).

As mentioned earlier, we consider for fixed d ≥ 3 the d-regular graphs (Gn)n≥1,
satisfying the assumptions (0.1)–(0.3). For the constants α and β appearing in these
assumptions we assume without loss of generality that

α ≤ 1 and β ≤ 2. (1.1)

Indeed, for α this is trivial and for β it follows from the fact that the matrix P (see below
(0.3)) is a symmetric stochastic matrix and thus all its eigenvalues are contained in the
interval [−1, 1]. Consequently the eigenvalues of I − P are contained in [0, 2].

For the general graph notation introduced in the next two paragraphs, G stands either
for Gn or for Td with root o.

By x ∈ G resp. U ⊆ G we mean a vertex resp. a subset of vertices of the graph G. We
let dG(·, ·) denote the graph distance on G. For any U ⊆ G, |U | stands for its cardinality,
and ∂GU := {y ∈ G \U | y has some neighbour x ∈ U in G} denotes its (outer) boundary
in G. For any R ≥ 0 and x ∈ G we define the balls and spheres of radius R around x
to be BG(x,R) := {y ∈ G | dG(x, y) ≤ R} and SG(x,R) := {y ∈ G | dG(x, y) = R}. The
maximum number of edges that can be deleted from the subgraph of G induced by some
connected subset U ⊆ G while keeping it connected is called tree excess of U and we denote
it by tx(U). Note that tx(U) = 0 if and only if (the subgraph induced by) U is a tree.
(In particular, the assumption (0.2) could be rewritten as tx(BGn(x, bα logd−1(Nn)c)) ≤ 1
for all n ≥ 1 and x ∈ Gn.) For x, z ∈ G a path from x to z is a sequence of vertices
x = y0, y1, . . . , ym = z in G for some m ≥ 0 such that yi and yi−1 are neighbours for all
i = 1, . . . ,m (if m ≥ 1). It is a non-backtracking path from x to z if in addition yi 6= yi−2

for all i = 2, . . . ,m (if m ≥ 2).

We write P Gx for the canonical law of the simple random walk on G starting at x ∈ G as
well as EGx for the corresponding expectation. The canonical process for the discrete-time
walk is denoted by (Xk)k≥0. For the continuous-time walk with i.i.d. mean-one exponen-
tial holding times we write (Xt)t≥0. Given U ⊆ G we write TU := inf{k ≥ 0 |Xk /∈ U}
for the exit time from U and HU := inf{k ≥ 0 |Xk ∈ U} for the entrance time in U of
the discrete-time walk (here we set inf ∅ :=∞). For the continuous-time simple random
walk TU and HU are defined accordingly. In the special case of U = {z} we use Hz in
place of H{z}.

For G = Td we need some extra notation. In this case, there is a unique non-
backtracking path of length dTd(x, z) between any two vertices x, z ∈ Td (namely the
geodesic path). For x ∈ Td\{o} let x be the unique neighbour of x on the non-backtracking
path from x to o. Moreover, let o ∈ Td denote a fixed neighbour of the root o ∈ Td. For
x ∈ Td we define

Ux := {z ∈ Td | the non-backtracking path from z to x does not contain x}. (1.2)

In particular Td = {o}∪
⋃d
i=1 Uxi if STd(o, 1) =: {x1, . . . , xd}. In the special case of x = o
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we write T+
d := Uo. We also set B+

Td(o, R) := {y ∈ T+
d | dTd(o, y) ≤ R} and similarly

S+
Td(o, R) := {y ∈ T+

d | dTd(o, y) = R} for R ≥ 0.

Finally, some notation for the finite graphs (Gn)n≥1. For all n ≥ 1 and x ∈ Gn we fix a
cover tree πn,x of Gn at x, that is, a surjective map πn,x : Td → Gn such that πn,x(o) = x
and such that for all y ∈ Td one has πn,x(STd(y, 1)) = SGn(πn,x(y), 1), meaning that πn,x
preserves the neighbourhood of radius 1 of any y ∈ Td. Note that:

• if x ∈ Gn with tx(BGn(x,R)) = 0 for some R ≥ 0, then the map πn,x restricted

to BTd(o, R) induces a graph isomorphism from BTd(o, R) to BGn(x,R) (1.3)

• a sequence of vertices o = y0, y1, . . . , ym ∈ Td, m ≥ 0, is a non-backtracking

path in Td starting at o if and only if x = πn,x(y0), πn,x(y1), . . . , πn,x(ym) ∈ Gn
is a non-backtracking path in Gn starting at x. (1.4)

Furthermore, for the cover tree πn,x of Gn at x, the process (πn,x(Xk))k≥0 under PTd
o has

the same law as (Xk)k≥0 under P Gnx . Hence

P Gnx [Xk ∈ U ] = PTd
o [πn,x(Xk) ∈ U ] = PTd

o [Xk ∈ π−1
n,x(U)] for U ⊆ Gn, k ≥ 0. (1.5)

A final word on the convention followed concerning constants: by c, c′, . . . we denote
positive constants with values changing from place to place and which only depend on
the dimension d and the constants α and β from the assumptions (0.1)–(0.3). Numbered
constants c0, c1, . . . are defined in the place of first occurrence and thereafter remain fixed.
The dependence of constants on additional parameters appears in the notation.

1.1 Some properties of the Gaussian free field on regular trees

In this section we recall basic facts related to the Green function and the Gaussian free
field on Td. We also restate a couple of results about ϕTd that were derived by the
authors in the accompanying paper [AČ19] and that will be used in several occasions
throughout the rest of this article.

The Green function gTd(·, ·) of simple random walk on Td is (see [Woe00], Lemma
1.24, for the explicit computation)

gTd(x, y) := ETd
x

[ ∞∑
k=0

1{Xk=y}

]
=
d− 1

d− 2

( 1

d− 1

)dTd (x,y)
for x, y ∈ Td. (1.6)

For U ⊆ Td the Green function gUTd(·, ·) of simple random walk on Td killed when exiting

U is gUTd(x, y) := ETd
x

[∑
0≤k<TU 1{Xk=y}

]
. The functions gTd(·, ·) and gUTd(·, ·) are related

by the identity

gTd(x, y) = gUTd(x, y) + ETd
x

[
gTd(XTU , y)1{TU<∞}

]
for x, y ∈ Td. (1.7)

We continue by collecting known results and properties of ϕTd . Recall from (0.6)
that (ϕTd(x))x∈Td is the centred Gaussian field with covariance given by gTd(·, ·). An
important feature of the Gaussian free field is the domain Markov property: for U ⊆ Td
let (ϕUTd(x))x∈Td be a new field defined by

ϕUTd(x) := ϕTd(x)− ETd
x [ϕTd(XTU )1{TU<∞}] for x ∈ Td.
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Then,

under PTd , (ϕUTd(x))x∈Td is a centred Gaussian field on Td which is in-

dependent from (ϕTd(x))x∈Td\U and has covariance ETd [ϕUTd(x)ϕUTd(y)] =

gUTd(x, y) for all x, y ∈ Td.
(1.8)

As a consequence of (1.8), the Gaussian free field on Td can be obtained by the follow-
ing recursive construction (explained in detail in [AČ19], Section 1.1). Let (Yx)x∈Td be a
collection of independent centred Gaussian variables defined on some auxiliary probability
space (Ω,A,P) such that Yo ∼ N (0, gTd(o, o)) = N (0, d−1

d−2) and Yx ∼ N (0, gUxTd (x, x)) =

N (0, d
d−1) for x 6= o. Define recursively

ϕ̃(o) := Yo and ϕ̃(x) :=
1

d− 1
ϕ̃(x) + Yx for x ∈ Td \ {o}. (1.9)

Then,
under P, the law of (ϕ̃(x))x∈Td is PTd , (1.10)

so that (1.9) can be used as an alternative description of (ϕTd(x))x∈Td . In particular, it
gives a representation of the conditional distribution of ϕTd given ϕTd(o) = a ∈ R,

PTd
a

[
(ϕTd(y))y∈Td ∈ ·

]
:= PTd

[
(ϕTd(y))y∈Td ∈ ·

∣∣ϕTd(o) = a
]
, (1.11)

with corresponding expectation ETd
a .

We turn to known results about level-set percolation of the Gaussian free field on
Td from [Szn16] and [AČ19]. First, there is a characterisation of the critical value
h? through eigenvalues (λh)h∈R of certain self-adjoint operators (Lh)h∈R (see [Szn16],
Section 3, summarised in [AČ19], Proposition 1.1). Important for us will be that (see
[Szn16], Proposition 3.3)

the map h 7→ λh is a decreasing homeomorphism from R to (0, d − 1)
and h? is the unique value in R such that λh? = 1.

(1.12)

To restate the other results we remind that CTd,ho denotes the connected component of
the level set E≥hϕTd

above level h containing the root o ∈ Td (see below (0.7)). The second

result says that (see [AČ19], Theorem 4.1)

the ‘forward percolation probability’ h 7→ η+(h) given by η+(h) :=

PTd
[∣∣CTd,ho ∩ T+

d

∣∣ = ∞
]

is continuous and positive on (−∞, h?) and
vanishes on (h?,∞).

(1.13)

The third result controls the subcritical behaviour (see [AČ19], Theorem 5.1). It shows
that

for h > h? there exists δh > 0 such that gh(a) := ETd
a

[
(1 + δh)|C

Td,h
o ∩T+

d |
]

defines a finite function, continuous on [h,∞). Furthermore, gh(a) =

(1 + δh)EY
[
gh( a

d−1 + Y )
]d−1

for all a ≥ h, where Y ∼ N (0, d
d−1) and EY

is taken with respect to Y . Moreover, there exist ch, c
′
h > 0 such that

gh(a) ≤ ch,γ exp(c′ha
3/2) for all a ≥ h.

(1.14)

Finally, the last result about ϕTd needed in the sequel in the supercritical regime is the
following fact in which the λh, h ∈ R, from (1.12) appear: by [AČ19], Theorem 4.3,

for h < h? it holds that lim
k→∞

PTd
[∣∣CTd,ho ∩ S+

Td(o, k)
∣∣ ≥ λkh

k2

]
= η+(h) > 0. (1.15)
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1.2 The Green function and the zero-average Gaussian free field on Gn

We now introduce the zero-average Green function associated to the simple random walk
on Gn and prove an upper bound on it (Proposition 1.1). Along the way we also remind
of a basic property of the zero-average Gaussian free field on Gn of similar type as (1.8)
(see (1.19) and (1.20)).

The zero-average Green function GGn(·, ·) associated with the simple random walk
on Gn is given by

GGn(x, y) :=

∫ ∞
0

(
P Gnx [Xt = y]− 1

Nn

)
dt for x, y ∈ Gn. (1.16)

It is symmetric, finite and positive-semidefinite, i.e. for any f : Gn → R one has∑
x,y∈Gn f(x)GGn(x, y)f(y) ≥ 0 (see [Abä19], Remark 1.2). For U ⊆ Gn we define

gUGn(·, ·) to be the Green function of simple random walk on Gn killed when exiting U ,
that is,

gUGn(x, y) := EGnx

[ ∑
0≤k<TU

1{Xk=y}

]
=

∞∑
k=0

P Gnx [Xk = y, k < TU ] for x, y ∈ Gn. (1.17)

As gUTd(·, ·) it is symmetric, finite and vanishes for x /∈ U or y /∈ U . The functions

GGn(·, ·) and gUGn(·, ·) are related by a similar expression as the identity (1.7) for the
Green functions on Td. More precisely, for U ( Gn it holds (see [Abä19], Lemma 1.4)

GGn(x, y) = gUGn(x, y) + EGnx
[
GGn(XTU , y)

]
− 1

Nn
EGnx [TU ] for x, y ∈ Gn. (1.18)

(Lemma 1.4 in [Abä19] is stated in the case of a discrete d-dimensional torus as underlying
graph. However, its proof applies as well to the graph Gn.)

Recall from (0.4) that (ΨGn(x))x∈Gn is the centred Gaussian field with covariance
given by GGn(·, ·). We point out that the Green function GGn(·, ·) is called ’zero-average’
since its average over Gn in any of the two arguments is zero. This implies that the average
of ΨGn(x) over x ∈ Gn vanishes PGn-almost surely and explains the name ’zero-average
Gaussian free field’.

In the same way as the identity (1.7) allows for the property (1.8) of the Gaussian
free field ϕTd on Td, the identity (1.18) implies a similar (but not equal) property of the
zero-average Gaussian free field ΨGn on Gn. It is given below and follows from [Abä19],
Lemma 1.7. There it is stated and proved for the zero-average Gaussian free field on the
discrete d-dimensional torus but the proof applies, with the obvious adjustments, also
to our situation. For U ( Gn set

ϕUGn(x) := ΨGn(x)− EGnx [ΨGn(XTU )] for x ∈ Gn. (1.19)

Then,

under PGn , (ϕUGn(x))x∈Gn is a centred Gaussian field on Gn with covariance

EGn [ϕUGn(x)ϕUGn(y)] = gUGn(x, y) for all x, y ∈ Gn.
(1.20)

Note that (ϕUGn(x))x∈Gn cannot be independent from (ΨGn(x))x∈Gn\U due to the zero-
average property of ΨGn .
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We conclude Section 1 with an upper bound on GGn(·, ·) which is going to be of
particular use in the proof of Proposition 2.5 needed for the supercritical phase. Note
that the obtained bound (1.23) resembles the expression for the Green function gTd(·, ·)
on Td (see (1.6)). We first define the new constant

c0 :=
αβ

d− 1

(1.1)
∈ (0, 1). (1.21)

Proposition 1.1. For all n ≥ 1 and x, y ∈ Gn it holds that

GGn(x, y) ≤ 16

7

d− 1

d− 2

( 1

d− 1

)dGn (x,y)
+ 2 ln(Nn)N

− c0
β

n +
1

βN c0
n
. (1.22)

In particular, for all n large enough and x, y ∈ Gn with dGn(x, y) ≤ c0
3 logd−1(Nn) it holds

that

GGn(x, y) ≤ 3
d− 1

d− 2

( 1

d− 1

)dGn (x,y)
. (1.23)

Proof. We set tGn := c0
β ln(Nn) = α

d−1 ln(Nn)
(1.1)

≤ ln(Nn). By [SC97], Corollary 2.1.5,

one then has (the stationary distribution of (Xt)t≥0 is the uniform distribution on Gn
due to (0.1))∫ ∞

tGn

∣∣∣P Gnx [Xt = y]− 1

Nn

∣∣∣ dt ≤ ∫ ∞
tGn

e−λGn t dt =
e−λGn tGn

λGn

(0.3)

≤ 1

βN c0
n
. (1.24)

On the other hand, by switching to the discrete-time walk (Xk)k≥0 and with Mt ∼ Poi(t)
for t ≥ 0 describing the number of jumps of the continuous-time simple random walk up
to time t, we have∫ tGn

0

∣∣∣P Gnx [Xt = y]− 1

Nn

∣∣∣ dt ≤ ∫ tGn

0

∞∑
k=0

P[Mt = k]P Gnx [Xk = y] dt+
tGn
Nn

≤
bα logd−1(Nn)c∑

k=0

P Gnx [Xk = y]

∫ ∞
0

tk

k!
e−t dt︸ ︷︷ ︸

=1

+

∫ tGn

0
P[Mt ≥ α logd−1(Nn)] dt+

tGn
Nn

.

(1.25)

Note that for 0 ≤ t ≤ tGn by Markov’s inequality one has P[Mt ≥ α logd−1(Nn)] =
P[(d − 1)Mt ≥ Nα

n ] ≤ N−αn E[eln(d−1)Mt ] = N−αn exp(t(d − 2)) ≤ N−αn exp(tGn(d − 2)) =

N−αn exp(α ln(Nn)) exp(−tGn) = exp(−tGn) = N
−c0/β
n . Therefore (1.25) implies

∫ tGn

0

∣∣∣P Gnx [Xt = y]− 1

Nn

∣∣∣ dt ≤ bα logd−1(Nn)c∑
k=0

P Gnx [Xk = y] + tGnN
− c0
β

n +
tGn
Nn

(1.5)

≤
(1.21)

bα logd−1(Nn)c∑
k=0

PTd
o [Xk ∈ π−1

n,x({y})] + 2 ln(Nn)N
− c0
β

n

(1.26)

for the cover tree πn,x of Gn at x. To bound the sum appearing on the right hand side
of (1.26) we consider different cases for π−1

n,x({y}) ∩BTd(o, bα logd−1(Nn)c).

If
∣∣π−1
n,x({y}) ∩ BTd(o, bα logd−1(Nn)c)

∣∣ = 0, then the sum on the last line of (1.26)
vanishes and together with (1.24) this shows (1.22).
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If
∣∣π−1
n,x({y}) ∩ BTd(o, bα logd−1(Nn)c)

∣∣ = 1, say the intersection is {u} (this is in
particular the case if y ∈ BGn(x, bα logd−1(Nn)c) and tx(BGn(x, bα logd−1(Nn)c)) = 0),
then the sum appearing on the right hand side of (1.26) can be rewritten as

bα logd−1(Nn)c∑
k=0

PTd
o [Xk ∈ π−1

n,x({y})] =

bα logd−1(Nn)c∑
k=0

PTd
o [Xk = u]

(1.6)

≤ gTd(o, u)

(1.6)
=

d− 1

d− 2

( 1

d− 1

)dTd (o,u)
=
d− 1

d− 2

( 1

d− 1

)dGn (x,y)

and together with (1.24) this shows (1.22).

It remains to consider the last case, that is,
∣∣π−1
n,x({y})∩BTd(o, bα logd−1(Nn)c)

∣∣ ≥ 2.
Then BGn(x, bα logd−1(Nn)c) contains a (unique by (0.2)) cycle of some length `. Let
us abbreviate B := BTd(o, bα logd−1(Nn)c) and define for m ≥ 0 the disjoint intervals
Im := [dGn(x, y)+m`, dGn(x, y)+(m+1)`) of length `. We claim that one has the disjoint
union

π−1
n,x({y}) ∩B =

∞⋃
m=0

{
z ∈ π−1

n,x({y}) ∩B | dTd(o, z) ∈ Im
}

with
∣∣{z ∈ π−1

n,x({y}) ∩B | dTd(o, z) ∈ Im
}∣∣ ≤ 2 for m ≥ 0.

(1.27)

This fact is a direct consequence of Lemma 1.2 stated and proved below. We first conclude
the proof of Proposition 1.1 assuming (1.27). The sum on the last line of (1.26) can be
bounded, in case

∣∣π−1
n,x({y}) ∩BTd(o, bα logd−1(Nn)c)

∣∣ ≥ 2, by

bα logd−1(Nn)c∑
k=0

PTd
o [Xk ∈ π−1

n,x({y})] ≤
∞∑
k=0

∑
z∈π−1

n,x({y})∩B

PTd
o [Xk = z]

(1.6)
=

∑
z∈π−1

n,x({y})∩B

d− 1

d− 2

( 1

d− 1

)dTd (o,z) (1.27)

≤ 2
d− 1

d− 2

∞∑
m=0

( 1

d− 1

)dGn (x,y)+m`

= 2
d− 1

d− 2

( 1

d− 1

)dGn (x,y) 1

1−
(

1
d−1

)` ≤ 16

7

d− 1

d− 2

( 1

d− 1

)dGn (x,y)
,

(1.28)

where in the last step we use that d ≥ 3 and ` ≥ 3, too, since ` is the length of a cycle.
The combination of (1.24), (1.26) and (1.28) concludes the proof of (1.22) also in this
case, once (1.27) is asserted. To derive (1.23) from (1.22) it is enough to recall that
c0 ≤ 1 and β ≤ 2 (see (1.21) and (1.1)). Hence one has c0

3 < min{c0,
c0
β } and therefore

for n large enough also

2 ln(Nn)N
− c0
β

n +
1

βN c0
n
≤ 1

N
c0
3
n

=
( 1

d− 1

) c0
3

logd−1(Nn)
≤ 5

7

d− 1

d− 2︸ ︷︷ ︸
≥1

( 1

d− 1

)dGn (x,y)
, (1.29)

assuming x, y ∈ Gn are such that dGn(x, y) ≤ c0
3 logd−1(Nn). We can combine (1.22) with

(1.29) to obtain (1.23).

To conclude the proof of Proposition 1.1 it only remains to show (1.27), which follows
directly from the next lemma.
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Lemma 1.2. Let x ∈ Gn, R ≥ 0 and assume BGn(x,R) contains a unique cycle of length
`. Recall that πn,x is the fixed cover tree of Gn at x and assume y ∈ BGn(x,R). Then∣∣∣{z ∈ π−1

n,x({y}) ∩BTd(o, R)
∣∣ dTd(o, z) ∈ [0, dGn(x, y))

}∣∣∣ = 0. (1.30)

Moreover, for all k ≥ 0 one has∣∣∣{z ∈ π−1
n,x({y}) ∩BTd(o, R)

∣∣ dTd(o, z) ∈ [k, k + `)
}∣∣∣ ≤ 2. (1.31)

Proof. For any vertex z ∈ π−1
n,x({y})∩BTd(o, R) there is a unique non-backtracking path

of length dTd(o, z) from o to z in BTd(o, R). Therefore, by the one-to-one correspondence
from (1.4), every such z uniquely determines a non-backtracking path of length dTd(o, z)
connecting x to y in BGn(x,R). Thus (1.30) is clear and for (1.31) it is enough to show
that for all k ≥ 0 one has∣∣∣{non-backtracking paths from x to y in BGn(x,R) of length in [k, k+`)

}∣∣∣ ≤ 2. (1.32)

Let us denote by C := {c1, . . . , c`} ⊆ Gn the unique cycle of length ` in BGn(x,R)
and by x = x0, . . . , xi for some i ≥ 0 the unique non-backtracking path in BGn(x,R)
from x to C such that xi ∈ C and x0, . . . , xi−1 /∈ C (if i ≥ 1). This path is unique for
if x = x̃0, . . . , x̃j was another such path, then one could find a cycle different from C
in {x0, . . . , xi, x̃0, . . . , x̃j , c1, . . . , c`} ⊆ BGn(x,R). Analogously, we let y = y0, . . . , yj for
some j ≥ 0 be the unique non-backtracking path in BGn(x,R) from y to C such that
yj ∈ C and y0, . . . , yj−1 /∈ C (if j ≥ 1). We distinguish two cases: either {x0, . . . , xi} ∩
{y0, . . . , yj} = ∅ or the intersection is not empty.

In the first case any non-backtracking path from x to y in BGn(x,R) starts with the
segment x0, . . . , xi from x to C and ends with the segment yj , . . . , y0 from C to y because a
non-backtracking path v0, . . . , vs from x to y in BGn(x,R) with (v0, . . . , vi) 6= (x0, . . . , xi)
or (vs−j , . . . , vs) 6= (yj , . . . , y0) would imply the existence of a cycle different from C
in {v0, . . . , vs, c1, . . . , c`, x0, . . . , xi, y0, . . . , yj} ⊆ BGn(x,R). In between the segments
x0, . . . , xi and yj , . . . , y0 any of those non-backtracking paths can only visit vertices in
C (else there would be another cycle in BGn(x,R)) and they can only do so in clockwise
or anti-clockwise direction (because they are non-backtracking). To wrap up: any non-
backtracking path from x to y in BGn(x,R) starts with the segment x0, . . . , xi, then goes
M times (for some M ≥ 0 and some direction) around the cycle C from xi to xi, then
continues (in the same direction) along the cycle from xi to yj (note that xi 6= yj by
assumption) and then ends with the segment yj , . . . , y0.

In the second case, i.e. if {x0, . . . , xi} ∩ {y0, . . . , yj} 6= ∅, let m ∈ {0, . . . , i} and
m′ ∈ {0, . . . , j} be such that xm = ym′ and {x0, . . . , xm−1}∩{y0, . . . , ym′−1} = ∅. In other
words, xm = ym′ is the first common vertex of the paths x0, . . . , xi and y0, . . . , yj . Any
non-backtracking path from x to y in BGn(x,R) starts with the segment x0, . . . , xm and
ends with the segment ym′ , . . . , y0 because a non-backtracking path v0, . . . , vs from x to
y in BGn(x,R) with (v0, . . . , vm) 6= (x0, . . . , xm) or (vs−m′ , . . . , vs) 6= (ym′ , . . . , y0) would
imply the existence of a cycle in {v0, . . . , vs, c1, . . . , c`, x0, . . . , xi, y0, . . . , yj} ⊆ BGn(x,R)
different from C. In between the segments x0, . . . , xm and ym′ , . . . , y0 any of those non-
backtracking paths either does not do anything (possible since xm = ym′ by definition,
i.e. the full path is x0, . . . , xm, ym′−1, . . . , y0) or it has to form a non-backtracking path
from xm to itself of non-zero length. Note that in any graph a non-backtracking path
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(of non-zero length) from a vertex to itself necessarily contains vertices of a cycle. In
our situation C is the only cycle in BGn(x,R) and so any non-backtracking path (of
non-zero length) from xm to xm necessarily touches C. Therefore, it has to start with
the segment xm, . . . , xi from xm to C and end with the segment xi, . . . , xm from C to
xm (else there would be a cycle different from C in BGn(x,R)). Between the segments
xm, . . . , xi and xi, . . . , xm it can only visit vertices in C (else there would be another
cycle in BGn(x,R)) and it has to do at least one full turn around the cycle in clockwise or
anti-clockwise direction (because non-backtracking). To wrap up: any non-backtracking
path from x to y in BGn(x,R) is either of the form x0, . . . , xm, ym′−1, . . . , y0 or between
the initial segment x0, . . . , xm and the final segment ym′ , . . . , y0 it continues with the
segment xm, . . . , xi, then goes M times (for some M ≥ 1 and some direction) around the
cycle C from xi to xi and then goes back to ym′ through xi, . . . , xm.

In any of the two cases, different non-backtracking paths from x to y in BGn(x,R)
differ by at least ` in length (the length of the cycle) except if they go around the full
cycle both M times but in different directions (clockwise or anti-clockwise). This shows
(1.32) and concludes the proof of Lemma 1.2 and hence also of Proposition 1.1.

2 The local picture of the zero-average Gaussian free field

In this section we investigate the local behaviour of the zero-average Gaussian free field
and we derive key results and estimates that will be used in Section 3 and Section 4 for
proving the main theorems of this article (Theorem 3.1 and Theorem 4.1 corresponding
to (0.8) and (0.9)). The results in this section support the intuition that the local picture
of the zero-average Gaussian free field ΨGn on Gn is given by the Gaussian free field ϕTd
on Td. We will see two instances here: first we show in Section 2.1 that one can locally
approximate ΨGn around vertices of Gn with a tree-like neighbourhood (Theorem 2.1).
This will be the type of approximation of ΨGn by ϕTd needed to deal with the supercritical
phase in Section 4 and to prove Theorem 4.1 (corresponding to (0.9)). Then in Section 2.2
we compute conditional distributions of ΨGn (Lemma 2.6) and we derive that in certain
situations they resemble conditional distributions of ϕTd (Proposition 2.7, see also (2.24)).
This will be the crucial ingredient for approximating ΨGn by ϕTd along the connected
components of subcritical level sets and ultimately proving Theorem 3.1 (corresponding
to (0.8)) in Section 3.

2.1 A local approximation of ΨGn by ϕTd on tree-like neighbourhoods

The goal of this section is to prove Theorem 2.1 below, stating the approximation of
the zero-average Gaussian free field ΨGn on neighbourhoods of vertices with tree-like
surroundings by the Gaussian free field ϕTd on Td. This supports the intuition that
the local picture of ΨGn on Gn is given by ϕTd on Td. The approximation derived here
will be used in Section 4 to prove the main result (0.9), i.e. that a linear fraction of the
vertices of Gn is contained in mesoscopic connected components of the level set above
level h if h < h?. Theorem 2.1 will allow us to reduce the required computations on ΨGn
to computations on ϕTd .

For the remainder of Section 2.1 we introduce some notation. If n ≥ 1, x ∈ Gn
and R ≥ 1 with tx(BGn(x,R)) = 0, then (see (1.3)) let ρx,R : BGn(x,R) → BTd(o, R)
denote the graph isomorphism given by (πn,x

∣∣
BTd (o,R)

)−1. Furthermore, for all n ≥ 1
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and pairs x, x′ ∈ Gn we fix zx,x′ ∈ π−1
n,x({x′}) ⊆ Td. Finally, if n ≥ 1, x, x′ ∈ Gn, R ≥ 1

with tx(BGn(x,R)) = 0, tx(BGn(x′, R)) = 0 and BGn(x,R) ∩ BGn(x′, R) = ∅, then let
ρx,x′,R : BGn(x,R)∪BGn(x′, R)→ BTd(o, R)∪BTd(zx,x′ , R) denote the graph isomorphism
given by (πn,x

∣∣
BTd (o,R)∪BTd (zx,x′ ,R)

)−1. Finally, recall the constant c0 from (1.21). The

main result of this section is the following

Theorem 2.1. For all n large enough, x, x′ ∈ Gn, 1 ≤ r < R ≤ c0
6 logd−1(Nn) such that

tx(BGn(x, 2R)) = 0, tx(BGn(x′, 2R)) = 0 and BGn(x, 2R) ∩BGn(x′, 2R) = ∅, there exists
a coupling Qn of ΨGn and ϕTd such that for all ε > 0

Qn

[
sup

y∈BGn (x,r)∪BGn (x′,r)

∣∣ΨGn(y)− ϕTd(ρx,x′,2R(y))
∣∣ > ε

]
≤ 8d(d− 1)r exp

(
− ε2(d− 1)(d− 2)

24d2
(d− 1)R−2r

)
.

(2.1)

In particular, for all n large enough, x ∈ Gn, 1 ≤ r < R ≤ c0
6 logd−1(Nn) such that

tx(BGn(x, 2R)) = 0, there exists a coupling Qn of ΨGn and ϕTd such that for all ε > 0
the same bound as in (2.1) applies to Qn

[
supy∈BGn (x,r)

∣∣ΨGn(y)− ϕTd(ρx,2R(y))
∣∣ > ε

]
.

We now proceed with some preparations for the proof of Theorem 2.1. The first
goal is an easy preliminary coupling of ΨGn and ϕTd around vertices of Gn with tree-like
neighbourhood (Lemma 2.3). In its proof we use the following observation.

Remark 2.2. Let x, x′ ∈ Gn and R ≥ 1 satisfy tx(BGn(x,R)) = 0, tx(BGn(x′, R)) = 0
and BGn(x,R) ∩ BGn(x′, R) = ∅. Assume U ⊆ BGn(x,R − 1) ∪ BGn(x′, R − 1), so that
∂GnU ⊆ BGn(x,R) ∪ BGn(x′, R). Then for any y ∈ BGn(x,R) ∪ BGn(x′, R) ⊆ Gn the
image under πn,x of the law of the simple random walk on Td started at ρx,x′,R(y) ∈
BTd(o, R)∪BTd(zx,x′ , R) ⊆ Td and stopped when exiting ρx,x′,R(U) is the same as the law
of the simple random walk on Gn started at y and stopped when exiting U . In particular,
the hitting distribution of the boundary ∂GnU of the walk on Gn is the image under πn,x
of the hitting distribution of ∂Tdρx,x′,R(U) of the walk on Td, that is

P Gny [XTU = z] = PTd
ρx,x′,R(y)[XTρx,x′,R(U)

= ρx,x′,R(z)] for all y ∈ U and z ∈ ∂GnU. (2.2)

Similarly, for any x ∈ Gn with tx(BGn(x,R)) = 0, U ⊆ BGn(x,R − 1), and y ∈
BGn(x,R) ⊆ Gn the image under πn,x of the law of the simple random walk on Td
started at ρx,R(y) ∈ BTd(o, R) ⊆ Td and stopped when exiting ρx,R(U) is the same as
the law of the simple random walk on Gn started at y and stopped when exiting U . So
(2.2) holds for ρx,x′,R replaced by ρx,R.

As a direct implication of the above Remark 2.2 we obtain a straightforward way to
couple ΨGn on BGn(x,R) ∪BGn(x′, R) with ϕTd on BTd(o, R) ∪BTd(zx,x′ , R).

Lemma 2.3. Assume x, x′ ∈ Gn with tx(BGn(x,R)) = 0 and tx(BGn(x′, R)) = 0 satisfy
BGn(x,R) ∩ BGn(x′, R) = ∅ for some R ≥ 1. Let U ⊆ BGn(x,R − 1) ∪ BGn(x′, R − 1).
Then there exists a coupling of ΨGn and ϕTd such that

ΨGn(y)− EGny [ΨGn(XTU )] = ϕTd(ρx,x′,R(y))− ETd
ρx,x′,R(y)[ϕTd(XTρx,x′,R(U)

)]

for all y ∈ BGn(x,R) ∪BGn(x′, R).
(2.3)

Similarly, if we only have x ∈ Gn with tx(BGn(x,R)) = 0 for some R ≥ 1 and U ⊆
BGn(x,R− 1), then (2.3) holds for all y ∈ BGn(x,R) with ρx,x′,R replaced by ρx,R.
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Proof. The proof is analogous to the proof of Lemma 1.10 in [Abä19]. Since both sides
of (2.3) describe centred Gaussian fields, it is enough to check that the covariance is the
same. By (1.20) resp. by (1.8) the covariance of the field for y, z ∈ BGn(x,R)∪BGn(x′, R)

is gUGn(y, z) on the left resp. g
ρx,x′,R(U)

Td (ρx,x′,R(y), ρx,x′,R(z)) on the right hand side. These
two covariances are equal by Remark 2.2 and hence the proof is complete.

We can now lay out the strategy for proving Theorem 2.1. The idea is to combine the
coupling of ΨGn and ϕTd from Lemma 2.3 (for some suitable choice of U) with uniform
bounds on the variance of the expectations appearing in (2.3). These uniform bounds
are shown in Proposition 2.5 and will ultimately lead to the proof of Theorem 2.1. Before
that, we show a simple estimate of the hitting distribution of a sphere by the simple
random walk on Td (Lemma 2.4). This estimate is needed for the proof of the bounds
in Proposition 2.5.

Lemma 2.4. Let R ≥ 0. Then for all y ∈ BTd(o, R) and z ∈ STd(o, R) one has

PTd
y [XHSTd

(o,R)
= z] ≤

( 1

d− 1

)R−dTd (y,o)
. (2.4)

Proof. Note that the statement we need to prove only depends on the distance of the ver-
tex y to the centre of BTd(o, R). We denote by o = y0, y1, . . . , yR a fixed non-backtracking
path from o to STd(o, R) =: S, so that dTd(yk, o) = k for k = 0, . . . , R. First, we argue
that PTd

yk
[XHS = z] ≤ PTd

yk
[XHS = yR] for all z ∈ S and k = 0, . . . , R. Indeed, fix z ∈ S

and k ∈ {0, . . . , R} and let

i0 := max{i ∈ {0, . . . , R} | yi is on the non-backtracking path from o to z},

so that yi0 is the last common vertex of the two non-backtracking paths from o to z
resp. to yR. Note that any path from yk to z in Td has to pass through yi0 and also
that PTd

yi0
[XHS = z] = PTd

yi0
[XHS = yR] because z, yR ∈ S and dTd(yi0 , z) = dTd(yi0 , yR)

by definition of yi0 . As claimed, one obtains

PTd
yk

[XHS = z] = PTd
yk

[XHS = z,Hyi0
≤ HS ]

(∗)
= PTd

yk
[Hyi0

≤ HS ]PTd
yi0

[XHS = z]

= PTd
yk

[Hyi0
≤ HS ]PTd

yi0
[XHS = yR]

(∗)
= PTd

yk
[XHS = yR, Hyi0

≤ HS ] ≤ PTd
yk

[XHS = yR],

where in both (∗) we use the strong Markov property.

It remains to show PTd
yk

[XHS = yR] ≤ (d− 1)−(R−k) for k = 0, . . . , R. To this end, let

Ak := STd(o, R) ∩ Uyk (see (1.2)). By definition we have yR ∈ Ak and |Ak| = (d− 1)R−k.
Moreover, by symmetry it holds PTd

yk
[XHS = z] = PTd

yk
[XHS = yR] for all z ∈ Ak. Hence

1 ≥ PTd
yk

[XHS ∈ Ak] =
∑
z∈Ak

PTd
yk

[XHS = z] = (d− 1)R−kPTd
yk

[XHS = yR],

from which the required claim follows directly.

Proposition 2.5. For all R ≥ 1 and y ∈ BTd(o, R) one has

VarPTd

(
ETd
y [ϕTd(XHSTd

(o,R)
)]
)
≤ d2

(d− 1)(d− 2)

( 1

d− 1

)R−2dTd (y,o)
. (2.5)
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Also, for all n large enough, x ∈ Gn and 1 ≤ R ≤ c0
6 logd−1(Nn) with tx(BGn(x, 2R)) = 0

and y ∈ BGn(x,R) one has

VarPGn
(
EGny [ΨGn(XHSGn (x,R)

)]
)
≤ 3d2

(d− 1)(d− 2)

( 1

d− 1

)R−2dGn (y,x)
. (2.6)

Proof. We start with (2.5). Let us abbreviate S := STd(o, R). We first expand the
variance to obtain

VarPTd

(
ETd
y [ϕTd(XHS )]

)
=

∑
z1,z2∈S

PTd
y [XHS = z1]PTd

y [XHS = z2]gTd(z1, z2)

(2.4)

≤
(1.6)

d− 1

d− 2

( 1

d− 1

)2(R−dTd (y,o)) ∑
z1,z2∈S

( 1

d− 1

)dTd (z1,z2)
.

(2.7)

Fix z1 ∈ S. Note that all vertices of S are at even distance from z1 and more precisely
that in S

there is one vertex at distance 0 from z1 (namely z1 itself),

there are (d− 2)(d− 1)j−1 vertices at distance 2j from z1 for 1 ≤ j ≤ R− 1,

there are (d− 1)R vertices at distance 2R from z1.

(2.8)

This implies that for fixed z1 ∈ S it holds

∑
z2∈S

( 1

d− 1

)dTd (z1,z2)
= 1 +

R−1∑
j=1

(d− 2)(d− 1)j−1
( 1

d− 1

)2j
+ (d− 1)R

( 1

d− 1

)2R

= 1 + (d− 2)

R−1∑
j=1

( 1

d− 1

)j+1
+
( 1

d− 1

)R
(2.9)

= 1 +
( 1

d− 1

)(
1−

( 1

d− 1

)R−1)
+
( 1

d− 1

)R
=

d

d− 1
.

Since |S| = d(d− 1)R−1, we can combine (2.7) and (2.9) to obtain

VarPTd

(
ETd
y [ϕTd(XHS )]

)
≤ d− 1

d− 2

( 1

d− 1

)2(R−dTd (y,o))
d(d− 1)R−1 d

d− 1
,

which is equal to the right hand side of (2.5) and concludes the proof of the first part.

For the proof of (2.6) we proceed similarly. Let us abbreviate S′ := SGn(x,R)
and note that P Gny -almost surely HS′ = TBGn (x,R−1). Since by assumption we have
tx(BGn(x, 2R)) = 0, Remark 2.2 implies that for every z ∈ S′ we have

P Gny [XHS′ = z] = PTd
ρx,R(y)[XHρx,R(S′) = ρx,R(z)]

(2.4)

≤
( 1

d− 1

)R−dTd (ρx,R(y),o)
=
( 1

d− 1

)R−dGn (y,x)
.

Furthermore, for n large enough, the inequality (1.23) in Proposition 1.1 applies to
GGn(z1, z2) with z1, z2 ∈ S′ since dGn(z1, z2) ≤ 2R ≤ c0

3 logd−1(Nn) by assumption on R.
Therefore, by expanding the variance we obtain similarly to (2.7) the inequality

VarPGn
(
EGny [ΨGn(XHS′ )]

)
≤ 3

d− 1

d− 2

( 1

d− 1

)2(R−dGn (y,x)) ∑
z1,z2∈S′

( 1

d− 1

)dGn (z1,z2)
,

(2.10)
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assuming n is large enough. We now argue that for fixed z1 ∈ S′ the vertices in S′ can
be again characterised by (2.8). Indeed, the assumption tx(BGn(x, 2R)) = 0 implies that
any shortest path from z1 to some z2 ∈ S′ necessarily remains in BGn(x,R) for which
tx(BGn(x,R)) = 0 holds. Therefore, dGn(z1, z2) can be computed by only considering the
shortest connection in BGn(x,R) between z1 and z2 and so we are in the tree-like situation

of (2.8). Thus, the same computation as in (2.9) leads to
∑

z2∈S′
(

1
d−1

)dGn (z1,z2)
= d

d−1 .

This combined with (2.10) concludes the proof of (2.6) since |S′| = d(d − 1)R−1 as
tx(BGn(x,R)) = 0.

We now have all the ingredients for the proof of Theorem 2.1, by which we conclude
Section 2.1.

Proof of Theorem 2.1. Let us abbreviate V := BGn(x, r)∪BGn(x′, r). Under the assump-
tions of the theorem we can apply Lemma 2.3 with U := BGn(x,R−1)∪BGn(x′, R−1) ⊇ V .
Thus we obtain a coupling Qn of ΨGn and ϕTd such that for all ε > 0

Qn

[
sup
y∈V

∣∣ΨGn(y)− ϕTd(ρx,x′,R(y))
∣∣ > ε

]
(2.11)

≤ Qn

[
sup
y∈V

∣∣∣ETd
ρx,x′,R(y)[ϕTd(XTρx,x′,R(U)

)]
∣∣∣ > ε

2

]
+ Qn

[
sup
y∈V

∣∣∣EGny [ΨGn(XTU )]
∣∣∣ > ε

2

]
,

where ρx,x′,R(U) = BTd(o, R − 1) ∪BTd(zx,x′ , R − 1) ⊆ BTd(o, 2R) ∪BTd(zx,x′ , 2R). We
now consider the two terms on the right hand side of (2.11) separately. For the first term
a union bound leads to, abbreviating S := STd(o, R) and S′ := STd(zx,x′ , R),

Qn

[
sup
y∈V

∣∣∣ETd
ρx,x′,R(y)[ϕTd(XTρx,x′,R(U)

)]
∣∣∣ > ε

2

]
= PTd

[
sup

y∈BTd (o,r)∪BTd (zx,x′ ,r)

∣∣∣ETd
y [ϕTd(XHS∪S′ )]

∣∣∣ > ε

2

]
≤

∑
y∈BTd (o,r)

PTd
[∣∣∣ETd

y [ϕTd(XHS )]
∣∣∣ > ε

2

]
+

∑
y∈BTd (zx,x′ ,r)

PTd
[∣∣∣ETd

y [ϕTd(XHS′ )]
∣∣∣ > ε

2

]

= 2
∑

y∈BTd (o,r)

PTd
[∣∣∣ETd

y [ϕTd(XHS )]
∣∣∣ > ε

2

]
,

(2.12)

where the last equality follows by symmetry. Now for each y ∈ BTd(o, r) the expectation
appearing inside the probability on the right hand side of (2.12) is a centred Gaussian
variable with respect to PTd . Thus the exponential Markov inequality implies that

2
∑

y∈BTd (o,r)

PTd
[∣∣∣ETd

y [ϕTd(XHS )]
∣∣∣ > ε

2

]
≤ 4

∑
y∈BTd (o,r)

exp

(
− (ε/2)2

2VarPTd

(
ETd
y [ϕTd(XHS )]

))
(2.5)

≤ 4
∣∣BTd(o, r)

∣∣ exp

(
− ε2(d− 1)(d− 2)

8d2
(d− 1)R−2r

)
. (2.13)

For the second term on the right hand side of (2.11) we similarly have by a union bound
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that, abbreviating S := SGn(x,R) and S
′
:= SGn(x′, R),

Qn

[
sup
y∈V

∣∣∣EGny [ΨGn(XTU )]
∣∣∣ > ε

2

]
= PGn

[
sup
y∈V

∣∣∣EGny [ΨGn(XH
S∪S′

)]
∣∣∣ > ε

2

]
≤

∑
y∈BGn (x,r)

PGn
[∣∣∣EGny [ΨGn(XHS

)]
∣∣∣ > ε

2

]
+

∑
y∈BGn (x′,r)

PGn
[∣∣∣EGny [ΨGn(XH

S
′ )]
∣∣∣ > ε

2

]
.

(2.14)

The expectations appearing inside the probabilities on the right hand side of (2.14) are
centred Gaussian variables with respect to PGn . By (2.6) their variance can be bounded

by 3d2

(d−1)(d−2)( 1
d−1)R−2r. Hence the exponential Markov inequality implies that

∑
y∈BGn (x,r)

PGn
[∣∣∣EGny [ΨGn(XHS

)]
∣∣∣ > ε

2

]
+

∑
y∈BGn (x′,r)

PGn
[∣∣∣EGny [ΨGn(XH

S
′ )]
∣∣∣ > ε

2

]

≤ 2
(∣∣BGn(x, r)

∣∣+
∣∣BGn(x′, r)

∣∣) exp

(
− ε2(d− 1)(d− 2)

24d2
(d− 1)R−2r

)
.

(2.15)

The combination of (2.11)–(2.15) concludes the proof of Theorem 2.1 since |BGn(x, r)| =
|BGn(x′, r)| = |BTd(o, r)| =

d(d−1)r−2
d−2 ≤ d(d− 1)r as tx(BGn(x, r)) = tx(BGn(x′, r)) = 0

by assumption.

2.2 Conditional distribution of the zero-average Gaussian free field

In this section we investigate the conditional distributions of the zero-average Gaussian
free field. Their detailed understanding will be needed in Section 3 to control the
behaviour of the exploration process used in the proof of the main subcritical result (0.8).
We start with the exact computation of the conditional distribution of ΨGn(x) for x ∈ Gn
given ΨGn on some A ( Gn (Lemma 2.6). We then see that, under certain geometric
conditions on x and A (see (2.26)–(2.28)), the conditional distribution of ΨGn(x) given
ΨGn on A ( Gn shows strong similarities with the conditional distribution of the Gaussian
free field ϕTd on Td (Proposition 2.7, see also (2.24)). This feature reflects the general
philosophy that the local picture of ΨGn on Gn is given by ϕTd on Td.

Lemma 2.6. Let A ( Gn non-empty and x ∈ Gn. Then PGn-almost surely

EGn
[
ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

= EGnx [ΨGn(XHA)]− EGnx [HA]

EGnπ [HA]
EGnπ [ΨGn(XHA)] (2.16)

and

VarPGn
(
ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)

= GGn(x, x)− EGnx [GGn(XHA , x)] +
EGnx [HA]

EGnπ [HA]
EGnπ [GGn(XHA , x)].

(2.17)

Here EGnπ is the expectation with respect to 1
Nn

∑
z∈Gn P

Gn
z , i.e. the canonical law of simple

random walk on Gn starting at a uniformly chosen vertex.

Proof. We will abbreviate U := Gn \ A ( Gn. In particular TU = HA. Note that by
(1.19) one can write ΨGn(x) = ϕUGn(x) +EGnx [ΨGn(XHA)], the second term actually being

σ(ΨGn(y), y ∈ A)-measurable. Hence EGn
[
ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

= EGnx [ΨGn(XHA)]+
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EGn
[
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

and moreover also VarPGn
(
ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)

=

VarPGn
(
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)
. For (2.16) it is therefore enough to show that PGn-

almost surely

EGn
[
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

= −E
Gn
x [TU ]

EGnπ [TU ]
EGnπ [ΨGn(XTU )]. (2.18)

On the other hand, for (2.17) it is enough to show (use (1.18) to manipulate the first
two terms on the right hand side of (2.17))

VarPGn
(
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)

= gUGn(x, x) +
EGnx [TU ]

EGnπ [TU ]

(
EGnπ [GGn(XTU , x)]− Eπ[TU ]

Nn

)
.

(2.19)
Let us fix x0 ∈ A. We claim that

σ(ΨGn(y), y ∈ A) = σ
(∑

z∈U ϕ
U
Gn(z),ΨGn(y)−ΨGn(x0), y ∈ A

)
. (2.20)

To see (2.20) first note that σ(ΨGn(y), y ∈ A) = σ(ΨGn(x0),ΨGn(y) − ΨGn(x0), y ∈ A).
Moreover, by the zero-average property of ΨGn (see below (1.18)), one PGn-almost surely
has

ΨGn(x0) = − 1

Nn

∑
z∈Gn

(ΨGn(z)−ΨGn(x0))

(1.19)
= − 1

Nn

∑
z∈Gn

(ϕUGn(z) + EGnz [ΨGn(XTU )]−ΨGn(x0))

= − 1

Nn

∑
z∈U

ϕUGn(z)− 1

Nn

∑
z∈Gn

EGnz [ΨGn(XTU )−ΨGn(x0)].

The latter sum is σ(ΨGn(y) − ΨGn(x0), y ∈ A)-measurable. Thus σ(ΨGn(x0),ΨGn(y) −
ΨGn(x0), y ∈ A) = σ

(∑
z∈U ϕ

U
Gn(z),ΨGn(y)−ΨGn(x0), y ∈ A

)
, which shows (2.20).

Now note that

for z ∈ Gn and y ∈ A the Gaussian random variables ϕUGn(z) and
ΨGn(y)−ΨGn(x0) are independent.

(2.21)

Indeed, EGn
[
ϕUGn(z)(ΨGn(y)−ΨGn(x0))

]
= GGn(z, y)− EGnz [GGn(XTU , y)]−GGn(z, x0) +

EGnz [GGn(XTU , x0)] by (1.19) and (0.4), which is equal to gUGn(z, y) − gUGn(z, x0) = 0 by
(1.18) and (1.17) (since y, x0 /∈ U).

Recall that for random variables U, Y, Z such that U is integrable and Z is independent
of σ(U, Y ) one has E[U |σ(Y, Z)] = E[U |σ(Y )] almost surely (see e.g. [Wil91], 9.7(k)).
Hence we get EGn

[
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

= EGn
[
ϕUGn(x)

∣∣σ(
∑

z∈U ϕ
U
Gn(z))

]
PGn-almost

surely by (2.20) and (2.21). Due to the general formula Var(X|σ(Y )) = E[X2|σ(Y )] −
E[X|σ(Y )]2, the same observation also shows that VarPGn

(
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)

=

VarPGn
(
ϕUGn(x)

∣∣σ(
∑

z∈U ϕ
U
Gn(z))

)
. Therefore, the conditional expectation/variance to

be considered in (2.18) and (2.19) are actually only with respect to the sigma-algebra
generated by the single Gaussian random variable

∑
z∈U ϕ

U
Gn(z). So by the formula for
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conditional expectation/variance of the bivariate centred Gaussian distribution we have

EGn
[
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

=
EGn

[
ϕUGn(x)

∑
z∈U ϕ

U
Gn(z)

]
EGn

[(∑
z∈U ϕ

U
Gn(z)

)2] ∑
z∈U

ϕUGn(z),

VarPGn
(
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)

= EGn
[
ϕUGn(x)2

]
−

EGn
[
ϕUGn(x)

∑
z∈U ϕ

U
Gn(z)

]2
EGn

[(∑
z∈U ϕ

U
Gn(z)

)2] .

(2.22)

We observe that for u ∈ Gn one has
∑

z∈U EGn
[
ϕUGn(u)ϕUGn(z)

]
=
∑

z∈U g
U
Gn(u, z) =

EGnu [TU ] by (1.20) and (1.17). By applying this and (1.8) inside (2.22) we obtain

EGn
[
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]

=
EGnx [TU ]∑
z∈U E

Gn
z [TU ]

∑
z∈U

ϕUGn(z),

VarPGn
(
ϕUGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)

= gUGn(x, x)− EGnx [TU ]2∑
z∈U E

Gn
z [TU ]

.

(2.23)

We are almost done. Observe that by (1.20), (1.19) and the zero-average property of
ΨGn it PGn-almost surely holds∑
z∈U

ϕUGn(z) =
∑
z∈Gn

ϕUGn(z) =
∑
z∈Gn

(
ΨGn(z)− EGnz [ΨGn(XTU )]

)
= −

∑
z∈Gn

EGnz [ΨGn(XTU )].

This combined with (2.23) shows (2.18). On the other hand, by the formula above (2.23),
(1.18) and the zero-average property of GGn(·, ·) (see below (1.18)) one has

−E
Gn
x [TU ]

Nn
= − 1

Nn

∑
z∈U

gUGn(z, x) = − 1

Nn

∑
z∈Gn

gUGn(z, x)

=
1

Nn

∑
z∈Gn

(
EGnz [GGn(XTU ), x]− 1

Nn
EGnz [TU ]−GGn(z, x)

)
= EGnπ [GGn(XTU , x)]− Eπ[TU ]

Nn
.

This combined with (2.23) shows (2.19) and concludes the proof of Lemma 2.6.

Lemma 2.6 above shows that for any x ∈ Gn, ΨGn(x) conditionally on (ΨGn(y))y∈A
for A ( Gn non-empty is a Gaussian random variable with mean and variance given by
the right hand sides of (2.16) and (2.17). Comparable (but easier) statements for the
Gaussian free field ϕTd on Td follow directly from (1.8). In particular, if x′ ∈ Td and
A′ := Td \ Ux′ (recall definition (1.2)), then by (1.9) and (1.10) one has

ETd
[
ϕTd(x

′)
∣∣σ(ϕTd(y), y ∈ A′)

]
= 1

d−1ϕTd(x
′),

VarPTd

(
ϕTd(x

′)
∣∣σ(ϕTd(y), y ∈ A′)

)
= d

d−1 .
(2.24)

As we will show in Proposition 2.7 below, a similar behaviour can be observed for the zero-
average Gaussian free field ΨGn on Gn, at least in specific situations. We now introduce
the requirements on x ∈ Gn and A ⊆ Gn. Define for A ( Gn non-empty and r ≥ 1 the set
BGn(A, r) := {z ∈ Gn | z ∈ BGn(w, r) for some w ∈ A}. Moreover, for x ∈ ∂GnA we set

FA(x, r) := {z ∈ BGn(A, r) \A | z is connected to x in BGn(A, r) \A}.
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In particular x ∈ FA(x, r). We set

sn := max{1 , b8 logd−1(logd−1(Nn))c} for n ≥ 1. (2.25)

and say that x ∈ ∂GnA is a good vertex at the boundary of A if the following properties
hold

• |BGn(x, 1) ∩A| = 1, write x ∈ A for the unique vertex in this intersection

(note that for x′ ∈ Td the notation x′ has been defined above (1.2)) (2.26)

• tx(FA(x, sn)) = 0 (2.27)

• for all y ∈ ∂GnA \ {x} every path in Gn \A from y to x leaves BGn(A, sn). (2.28)

Equivalently, FA(x, sn) is proper in the notation of [ČTW11] (see Figure 1 for an illus-
tration of the conditions (2.26)–(2.28)).

x

x

A

BGn(A, sn)
sn

FA(x, sn)

Figure 1: (adapted from [ČTW11]) The point x ∈ ∂GnA is a good vertex at the boundary
of A, the points in FA(x, sn) are marked grey.

For A ( Gn non-empty we set

GA := {good vertices at the boundary of A}. (2.29)

We are now ready to state Proposition 2.7. Observe the analogies between its statement
and (2.24).

Proposition 2.7. For every b, b′ > 0 there exists cb,b′ > 0 such that for n ≥ 1, A ⊆ Gn
non-empty with |A| ≤ b ln(Nn), x ∈ GA and on the event

{
supz∈A |ΨGn(z)| ≤ b′

√
ln(Nn)

}
it holds ∣∣∣EGn[ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
]
− 1

d− 1
ΨGn(x)

∣∣∣ ≤ cb,b′(ln(Nn))−2, (2.30)∣∣∣VarPGn
(
ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)
− d

d− 1

∣∣∣ ≤ cb,b′(ln(Nn))−3. (2.31)

Recall that x ∈ A denotes the unique neighbour of x in A (see (2.26)).
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To show Proposition 2.7 and conclude this section we will manipulate the explicit
expressions for the conditional expectation and variance obtained in Lemma 2.6. In these
expressions one considers the hitting time of A for the simple random walk on Gn and
in the proof of Proposition 2.7 we will look at different situations for when the hitting
happens (see the beginning of the proof of Proposition 2.7 below). Since x ∈ GA in the
statement, the simple random walk started at x has to leave FA(x, sn) to hit A and so
P Gnx -almost surely either HA = TFA(x,sn) or HA > TFA(x,sn). We will further split the
latter case into whether HA happens before or after an additional time

tn :=
1

λGn
(ln(Nn))2, (2.32)

by which the distribution of the simple random walk is very close to the stationary
distribution (here the uniform distribution on Gn). This follows from e.g. [SC97], Corol-
lary 2.1.5. So in the proof of Proposition 2.7 we will consider the three situations
HA = TFA(x,sn), TFA(x,sn) < HA < TFA(x,sn) + tn and HA ≥ TFA(x,sn) + tn separately.
Before that, we collect in Lemma 2.8 some preliminary observations about the simple
random walk on Gn and subsequently start with the proof of Proposition 2.7. For the
rest of this section we will abbreviate FA := FA(x, sn). It is also convenient to consider
the continuous-time simple random walk (Xt)t≥0. We remind that for the exit time from
U ⊆ Gn (resp. for the entrance time in U ⊆ Gn) of this walk we use the same notation
TU (resp. HU ) as for the discrete-time simple random walk.

Lemma 2.8. For n ≥ 1, A ⊆ Gn non-empty and x ∈ GA one has

(i) 1
d−1 − c(ln(Nn))−7 ≤ P Gnx [HA = TFA ] ≤ 1

d−1 and EGnx [TFA ] ≤ c ln(Nn) (2.33)

(ii) P Gnx [HA > TFA ] =
∑

z∈BGn (A,sn)c

P Gnx [XTFA
= z,HA > TFA ]. (2.34)

Moreover, for every b > 0 there exists cb > 0 such that for n ≥ 1, A ⊆ Gn non-empty
with |A| ≤ b ln(Nn) and x ∈ GA one has

(iii) P Gnx [TFA < HA < TFA + tn] ≤ cb(ln(Nn))−5 (2.35)

(iv)
∑
w∈Gn

∣∣P Gnz [Xtn = w,HA ≥ tn]− 1
Nn

∣∣ ≤ cb(ln(Nn))−5 for z ∈ Gn (2.36)

(v)
∣∣∣EGnx [HA]

EGnπ [HA]
− P Gnx [HA > TFA ]

∣∣∣ ≤ cb(ln(Nn))−3. (2.37)

Proof. Due to (2.27), the probability P Gnx [HA = TFA ] is equal to the probability that a
(discrete-time) random walk on Z started at 1 and jumping with probability d−1

d to the
right and 1

d to the left hits 0 before hitting sn + 1. Similarly, EGnx [TFA ] is equal to the
expected time until this random walk hits 0 or sn + 1. Thus (see e.g. [Fel68], (2.4) and
(3.4) in Chapter 14) it holds

P Gnx [HA = TFA ] = 1− d−2
d−1(1− ( 1

d−1)sn+1)−1 ≤ 1− d−2
d−1 = 1

d−1 ,

EGnx [TFA ] = d
d−2

(
(sn + 1)d−2

d−1

1

1− ( 1
d−1)sn+1

− 1
)
≤ 2 d

d−1(sn + 1)
(2.25)

≤ c ln(Nn).

Since (1 − ( 1
d−1)sn+1)−1 ≤ (1 − (logd−1(Nn))−8)−1 ≤ 1 + c(ln(Nn))−7, one also has

P Gnx [HA = TFA ] ≥ 1− d−2
d−1(1 + c(ln(Nn))−7) ≥ 1

d−1 − c(ln(Nn))−7. Thus (2.33) is shown.
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To see (2.34) observe that on the event {HA > TFA}, at the moment the simple
random walk started at x leaves FA, it is in some z ∈ ∂GnFA ∩ BGn(A, sn)c (note that
indeed z /∈ BGn(A, sn) since else there would exist a path like those excluded by (2.28)).
In other words,

P Gnx -almost surely XTFA
∈ ∂GnFA ∩BGn(A, sn)c on the event {HA > TFA}. (2.38)

This shows (2.34). To derive (2.35) we apply the strong Markov property of simple
random walk for time TFA and obtain for n ≥ 1

P Gnx [TFA < HA < TFA + tn]
(2.38)

≤ sup
z∈BGn (A,sn)c

P Gnz [HA < tn]. (2.39)

Roughly speaking, the right hand side of (2.39) is small since it is difficult for the simple
random walk to hit A within time tn because it starts at distance larger than sn from A
and the environment is nearly treelike (see (0.2)). More precisely, we can apply [ČTW11],
Lemma 3.4 (for T := tn, r := 0, s := sn and using (0.2)) to find c, c′ > 0 such that for
z ∈ BGn(A, sn)c one has for n ≥ 1

P Gnz [HA < tn] ≤
∑
y∈A

P Gnz [Hy < tn] ≤ |A|
(
ctn(d− 1)−sn + e−c

′tn
) (2.25)

≤ cb(ln(Nn))−5,

where the last inequality also uses the assumption on A, (2.32) and (0.3). This combined
with (2.39) gives (2.35).

For (2.36) the idea is that on the event {HA ≥ tn} the simple random walk started at
z has, roughly speaking, reached the stationary distribution by time tn without having
hit A. We observe that for z, w ∈ Gn one has∣∣P Gnz [Xtn = w,HA ≥ tn]− 1

Nn

∣∣ ≤ P Gnz [Xtn = w,HA < tn] +
∣∣P Gnz [Xtn = w]− 1

Nn

∣∣
(∗)
≤ P Gnz [Xtn = w,HA < tn] + exp(−λGntn)

(2.32)
= P Gnz [Xtn = w,HA < tn] + exp(−(ln(Nn))2),

where in (∗) we apply [SC97], Corollary 2.1.5. Hence for n ≥ 1, z ∈ Gn, one has∑
w∈Gn

∣∣P Gnz [Xtn = w,HA ≥ tn]− 1
Nn

∣∣ ≤ P Gnz [HA < tn] +Nn exp(−(ln(Nn))2),

which together with the above estimate on P Gnz [HA < tn] gives (2.36). It remains to show
(2.37). We start by computing (using also (3.20) of [ČTW11] in the second inequality)

EGnx [HA1HA=TFA
]

EGnπ [HA]
≤ EGnx [TFA ]

EGnπ [HA]

(2.33)

≤ c ln(Nn)
4|A|
Nn
≤ cb(ln(Nn))2

Nn
. (2.40)

Now by (2.38) and the strong Markov property of simple random walk for time TFA
one has EGnx [HA1HA>TFA ] =

∑
z∈BGn (A,sn)c P

Gn
x [XTFA

= z,HA > TFA ]EGnz [HA]. This

combined with (2.34) shows∣∣∣∣EGnx [HA1HA>TFA ]

EGnπ [HA]
− P Gnx [HA > TFA ]

∣∣∣∣ ≤ sup
z∈BGn (A,sn)c

∣∣∣∣EGnz [HA]

EGnπ [HA]
− 1

∣∣∣∣. (2.41)

By [ČTW11], Proposition 3.5, we can bound the absolute value on the right hand side
of (2.41) by c|A|(d − 1)−sn(ln(Nn))4 ≤ cb(ln(Nn))−3. Since P Gnx -almost surely either
HA = TFA or HA > TFA , the combination of (2.40) and (2.41) concludes the proof.
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Proof of Proposition 2.7. We start with the basic observation that by (2.16) one has∣∣EGn[ΨGn(x)
∣∣σ(ΨGn(y), y ∈ A)

]
− 1

d−1ΨGn(x)
∣∣ ≤ UGnA,x + V GnA,x +W GnA,x, where

UGnA,x :=
∣∣∣EGnx [ΨGn(XHA)1{HA=TFA}

]
− 1

d−1ΨGn(x)
∣∣∣,

V GnA,x :=
∣∣EGnx [ΨGn(XHA)1{TFA<HA<TFA+tn}

]∣∣,
W GnA,x :=

∣∣∣EGnx [ΨGn(XHA)1{HA≥TFA+tn}
]
− EGnx [HA]

EGnπ [HA]
EGnπ

[
ΨGn(XHA)

]∣∣∣.
Hence the proof of (2.30) follows once we show that

there exists cb,b′ > 0 such that for n ≥ 1, A ⊆ Gn non-empty with |A| ≤
b ln(Nn), x ∈ GA and on the event

{
supz∈A |ΨGn(z)| ≤ b′

√
ln(Nn)

}
one

has UGnA,x + V GnA,x +W GnA,x ≤ cb,b′(ln(Nn))−2.

(2.42)

Similarly we have
∣∣VarPGn

(
ΨGn(x)

∣∣σ(ΨGn(y), y ∈ A)
)
− d

d−1

∣∣ ≤ UGnA,x + V
Gn
A,x +W

Gn
A,x by

(2.17), where

U
Gn
A,x :=

∣∣∣GGn(x, x)− EGnx
[
GGn(XHA , x)1{HA=TFA}

]
− d

d−1

∣∣∣,
V
Gn
A,x := EGnx

[
GGn(XHA , x)1{TFA<HA<TFA+tn}

]
,

W
Gn
A,x :=

∣∣∣EGnx [GGn(XHA , x)1{HA≥TFA+tn}
]
− EGnx [HA]

EGnπ [HA]
EGnπ [GGn(XHA , x)]

∣∣∣.
Thus the proof of (2.31) follows once we show that

there exists cb > 0 such that for n ≥ 1, A ⊆ Gn non-empty with |A| ≤
b ln(Nn) and x ∈ GA one has U

Gn
A,x + V

Gn
A,x +W

Gn
A,x ≤ cb(ln(Nn))−3.

(2.43)

It remains to show (2.42) and (2.43). For (2.42) we bound the three terms UGnA,x, V GnA,x
and W GnA,x separately. On {HA = TFA} one has P Gnx -almost surely ΨGn(XHA) = ΨGn(x)

due to x ∈ GA. Therefore we deduce UGnA,x = |ΨGn(x)| ·
∣∣P Gnx [HA = TFA ] − 1

d−1

∣∣ ≤
b′
√

ln(Nn)c(ln(Nn))−7 by (2.33), where in the last inequality we also use that x ∈ A.
This shows UGnA,x ≤ cb′(ln(Nn))−6.

We turn to V GnA,x. By (2.35) we have V GnA,x ≤ supy∈A |ΨGn(y)| · P Gnx [TFA < HA <

TFA + tn] ≤ b′
√

ln(Nn)cb(ln(Nn))−5. This shows V GnA,x ≤ cb,b′(ln(Nn))−4.

Finally, we consider W GnA,x. Let us define

Y GnA,x :=
∣∣∣EGnx [HA]

EGnπ [HA]
− P Gnx [HA > TFA ]

∣∣∣,
ZGnA,x :=

∣∣∣EGnx [ΨGn(XHA)1{HA≥TFA+tn}
]
− P Gnx [HA > TFA ]EGnπ

[
ΨGn(XHA)

]∣∣∣. (2.44)

By adding and subtracting 1

PGnx [HA>TFA ]

EGnx [HA]

EGnπ [HA]
EGnx

[
ΨGn(XHA)1{HA≥TFA+tn}

]
inside the

expression for W GnA,x we obtain

W GnA,x ≤
|EGnx [ΨGn (XHA

)1{HA≥TFA+tn}]|

PGnx [HA>TFA ]
Y GnA,x + 1

PGnx [HA>TFA ]

EGnx [HA]

EGnπ [HA]
ZGnA,x. (2.45)

To the first term on the right hand side of (2.45) we apply P Gnx [HA > TFA ] ≥ d−2
d−1 (by

(2.33)) as well as (2.37) and the assumption on the supremum of ΨGn on A. For the

24



second term we first observe (2.37) and then again use P Gnx [HA > TFA ] ≥ d−2
d−1 . In this

way we obtain
W GnA,x ≤ cb,b′(ln(Nn))−2 + (1 + cb(ln(Nn))−3)ZGnA,x. (2.46)

We proceed to bound ZGnA,x. By (2.38) and the strong Markov property for time TFA it
holds

EGnx
[
ΨGn(XHA)1{HA≥TFA+tn}

]
=

∑
z∈BGn (A,sn)c

P Gnx [XTFA
= z,HA > TFA ]EGnz

[
ΨGn(XHA)1{HA≥tn}

]
.

This combined with (2.34) implies ZGnA,x ≤ supz∈BGn (A,sn)c
∣∣EGnz [ΨGn(XHA)1{HA≥tn}] −

EGnπ [ΨGn(XHA)]
∣∣. Now for z ∈ BGn(A, sn)c, by the Markov property applied at time tn

and the definition of EGnπ ,∣∣EGnz [ΨGn(XHA)1{HA≥tn}]− E
Gn
π [ΨGn(XHA)]

∣∣
≤
∑
w∈Gn

∣∣EGnw [ΨGn(XHA)]
∣∣ · ∣∣P Gnz [Xtn = w,HA ≥ tn]− 1

Nn

∣∣ (2.36)

≤ cb,b′(ln(Nn))−4,

where in the last inequality we also use the assumption on the supremum of ΨGn on
A. All in all we have shown ZGnA,x ≤ cb,b′(ln(Nn))−4. Thus by (2.46) we deduce W GnA,x ≤
cb,b′(ln(Nn))−2 and the proof of (2.42) is complete.

We come to the proof of (2.43) for which we bound the three terms U
Gn
A,x, V

Gn
A,x and

W
Gn
A,x separately. For U

Gn
A,x we first note that one has EGnx

[
GGn(XHA , x)1{HA=TFA}

]
=

EGnx
[
GGn(XTFA

, x)1{HA=TFA}
]

= EGnx
[
GGn(XTFA

, x)
]
− EGnx

[
GGn(XTFA

, x)1{HA>TFA}
]
.

By (2.38), on the event {HA > TFA} the simple random walk started at x is at distance
sn from x when it leaves FA. Therefore

EGnx
[
GGn(XTFA

, x)1{HA>TFA}
]
≤ sup

z∈SGn (x,sn)
GGn(z, x) P Gnx [HA > TFA ]︸ ︷︷ ︸

≤1

(1.23)

≤
(2.25)

c(ln(Nn))−8.

Thus we have

U
Gn
A,x ≤

∣∣∣GGn(x, x)− EGnx
[
GGn(XTFA

, x)
]
− d

d−1

∣∣∣+ c(ln(Nn))−8

(1.18)

≤
(2.33)

∣∣gFAGn (x, x)− d
d−1

∣∣+ c ln(Nn)
Nn

+ c(ln(Nn))−8.

(2.47)

Note that by assumption tx(FA) = 0. So if we define B := B+
Td(o, sn) \ {o} ⊆ Td and

take x1 ∈ S+
Td(o, 1), then by definition we have gFAGn (x, x) = gBTd(x1, x1). From (1.7) we

see that

gBTd(x1, x1) = gTd(x1, x1)− ETd
x1 [gTd(XTB , x1)]

= gTd(x1, x1)− gTd(o, x1)PTd
x1 [Ho = TB]− gTd(z, x1)PTd

x1 [Ho > TB]

for any fixed z ∈ S+
Td(o, sn + 1). By (1.6) this shows that

gBTd(x1, x1) =
d− 1

d− 2
− d− 1

d− 2

1

d− 1
P Gnx [HA = TFA ]− d− 1

d− 2

( 1

d− 1

)snP Gnx [HA > TFA ].
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So we have obtained∣∣gFAGn (x, x)− d
d−1

∣∣ ≤ ∣∣d−1
d−2 −

1
d−2P

Gn
x [HA = TFA ]− d

d−1

∣∣+ d−1
d−2

(
1
d−1

)snP Gnx [HA > TFA ]

(2.33)

≤
(2.25)

1
d−2c(ln(Nn))−7 + c(ln(Nn))−8.

This, together with (2.47) shows U
Gn
A,x ≤ c(ln(Nn))−7.

We turn to V
Gn
A,x. By (1.22) there exists c > 0 such that supy,z∈Gn GGn(y, z) ≤ c.

Therefore V
Gn
A,x ≤ c P Gnx [TFA < HA < TFA+tn] and so (2.35) implies V

Gn
A,x ≤ cb(ln(Nn))−5.

Finally, we consider W
Gn
A,x. Let us define

Z
Gn
A,x :=

∣∣∣EGnx [GGn(XHA , x)1{HA≥TFA+tn}
]
− P Gnx [HA > TFA ]EGnπ [GGn(XHA , x)]

∣∣∣
and recall Y GnA,x from (2.44). Inside W

Gn
A,x we can add and subtract 1

PGnx [HA>TFA ]

EGnx [HA]

EGnπ [HA]
·

EGnx
[
GGn(XHA , x)1{HA≥TFA+tn}

]
to obtain

W
Gn
A,x ≤

EGnx [GGn (XHA ,x)1{HA≥TFA+tn}]

PGnx [HA>TFA ]
Y GnA,x + 1

PGnx [HA>TFA ]

EGnx [HA]

EGnπ [HA]
Z
Gn
A,x. (2.48)

To the first term on the right hand side of (2.48) we apply P Gnx [HA > TFA ] ≥ d−2
d−1 (by

(2.33)) as well as (2.37) and supy,z∈Gn GGn(y, z) ≤ c (by (1.22)). For the second term we

first observe (2.37) and then again use P Gnx [HA > TFA ] ≥ d−2
d−1 . In this way we obtain

W
Gn
A,x ≤ cb(ln(Nn))−3 + (1 + cb(ln(Nn))−3)Z

Gn
A,x. (2.49)

We proceed to bound Z
Gn
A,x. By (2.38) and the strong Markov property it holds

EGnx
[
GGn(XHA , x)1{HA≥TFA+tn}

]
=

∑
z∈BGn (A,sn)c

P Gnx [XTFA
= z,HA > TFA ]EGnz [GGn(XHA , x)1{HA≥tn}].

This combined with (2.34) gives Z
Gn
A,x ≤ supz∈BGn (A,sn)c

∣∣EGnz [GGn(XHA , x)1{HA≥tn}] −
EGnπ [GGn(XHA , x)]

∣∣. Now for z ∈ BGn(A, sn)c, by the Markov property applied at time
tn and the definition of EGnπ ,∣∣EGnz [GGn(XHA , x)1{HA≥tn}]− E

Gn
π [GGn(XHA , x)]

∣∣
≤
∑
w∈Gn

EGnw [GGn(XHA , x)] ·
∣∣P Gnz [Xtn = w,HA ≥ tn]− 1

Nn

∣∣ (2.36)

≤ cb(ln(Nn))−5,

where in the last inequality we again use supy,w∈Gn GGn(y, w) ≤ c by (1.22). All in all

we have shown Z
Gn
A,x ≤ cb(ln(Nn))−5. Thus by (2.49) we deduce W

Gn
A,x ≤ cb(ln(Nn))−3

and (2.43) is shown. This concludes the proof of Proposition 2.7 and Section 2.2.
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3 Microscopic components in the subcritical phase

We start the analysis of level-set percolation of the zero-average Gaussian free field ΨGn
on Gn. The goal of this section is to show (0.8) in the form of Theorem 3.1 below, i.e. the
existence of a subcritical phase in which, with high probability for large n, level sets of
ΨGn only have connected components of cardinality at most logarithmic in the size of
the graph. To precisely state the result, we recall from the introduction the critical value
h? for level-set percolation of the Gaussian free field ϕTd on Td (see (0.7)) and also the

notation E≥hΨGn
for the level set of ΨGn above level h ∈ R (see (0.5)). For h ∈ R we further

denote by CGn,hmax an arbitrary connected component of E≥hΨGn
with maximal number of

vertices. We will only be interested in its cardinality. Moreover, for x ∈ Gn and h ∈ R
we define CGn,hx to be the connected component of E≥hΨGn

containing x. The main result
of this section is

Theorem 3.1. Let h > h?. Then for all κ > 0 there exist ch,κ > 0 and Kh,κ > 0 such
that for all n ≥ 1

PGn
[
|CGn,hmax | ≥ Kh,κ ln(Nn)

]
≤ ch,κN−κn .

In particular, for some Kh > 0 one has limn→∞ PGn
[
|CGn,hmax | ≤ Kh ln(Nn)

]
= 1.

Before explaining the details of the proof of Theorem 3.1, let us make the basic
observation that a union bound reduces the problem to show that for h > h? and for all
κ > 0 there exist ch,κ > 0 and Kh,κ > 0 such that for all n ≥ 1 and x ∈ Gn

PGn
[
|CGn,hx | ≥ Kh,κ ln(Nn)

]
≤ ch,κN−1−κ

n . (3.1)

So it remains to show (3.1). We will make use of a certain exploration process exploring

CGn,hx for a fixed x ∈ Gn. This will enable us to control PGn
[
|CGn,hx | ≥ Kh,κ ln(Nn)

]
. A

similar approach has for example been followed in [ČTW11] to prove a result analogous
to the above Theorem 3.1 but for the vacant set of simple random walk on Gn in place
of the level set of the zero-average Gaussian free field.

We now give the idea of the proof of (3.1). The details of the exploration process itself
are given afterwards. A crucial ingredient is the precise understanding of the conditional
distribution of the zero-average Gaussian free field on non-explored vertices given its
value on already explored vertices. As we have seen in Proposition 2.7 in Section 2.2,
under certain geometric conditions the conditional distribution of ΨGn shows strong
similarities with the conditional distribution of the Gaussian free field ϕTd on Td. While

exploring CGn,hx , the exploration process will separate the vertices found in CGn,hx into a
union of rooted disjoint subtrees of Gn in which all vertices except for the root satisfy the
aforementioned geometric conditions. In this way we reduce the proof of (3.1) to a control
of the number of vertices contained in these union of subtrees (Proposition 3.2). As a
result from [ČTW11] shows (see also Lemma 3.3), the number of steps the exploration
process encounters a situation in which the geometric assumptions fail to be satisfied is
not too large. This controls the number of distinct subtrees created by the exploration
process because in each subtree there is exactly one vertex which does not satisfy the
conditions (its root). Since the other vertices of a subtree satisfy the geometric conditions,
we can employ the similarity between the conditional distribution of ΨGn and ϕTd to
couple the zero-average Gaussian free field on each distinct subtree separately with an
independent copy of the Gaussian free field ϕTd on Td (Lemma 3.4). This translates the
question about the number of vertices contained in the disjoint subtrees into the number
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of vertices contained in connected components of the level set of ϕTd (Corollary 3.5). A
result from [AČ19] (recalled in (1.14)) about exponential moments of the size of these
connected components then ultimately leads to the proof of Proposition 3.2 and hence
of (3.1).

We now describe the exploration process exploring CGn,hx for a fixed x ∈ Gn and to
facilitate the discussion we include a concrete algorithm implementing it (Algorithm 1).
The exploration process is a modified breadth-first-search that discovers the field ΨGn
on the graph step by step. It employs two queues (a primary and a secondary one) that
work in the usual first-in-first-out manner and store the vertices to be explored. The
exploration process starts by revealing ΨGn(x). The vertices where ΨGn has been revealed

are called explored and they can be either part of CGn,hx or not. If a vertex is explored and
is revealed to be part of CGn,hx , then its neighbours which are neither already explored nor
already in one of the two queues are added to the primary queue. To avoid ambiguity,
we suppose that the vertices of Gn are equipped with some ordering and that they are
added to the queue following this ordering. Vertices taken out of the primary queue are
first checked to be good vertices at the boundary of the so far explored vertices (recall
(2.29) and above it for the definition): if they are, the exploration process proceeds with
their exploration; if they are not, they are transferred to the secondary queue and their
exploration is postponed. The first vertex in the secondary queue is only taken out to
be explored if the primary queue is empty.

To formalise this exploration process we now give an algorithm implementing it
(see Algorithm 1 below). The algorithm constructs on some auxiliary probability space
(Ω,A,P) a family of random variables (ψ(z))z∈B such that (ψ(z))z∈B under P has the
same distribution as (ΨGn(z))z∈B under PGn . Here B ⊆ Gn is some (random) connected
set of vertices containing x. We use PQ, SQ and E to denote the evolving sets of vertices
in the primary queue, vertices in the secondary queue and explored vertices during the
run of the algorithm. Furthermore, we also keep track of the explored vertices z ∈ E
for which ψ(z) ≥ h using the set C ⊆ E. Additionally to the exploration, the algorithm
aggregates the vertices discovered to be in C into disjoint subtrees (Ty)y of Gn indexed by
bad vertices y ∈ Gn (meaning they were in SQ at some point of the algorithm). Moreover,
the algorithm stops for one of two reasons: either because both the primary and secondary
queue are empty, or because it already discovered that C has at least size Kh,κ ln(Nn)
for some Kh,κ to be specified later (below (3.22)).

We need some more notation for the algorithm. Let (ξz)z∈Gn be i.i.d. standard normal
random variables on the auxiliary probability space (Ω,A,P). For A ⊆ Gn non-empty
and u ∈ Gn we abbreviate by a(u, ψ,A) the right hand side of (2.16) where x and ΨGn
are replaced by u and ψ. In particular, a(u, ψ,A) is a random variable measurable with
respect to σ(ψ(w), w ∈ A). By b(u,A) we abbreviate the right hand side of (2.17) where x
is replaced by u. For A = ∅ and u ∈ Gn we define a(u, ψ, ∅) := 0 and b(u, ∅) := GGn(u, u).
By Lemma 2.6 and the fact that ψ is a Gaussian field, we have that

forA ⊆ Gn and u ∈ Gn the random variable a(u, ψ,A)+ξu·b(u,A)
1
2 under

P has the same distribution as ΨGn(u) conditional on σ(ΨGn(w), w ∈ A)
under PGn .

(3.2)

The algorithm is as follows:
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Algorithm 1

1: set PQ := ∅, SQ := {x}, E := ∅, C := ∅ and also Tw := ∅ for all w ∈ Gn
2: while secondary queue SQ is not empty do
3: take vertex y out of SQ
4: generate the random variable ψ(y) := a(y, ψ,E) + ξy · b(y,E)

1
2

5: add y to the set E of explored vertices
6: if ψ(y) ≥ h then
7: add y to the subtree Ty and to the set C
8: if |C| ≥ Kh,κ ln(Nn) then stop the algorithm
9: end if

10: add all neighbours of y which are neither already explored nor in any of the
two queues to the primary queue PQ

11: while primary queue PQ is not empty do
12: take vertex z out of PQ
13: if z is not a good vertex at the boundary of E, that is, z /∈ GE, then
14: add z to the secondary queue SQ
15: else
16: generate the random variable ψ(z) := a(z, ψ,E) + ξz · b(z,E)

1
2

17: add z to the set E of explored vertices
18: if ψ(z) ≥ h then
19: add z to the subtree Ty and to the set C
20: if |C| ≥ Kh,κ ln(Nn) then stop the algorithm
21: end if
22: add all neighbours of z which are neither already explored nor in

any of the two queues to the primary queue PQ
23: end if
24: end if
25: end while
26: end if
27: end while

Let Eend, Cend and Twend, w ∈ Gn, denote the sets E, C and Tw, w ∈ Gn, at the end of
the algorithm. By that moment we have constructed (ψ(z))z∈Eend

and (see (3.2))

(ψ(z))z∈Eend
under P has the same distribution as (ΨGn(z))z∈Eend

under PGn . (3.3)

By construction of the algorithm one has |Cend| ≤ Kh,κ ln(Nn) + 1 and so by (0.1) also

|Eend| ≤ d(Kh,κ ln(Nn) + 1). (3.4)

This is due to E ⊆ BGn(C, 1) with BGn(∅, 1) := {x} holding at any moment of the
algorithm since a vertex can only get explored (except for x) if at some point it was
added to a queue, meaning it was a neighbour of a vertex added to C.

Note that, whenever some y ∈ Gn is taken out of SQ on line 3 of the algorithm (a
bad vertex), one has PQ = ∅ at that moment by construction. Until the next bad vertex
is taken out of SQ, all vertices z ∈ Gn considered by the algorithm and which are found
to be good and in C will be part of Tyend. So if y1, . . . , ykend denote the successive vertices

that were taken out of SQ during the algorithm, then Cend =
⋃kend
i=1 Tyiend. In particular,

y1 = x and kend is the total number of bad vertices encountered by the algorithm.
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Furthermore, on the event that the algorithm terminates because both queues become
empty (and not because at some point |Cend| ≥ Kh,κ ln(Nn)), note that |Cend| has the

same distribution as |CGn,hx | under PGn by (3.3). Therefore P
[
|Cend| < Kh,κ ln(Nn)

]
=

PGn
[
|CGn,hx | < Kh,κ ln(Nn)

]
.

We want to distinguish the situation in which the field ψ produced by the algorithm
has anomalous values, meaning |ψ(z)| ≥ Mn for some z ∈ Eend and Mn > 0. We are
going to specify this value now. Note that for any κ > 0 there is cκ > 0 such that

PGn
[

sup
z∈Gn

|ΨGn(z)| ≥ cκ
√

ln(Nn)
]
≤ 2N−1−κ

n for all n ≥ 1. (3.5)

This can be shown by the same computations as in [RS13], equations (2.35)–(2.38),
replacing g(0) therein with supz∈Gn GGn(z, z), which is bounded by 3d−1

d−2 (see (1.23)).

Use also use PGn
[

supz∈Gn |ΨGn(z)| ≥ a
]
≤ 2PGn

[
supz∈Gn ΨGn(z) ≥ a

]
for (3.5). We set

Mn := cκ
√

ln(Nn).

So one has

PGn
[
|CGn,hx | ≥ Kh,κ ln(Nn)

]
= P

[
|Cend| ≥ Kh,κ ln(Nn)

]
≤ P

[
|Cend| ≥ Kh,κ ln(Nn) , sup

z∈Eend

|ψ(z)| < Mn

]
+ P

[
|ψ(z)| ≥Mn for some z ∈ Eend

]
(3.3)

≤
(3.5)

P
[ kend∑
i=1

|Tyiend| ≥ Kh,κ ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

]
+ 2N−1−κ

n .

Thus in order to show (3.1) and ultimately Theorem 3.1 we need to show

Proposition 3.2. Let h > h?. Then for all κ > 0 there exist ch,κ > 0 and Kh,κ > 0
such that for all n ≥ 1 and x ∈ Gn one has for the Algorithm 1 above

P
[ kend∑
i=1

|Tyiend| ≥ Kh,κ ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

]
≤ ch,κN−1−κ

n . (3.6)

The proof of Proposition 3.2 relies on the following two lemmas. The first one
(Lemma 3.3, already proven in [ČTW11]) bounds the number of bad vertices kend en-
countered by Algorithm 1, that is, the number of vertices of Gn that at some point during
the run of the algorithm were in the secondary queue SQ. The second one (Lemma 3.4)
constructs for each i = 1, . . . , kend a coupling of ψ on Tyiend with an independent copy of
ϕTd , showing that ψ on Tyiend can be approximated by ϕTd . This makes use of Proposi-
tion 2.7. Via Corollary 3.5 of Lemma 3.4 we then prove Proposition 3.2.

Lemma 3.3. There exists c1 > 0 such that for all n ≥ 1 and x ∈ Gn one has for the
above Algorithm 1 that kend ≤ c1Kh,κs

2
n =: kmax (recall that sn is given in (2.25)).

Proof. This follows from [ČTW11], Proposition 5.4. Although the algorithm employed
there does not exactly match our algorithm, the proof does not rely on a specific algorithm
(as explained in the proof of Proposition 5.4 in [ČTW11]). It is purely deterministic and
only uses the properties (0.1)–(0.3) of Gn.
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Lemma 3.4. Let h ∈ R and ε > 0. Consider Algorithm 1 and recall kmax from
Lemma 3.3. Then on the same auxiliary space (Ω,A,P) as ψ one can define centred
Gaussian fields φ1, . . . , φkmax on Td such that, conditionally on ψ(y1), . . . , ψ(ykend), the
following properties hold (see (1.11) for notation):

• for all n large enough and all i = 1, . . . , kend there exists a set Bi with (3.7)

Tyiend ⊆ B
i ⊆ BGn(Tyiend, 1) and an injection τ i : Bi → Td such that τ i(Tyiend)

is a connected subset of Td containing the root o ∈ Td and on the event

{supz∈Eend
|ψ(z)| < Mn} one has

∣∣ψ(z)− φi(τ i(z))
∣∣ ≤ ε for all z ∈ Bi

• φi has the same distribution as ϕTd under PTd
ψ(yi)

for all i = 1, . . . , kend, (3.8)

φi has the same distribution as ϕTd under PTd
Mn

for all i = kend + 1, . . . , kmax

• φ1, . . . , φkmax are independent. (3.9)

Proof. Let Y i
x for x ∈ Td \ {o} and 1 ≤ i ≤ kmax be a sequence of i.i.d. random

variables of distribution N (0, d
d−1) defined on the auxiliary probability space (Ω,A,P).

Let i ∈ {1, . . . , kend}. As explained below (3.4), the subtree Tyiend of Gn is constructed
between line 3 (when yi is taken out of SQ) and line 26 of the algorithm (after which the
next bad vertex yi+1 is taken out of SQ or the algorithm terminates because i = kend).
The injection τ i and the random field φi will be defined according to the behaviour of
the algorithm during this time.

On line 4 of the algorithm we generate ψ(yi). If ψ(yi) < h, then the algorithm
continues back on line 2 and Tyiend = ∅. In this case define recursively φi(o) := ψ(yi) and
φi(z) := 1

d−1φ
i(z)+Y i

x for z ∈ Td\{o}. Then (3.8) holds for φi by (1.9)–(1.11). Moreover

(3.7) is trivially satisfied since Tyiend = ∅ (set Bi := ∅). Otherwise we have ψ(yi) ≥ h
and yi is added to Tyi . If the algorithm terminates on line 8, then Tyiend = {yi}. In this
case set Bi := {yi} and τ i(yi) := o ∈ Td and again recursively define φi(o) := ψ(yi) and
φi(z) := 1

d−1φ
i(z) + Y i

x for z ∈ Td \ {o}. Then (3.8) holds for φi by (1.9)–(1.11) and also

(3.7) is satisfied since
∣∣ψ(yi)−φi(τ i(yi))

∣∣ = 0. If the algorithm does not terminate on line
8, then on line 10 we now add all neither explored nor already queuing neighbours of yi
to PQ (which before that was empty). Consider the while-loop on line 11. During this
while-loop, if z is taken out of PQ and z /∈ GE, then it is transferred to SQ and it will
not be part of Tyiend. Let z1, . . . , zm be the successive vertices taken out of PQ during the
while-loop which are in GE at the moment they are checked (on line 13). Possibly there
are no such vertices, so we might have {z1, . . . , zm} = ∅ and Tyiend = {yi}. In any case,
Tyiend = {yi} ∪ {z1, . . . , zm |ψ(zi) ≥ h} ⊆ {yi, z1, . . . , zm} ⊆ BGn(Tyiend, 1). The injection
τ i we are going to construct now, will map Bi := {yi, z1, . . . , zm} to Td. By definition
one has z1 = yi whereas for j = 2, . . . ,m one has zj = z for some z ∈ {yi, z1, . . . , zj−1}.
More precisely, zj is the unique neighbour of zj in E at the moment zj was added to PQ
(which happened on line 10 or line 22). There cannot be more than one since at a later
point zj ∈ GE and the set of explored vertices only grows. Since there are at most d− 1
not explored neighbours that can be added on line 10 or 22 (except if i = 1 when y1 = x
and on line 10 there are added exactly d neighbours), this shows that for z ∈ Bi there
are at most d− 1 elements w ∈ {z1, . . . , zm} such that w = z (exactly d elements if i = 1
and z = y1). Therefore, we can define τ i : Bi → Td inductively by τ i(yi) := o and such
that τ i restricted to {w ∈ {z1, . . . , zm} |w = z} is an injective map to STd(o, 1) for z = yi
and an injective map to STd(τ

i(z), 1) \ {τ i(z)} for z ∈ {z1, . . . , zm}. Note that τ i(Bi)
is a connected subset of Td containing the root o ∈ Td. By construction also τ i(Tyiend)
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is a connected subset of Td containing o ∈ Td because yi ∈ Tyiend with τ i(yi) = o and
Bi ⊆ BGn(Tyiend, 1). We now define φi on τ i(Bi) ⊆ Td and check the remaining properties
in (3.7) and (3.8) for this case.

Set φi(o) = φi(τ i(yi)) := ψ(yi) and for j = 1, . . . ,m define inductively φi(τ i(zj)) :=
1
d−1φ

i(τ i(zj)) + ξzj · ( d
d−1)

1
2 . Recall that here ξzj for j = 1, . . . ,m are the i.i.d. standard

Gaussian random variables used to define ψ(z1), . . . , ψ(zm) at the respective moments
on line 16 of the algorithm. Note that conditionally on ψ(yi), the field (φi(τ i(z)))z∈Bi

has the same distribution as (ϕTd(τ
i(z)))z∈Bi under PTd

ψ(yi)
. This follows by (1.9)–(1.11)

since τ i is defined in such a way that τ i(z) (in the notation of (2.26)) for z ∈ {z1, . . . , zm}
is equal to τ i(z) (in the notation above (1.2)). We extend φi to all w ∈ U := Td \ Bi

by recursively defining φi(w) := 1
d−1φ

i(w) + Y i
w. Then (3.8) holds for φi by (1.9)–(1.11).

We proceed to show the remaining claim of (3.7). Note that
∣∣ψ(yi) − φi(τ i(yi))

∣∣ =∣∣ψ(yi)− φi(o)
∣∣ =

∣∣ψ(yi)− ψ(yi)
∣∣ = 0 by definition. For j = 1, . . . ,m one has∣∣ψ(zj)− φi(τ i(zj))

∣∣ =
∣∣a(zj , ψ,E) + ξzj · b(zj ,E)

1
2 − 1

d−1φ
i(τ i(zj))− ξzj · ( d

d−1)
1
2

∣∣
≤
∣∣a(zj , ψ,E)− 1

d−1ψ(zj)
∣∣+ |ξzj | ·

∣∣b(zj ,E)
1
2 − ( d

d−1)
1
2

∣∣+ 1
d−1

∣∣ψ(zj)− φi(τ i(zj))
∣∣.

To the first two differences on the right hand side we can apply (2.30) and (2.31) (on
the event {supz∈Eend

|ψ(z)| < Mn}) since at any moment of the algorithm |E| ≤ |Eend| ≤
ch,κ ln(Nn) by (3.4). We also use the inequality |

√
s −
√
t| = |s−t|√

s+
√
t
≤ 1√

t
|s − t|. So by

Proposition 2.7 (for b := ch,κ and b′ := cκ) we find c′h,κ > 0 such that for all j = 1, . . . ,m∣∣ψ(zj)− φi(τ i(zj))
∣∣ ≤ (1 + |ξzj |)c′h,κ(ln(Nn))−2 + 1

d−1

∣∣ψ(zj)− φi(τ i(zj))
∣∣. (3.10)

Now note that on the event {supz∈Eend
|ψ(z)| < Mn} one has, again by using Proposi-

tion 2.7 for the same b := ch,κ and b′ := cκ, that for j = 1, . . . ,m

Mn > |ψ(zj)| =
∣∣a(zj , ψ,E) + ξzj · b(zj ,E)

1
2

∣∣ ≥ |ξzj | · |b(zj ,E)
1
2 | − |a(zj , ψ,E)|

(2.30)

≥
(2.31)

|ξzj | ·
(

d
d−1 − c

′
h,κ(ln(Nn))−3

) 1
2 −

(
1
d−1ψ(zj) + c′h,κ(ln(Nn))−2

)
≥ |ξzj | −Mn,

where the last inequality holds if n is large enough. Combine this with (3.10) to obtain
that for n large enough, j = 1, . . . ,m and on the event {supz∈Eend

|ψ(z)| < Mn}∣∣ψ(zj)− φi(τ i(zj))
∣∣ ≤ (1 + 2Mn)c′h,κ(ln(Nn))−2 + 1

d−1

∣∣ψ(zj)− φi(τ i(zj))
∣∣. (3.11)

This is the main ingredient to show the remainder of (3.7). By induction we will now
show that for n large enough and on the event {supz∈Eend

|ψ(z)| < Mn} one has∣∣ψ(zj)− φi(τ i(zj))
∣∣ ≤ j(1 + 2Mn)c′h,κ(ln(Nn))−2 for j = 1, . . . ,m. (3.12)

For j = 1 one has z1 = yi and the last summand on the right hand side of (3.11) van-
ishes by definition of φi(τ i(yi)). Assume the statement holds for 1 ≤ j < m. Then
either zj+1 = yi and therefore the last summand on the right hand side of (3.11) van-
ishes again, or zj+1 = zk for some k ∈ {1, . . . , j} and the induction hypothesis implies∣∣ψ(zj+1) − φi(τ i(zj+1))

∣∣ ≤ k(1 + 2Mn)c′h,κ(ln(Nn))−2 ≤ j(1 + 2Mn)c′h,κ(ln(Nn))−2. In

any case by (3.11),
∣∣ψ(zj+1) − φi(τ i(zj+1))

∣∣ ≤ (1 + 2Mn)c′h,κ(ln(Nn))−2 + 1
d−1j(1 +

2Mn)c′h,κ(ln(Nn))−2 ≤ (j + 1)(1 + 2Mn)c′h,κ(ln(Nn))−2. This concludes the induction.
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Let ε > 0. Since {z1, . . . , zm} ⊆ Eend, one has m ≤ |Eend| ≤ ch,κ ln(Nn) by (3.4).
Moreover, Mn = cκ

√
ln(Nn). So by (3.12) we obtain that for n large enough and

on the event {supz∈Eend
|ψ(z)| < Mn} one has

∣∣ψ(zj) − φi(τ i(zj))
∣∣ ≤ ch,κ ln(Nn)(1 +

2cκ
√

ln(Nn))c′h,κ(ln(Nn))−2 ≤ ε for j = 1, . . . ,m. We deduce (3.7).

It remains to show (3.8) for i = kend +1, . . . , kmax and (3.9). For i = kend +1, . . . , kmax

define recursively φi(o) := Mn and φi(z) := 1
d−1φ

i(z) + Y i
x for z ∈ Td \ {o}, so that (3.8)

holds for φi by (1.9)–(1.11). Finally, note that for each i = 1, . . . , kmax the field φi

is constructed using (Y i
x)x∈Td\{o} and possibly the i.i.d. random variables (ξz)z∈Bi and

Ψ(yi). Since for j = 1, . . . , kmax with j 6= i one has that (Y i
x)x∈Td\{o} is independent of

(Y j
x )x∈Td\{o} and Bi ∩Bj = ∅, this shows (3.9) conditionally on Ψ(y1), . . . ,Ψ(ykend) (all

random variables are Gaussian). The proof is complete.

Corollary 3.5. Let h ∈ R and ε > 0. Consider Algorithm 1 and recall kmax from
Lemma 3.3. Then on the same auxiliary space (Ω,A,P) as ψ one can define random
variables Z1, . . . , Zkmax such that, conditionally on ψ(y1), . . . , ψ(ykend), the following prop-
erties hold (see (1.11) and below (0.7) for notation):

• for all n large enough and all i = 1, . . . , kend one has Zi ≥ |Tyiend|
on the event {supz∈Eend

|ψ(z)| < Mn} (3.13)

• Zi is distributed as |CTd,h−εo | under PTd
ψ(yi)

for all i = 1, . . . , kend,

Zi is distributed as |CTd,h−εo | under PTd
Mn

for all i = kend + 1, . . . , kmax (3.14)

• Z1, . . . , Zkmax are independent. (3.15)

Proof. We consider Lemma 3.4 and define Zi as the size of the connected component
of {w ∈ Td |φi(w) ≥ h − ε} containing the root o ∈ Td. Then (3.14) and (3.15) follow
from (3.8) and (3.9). We turn to (3.13). Note that for i = 1, . . . , kend and z ∈ Tyiend one
has

∣∣ψ(z) − φi(τ i(z))
∣∣ ≤ ε by (3.7) under the assumptions of (3.13). This shows that

φi(τ i(z)) ≥ h − ε since ψ(z) ≥ h due to z ∈ Tyiend. Hence τ i(Tyiend) ⊆ {w ∈ Td |φi(w) ≥
h − ε}. As τ i(Tyiend) is also a connected subset of Td containing o ∈ Td, we conclude
|τ i(Tyiend)| ≤ Zi by definition of Zi. The proof of (3.13) follows since τ i is an injection
and hence |τ i(Tyiend)| = |Tyiend|.

We are now ready to show Proposition 3.2, which as explained above its statement
implies Theorem 3.1 and thereby concludes Section 3.

Proof of Proposition 3.2. Let h > h? and κ > 0. Choose ε > 0 small enough such that
h− ε > h?. Moreover, let δh−ε > 0 be such that gh−ε defined in (1.14) has the properties
explained therein. Let K = Kh,κ > 0 to be fixed later (below (3.22)). By conditioning
on σ(ψ(y1), . . . , ψ(ykend)) and then applying (3.13), one has for n large enough

P
[ kend∑
i=1

|Tyiend| ≥ K ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

]
≤ E

[
P
[ kmax∑
i=1

Zi ≥ K ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

∣∣∣σ(ψ(y1), . . . , ψ(ykend))
]]

(3.16)

≤ E
[
1{|ψ(yi)|<Mn for all i = 1, . . . , kend}P

[ kmax∑
i=1

Zi ≥ K ln(Nn)
∣∣∣σ(ψ(y1), . . . , ψ(ykend))

]]
.
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Since {
∑kmax

i=1 Zi ≥ K ln(Nn)} = {
∏kmax
i=1 (1+δh−ε)

Zi ≥ (1+δh−ε)
K ln(Nn)}, the conditional

Markov inequality leads to P-almost surely

P
[ kmax∑
i=1

Zi ≥ K ln(Nn)
∣∣∣σ(ψ(y1), . . . , ψ(ykend))

]
≤ (1 + δh−ε)

−K ln(Nn)E
[ kmax∏
i=1

(1 + δh−ε)
Zi
∣∣∣σ(ψ(y1), . . . , ψ(ykend))

]
(3.15)

=
(3.14)

(1 + δh−ε)
−K ln(Nn)

kend∏
i=1

ETd
ψ(yi)

[
(1 + δh−ε)

|CTd,h−εo |
]
·
kmax∏

i=kend+1

ETd
Mn

[
(1 + δh−ε)

|CTd,h−εo |
]
.

(3.17)

For i = 1, . . . , kend one has ETd
ψ(yi)

[
(1 + δh−ε)

|CTd,h−εo |] ≤ ETd
Mn

[
(1 + δh−ε)

|CTd,h−εo |] on the

event {supz∈Eend
|ψ(z)| < Mn} by (1.9)–(1.11). This combined with (3.16) and (3.17)

shows that for n large enough

P
[ kend∑
i=1

|Tyiend| ≥ K ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

]
≤ (1 + δh−ε)

−K ln(Nn)ETd
Mn

[
(1 + δh−ε)

|CTd,h−εo |
]kmax

.

(3.18)

Let us write STd(o, 1) =: {x1, . . . , xd} so that Td = {o} ∪
⋃d
i=1 Uxi (see (1.2)). Note that

for n large enough one has Mn ≥ h. Therefore [AČ19], equation (1.11), implies that

ETd
Mn

[
(1 + δh−ε)

|CTd,h−εo |
]

= (1 + δh−ε)ETd
Mn

[ d∏
i=1

(1 + δh−ε)
|CTd,h−εo ∩Uxi |

]
= (1 + δh−ε)EY

[
ETd
Mn
d−1

+Y

[
(1 + δh−ε)

|CTd,h−εo ∩T+
d |
]]d

,

(3.19)

where Y ∼ N (0, d
d−1) and the expectation EY is taken with respect to Y . The inner

expectation on the right hand side of (3.19) is equal to gh−ε(
Mn
d−1 + Y ), see (1.14). Thus

(3.19) shows that for n large enough

ETd
Mn

[
(1 + δh−ε)

|CTd,h−εo |
]
≤
(

(1 + δh−ε)EY
[
gh−ε(

Mn
d−1 + Y )

]d−1) d
d−1

. (3.20)

For n large enough (so Mn ≥ h) one has that (1+δh−ε)EY
[
gh−ε(

Mn
d−1 +Y )

]d−1
= gh−ε(Mn)

by (1.14). Hence (3.20) and (3.18) imply that for n large enough

P
[ kend∑
i=1

|Tyiend| ≥ K ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

]
≤ (1 + δh−ε)

−K ln(Nn)
(
gh−ε(Mn)

) d
d−1

kmax .

(3.21)
By (1.14) we know that there exist ch > 0 and c′h > 0 such that for n large enough one

has gh−ε(Mn) ≤ ch exp(c′hM
3/2
n ) = ch exp

(
c′h(cκ

√
ln(Nn))3/2

)
≤ ch exp(ch,κ(ln(Nn))3/4)

for some ch,κ > 0. Now recall that kmax = c1Ks
2
n. Therefore due to (2.25), we can find

ch, ch,κ > 0 for which
(
gh−ε(Mn)

) d
d−1

kmax ≤ ch exp(ch,κK(ln(Nn))7/8). So for some ch > 0
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and ch,κ > 0 we obtain (1 + δh−ε)
−K ln(Nn)

(
gh−ε(Mn)

) d
d−1

kmax ≤ ch exp
(
− ch,κK ln(Nn)

)
for all n large enough. Hence by (3.21), for n ≥ 1,

P
[ kend∑
i=1

|Tyiend| ≥ K ln(Nn) , sup
z∈Eend

|ψ(z)| < Mn

]
≤ ch,κN

−c′h,κK
n . (3.22)

Take K = Kh,κ > 0 large enough such that ch,κN
−c′h,κKh,κ
n ≤ N−1−κ

n . Then by (3.22) we
can find ch,κ > 0 large enough such that (3.6) holds for all n ≥ 1. This concludes the
proof of Proposition 3.2 and ultimately of Theorem 3.1.

4 Mesoscopic components in the supercritical phase

The last section of this article concerns the proof of (0.9) in the form of Theorem 4.1
below, that is, the existence of a supercritical phase (complementary to the subcritical
situation in Section 3) in which the connected components of the levels sets of ΨGn
of at least mesoscopic size contain a non-negligible fraction of the vertices of Gn. By
mesoscopic size we mean that the number of vertices contained is a fractional power of
the total number of vertices of Gn. To be more specific, we recall the critical value h?
(see (0.7)) and the notation CGn,hx for the connected component of the level set of ΨGn
above level h ∈ R containing x ∈ Gn (see beginning of Section 3). Similarly, we denote

by CTd,hx for x ∈ Td and h ∈ R the connected component of the level set of ϕTd above
level h containing x. We also remind of the function η+ given in (1.13). The main result
of this section is the following

Theorem 4.1. Let h < h?. Then there exist ch > 0 (see beginning of the proof of
Lemma 4.4) such that

lim
n→∞

PGn
[ ∑
x∈Gn

1{
|CGn,hx |≥Nch

n

} ≥ η+(h)

2
Nn

]
= 1. (4.1)

As explained in the introduction below (0.9), it remains open whether in the super-
critical phase h < h?, as the size of the graphs tends to infinity, one actually observes
the emergence of a (unique) giant connected component of the level set above level h
(see also Remark 4.7).

We now give the idea of the proof of Theorem 4.1. Roughly, the strategy is to control
the expectation and variance of the sum in (4.1) and then to deduce Theorem 4.1 via a
second moment inequality. Now recall that by (0.2) all vertices of Gn have an almost tree-
like neighbourhood. One can also show that only a negligible fraction does not have an
exactly tree-like neighbourhood of smaller size (Remark 4.3). So essentially we can con-
sider only vertices with a tree-like neighbourhood in the sum in (4.1). Moreover, instead

of counting the vertices x ∈ Gn with
∣∣CGn,hx

∣∣ ≥ Nγ
n for some fixed γ > 0 (i.e. contained in

a mesoscopic connected component of E≥hΨGn
), it will be easier to only consider the vertices

x ∈ Gn for which the connected component CGn,hx is already mesoscopic when intersected
with the tree-like neighbourhood of x (see (4.3)). We show that the expected number of
such vertices grows linearly in the total number of vertices of the graph Gn as n tends to
infinity (Lemma 4.4). A variance computation then implies that the number of vertices
contained in mesoscopic components concentrates around its expectation as n goes to
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infinity (Lemma 4.6). The computations concerning the expectation and variance rely
on the local approximation of ΨGn by ϕTd around vertices with tree-like neighbourhood
that we developed in Section 2.1, which allows us to reduce the computations about ΨGn
to computations about ϕTd and apply results from Section 1.1 on ϕTd . With a second
moment inequality Theorem 4.1 promptly follows. The section ends with open questions
in the supercritical regime h < h? (Remark 4.7).

It will be convenient to introduce some additional notation. For x ∈ Gn, n ≥ 1 and
R ≥ 0 we set S+

Gn(x,R) := πn,x
(
S+
Td(o, R)

)
(see below (1.2) for the notation). We also

define

rn := max{1, b c018 logd−1(Nn)c} and Rn := max{1, b c06 logd−1(Nn)c}. (4.2)

For n ≥ 1, h ∈ R and γ > 0 we define the events

AGn,h,γx :=
{∣∣CGn,hx ∩ S+

Gn(x, rn)
∣∣ ≥ Nγ

n

}
for x ∈ Gn,

ATd,h,γ
x :=

{∣∣CTd,hx ∩ S+
Td(x, rn)

∣∣ ≥ Nγ
n

}
for x ∈ Td.

(4.3)

Note that the dependency on n in the definition of ATd,h,γ
x in (4.3) does not appear in

the notation. Finally, we define (with c0 as in (1.21))

γh :=
c0

20
logd−1(λh) for h ∈ R. (4.4)

By (1.12) note that γh is decreasing in h and γh > 0 for h < h?.

In the remainder of this section we will apply several times Theorem 2.1 for r = rn
and R = Rn given in (4.2). Note that, for n large enough, 1 ≤ rn < Rn ≤ c0

6 logd−1(Nn)
as required by Theorem 2.1 and furthermore rn ≤ c0

18 logd−1(Nn) and Rn − 2rn ≥(
c0
6 logd−1(Nn) − 1

)
− 2 c018 logd−1(Nn) =

c0 logd−1(Nn)

18 − 1. Therefore Theorem 2.1 di-
rectly implies (with the notation from the beginning of Section 2.1)

Lemma 4.2 (Corollary of Theorem 2.1). There exist c, c′ > 0 such that for all n ≥ 1
and x, x′ ∈ Gn with tx(BGn(x, 2Rn)) = 0, tx(BGn(x′, 2Rn)) = 0 and BGn(x, 2Rn) ∩
BGn(x′, 2Rn) = ∅, there is a coupling Qn of ΨGn and ϕTd satisfying for all ε > 0

Qn

[
sup

y∈BGn (x,rn)∪BGn (x′,rn)

∣∣ΨGn(y)− ϕTd(ρx,x′,2Rn(y))
∣∣ > ε

]
≤ c exp

(
− c′ε2N

c0
18
n

)
. (4.5)

In particular, there exist c, c′ > 0 such that for all n ≥ 1, x ∈ Gn with tx(BGn(x, 2Rn)) = 0,
there is a coupling Qn of ΨGn and ϕTd such that for all ε > 0 the same bound as in (4.5)
applies to Qn

[
supy∈BGn (x,rn)

∣∣ΨGn(y)− ϕTd(ρx,2Rn(y))
∣∣ > ε

]
.

As the following remark explains, the assumptions on the vertices in the statement
of Lemma 4.2 are typical.

Remark 4.3. Recall Rn from (4.2). For n large enough the number of vertices x ∈ Gn
that do not satisfy tx(BGn(x, 2Rn)) = 0 is negligible when compared to the total number
of vertices of Gn. Indeed, for n large enough one has 2Rn ≤ bα logd−1(Nn)c by (1.21)
and (1.1) and thus tx(BGn(x, 2Rn)) ≤ 1 for all x ∈ Gn by assumption (0.2). Now by
[ČTW11], Lemma 6.1, we have for n large enough

∣∣{x ∈ Gn | tx(BGn(x, 2Rn)) = 1}
∣∣ ≤ (d− 1)−(bα logd−1(Nn)c−2Rn)Nn

(∗)
≤ (d− 1)N

1− 2α
3

n ,
(4.6)
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where in (∗) we use that bα logd−1(Nn)c − 2Rn ≥ α logd−1(Nn) − 1 − c0
3 logd−1(Nn) ≥

2α
3 logd−1(Nn) − 1 (because c0 ≤ α by (1.21) and (1.1)). Moreover, for n large enough,

also the number of pairs of vertices x, x′ ∈ Gn for which BGn(x, 2Rn) ∩BGn(x′, 2Rn) 6= ∅
is negligible when compared to the total number N2

n of pairs of vertices of Gn. Indeed,
for n large enough and for such x, x′ ∈ Gn one has x′ ∈ BGn(x, 4Rn) and hence∣∣{x, x′ ∈ Gn |BGn(x, 2Rn) ∩BGn(x′, 2Rn) 6= ∅}

∣∣ ≤ ∑
x∈Gn

|BGn(x, 4Rn)|

(0.1)

≤ Nn|BTd(o, 4Rn)| = Nn
d(d− 1)4Rn − 2

d− 2

(4.2)

≤ Nn d(d− 1)
2c0
3

logd−1(Nn) ≤ dN
5
3
n ,

(4.7)

where the last inequality follows because c0 ≤ 1 (see (1.21)).

We are now ready to proceed with the expectation and variance computation an-
nounced after the statement of Theorem 4.1.

Lemma 4.4. Let h < h?. There exists ch > 0 such that for all 0 < ε < h?−h
2 and ζ > 0

one has for n large enough

PGn
[
AGn,h,chx

]
≥ η+(h+ ε)− ζ for x ∈ Gn with tx(BGn(x, 2Rn)) = 0. (4.8)

As a consequence, one has

lim inf
n→∞

1

Nn
EGn

[ ∑
x∈Gn

1
A
Gn,h,ch
x

]
≥ η+(h) > 0. (4.9)

Proof. Let h < h? and take δ := h?−h
2 > 0 so that h + δ < h?. Let ε < δ. Set also

ch := γh+δ. For x ∈ Gn as in the statement of (4.8) we can apply Lemma 4.2 and obtain
that for n ≥ 1 one has (recall that ρx,2Rn is a graph isomorphism from BGn(x, 2Rn) to
BTd(o, 2Rn), see beginning of Section 2.1)

PGn
[
AGn,h,chx

]
≥ Qn

[
A
Gn,h,γh+δ
x , sup

y∈BGn (x,rn)

∣∣ΨGn(y)− ϕTd(ρx,2Rn(y))
∣∣ ≤ ε]

(4.3)

≥ Qn

[
A

Td,h+ε,γh+δ
o , sup

y∈BGn (x,rn)

∣∣ΨGn(y)− ϕTd(ρx,2Rn(y))
∣∣ ≤ ε]

≥ PTd
[
A

Td,h+ε,γh+δ
o

]
− c exp

(
− c′ε2N

c0
18
n

)
.

(4.10)

Note that since 0 < ε < δ one has γh+δ < γh+ε and hence

lim inf
n→∞

PTd
[
A

Td,h+ε,γh+δ
o

]
≥ lim inf

n→∞
PTd
[
A

Td,h+ε,γh+ε
o

]
(4.3)
=

(4.4)
lim inf
n→∞

PTd
[∣∣CTd,h+ε

o ∩ S+
Td(o, rn)

∣∣ ≥ λ c020 logd−1(Nn)

h+ε

]
(∗)
≥ lim inf

n→∞
PTd
[∣∣CTd,h+ε

o ∩ S+
Td(o, rn)

∣∣ ≥ λrnh+ε

r2
n

]
(1.15)

= η+(h+ ε),

(4.11)

where in (∗) we use that λh+ε > 1 (see (1.12)) and the definition of rn (see (4.2)). By
combining (4.10) and (4.11) we find (4.8). For (4.9) we only need to notice that, for

n large enough,
∣∣{x ∈ Gn | tx(BGn(x, 2Rn)) = 0}

∣∣ ≥ Nn − (d − 1)N
1− 2α

3
n by (4.6). So

(4.9) follows from (4.8) by summing only over x ∈ Gn with tx(BGn(x, 2Rn)) = 0 and
applying (1.13).
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As a next step we want to show that
∑

x∈Gn 1AGn,h,chx
for h < h? and the ch > 0 from

Lemma 4.4 concentrates around its expectation. A variance computation will be enough.
The main ingredient is contained in the next lemma.

Lemma 4.5. Let h < h?. There exist c, c′ > 0 such that for all n ≥ 1, x, x′ ∈ Gn with
tx(BGn(x, 2Rn)) = 0, tx(BGn(x′, 2Rn)) = 0 and BGn(x, 2Rn)∩BGn(x′, 2Rn) = ∅ one has
for all γ > 0 and ε > 0

PGn
[
AGn,h,γx , AGn,h,γx′

]
≤ PTd

[
ATd,h−ε,γ

o

]2
+ c exp

(
− c′ε2N

c0
18
n

)
. (4.12)

Proof. Let us abbreviate V := BGn(x, rn) ∪BGn(x′, rn). For x, x′ ∈ Gn as in the assump-
tions we can apply Lemma 4.2 and obtain that for all n ≥ 1, γ > 0 and ε > 0 one has
(recall the notation ρx,x′,2Rn and zx,x′ from the beginning of Section 2.1)

PGn
[
AGn,h,γx , AGn,h,γx′

]
(4.5)

≤ Qn

[
AGn,h,γx , AGn,h,γx′ , sup

y∈V

∣∣ΨGn(y)− ϕTd(ρx,x′,2Rn(y))
∣∣ ≤ ε

2

]
+ c exp

(
− c′ε2N

c0
18
n

)
≤ PTd

[
A

Td,h− ε2 ,γ
o , A

Td,h− ε2 ,γ
zx,x′

]
+ c exp

(
− c′ε2N

c0
18
n

)
. (4.13)

To further bound the probability on the right hand side of (4.13) we apply the decoupling
inequality [PR15], Corollary 1.3, with

δ :=
ε

2
, K1 := BTd(o, rn), K2 := BTd(zx,x′ , rn) and f1, f2 : RTd → [0, 1] such that

f1

(
(ϕTd(x))x∈Td

)
= 1

A
Td,h−

ε
2 ,γ

o

and f2

(
(ϕTd(x))x∈Td

)
= 1

A
Td,h−

ε
2 ,γ

zx,x′

(the decoupling inequality [PR15], Corollary 1.3, is stated for the Gaussian free field on
Zd but its proof directly applies also for the Gaussian free field ϕTd on Td). We obtain
that for all n ≥ 1, γ > 0 and ε > 0

PTd
[
A

Td,h− ε2 ,γ
o , A

Td,h− ε2 ,γ
zx,x′

]
(4.14)

≤ PTd
[
A

Td,h− ε2 ,γ
o

]
PTd
[
ATd,h−ε,γ
zx,x′

]
+ 2PTd

[
sup
y∈K2

∣∣∣ETd
y

[
ϕTd(XHK1

)1{HK1
<∞}

]∣∣∣ > ε

4

]
.

Note that, since we are on a tree and K1 and K2 are two disjoint connected sets, there is
a unique pair of vertices z1 ∈ K1, z2 ∈ K2 with dTd(K1,K2) := infz∈K1,z′∈K2 dTd(z, z

′) =
dTd(z1, z2). Moreover, on the event {HK1 <∞} one PTd

y -almost surely has ϕTd(XHK1
) =

ϕTd(z1) for y ∈ K2. Therefore,

PTd
[

sup
y∈K2

∣∣∣ETd
y

[
ϕTd(XHK1

)1{HK1
<∞}

]∣∣∣ > ε

4

]
= PTd

[
sup
y∈K2

∣∣∣PTd
y

[
Hz1 <∞

]
ϕTd(z1)

∣∣∣ > ε

4

]
≤ PTd

[
|ϕTd(z1)| > ε

4
PTd
z2

[
Hz1 <∞

]−1
] (∗)
≤ 2 exp

(
− (ε/4)2

2PTd
z2

[
Hz1 <∞

]2
gTd(o, o)

)
(∗∗)
≤

(1.6)
2 exp

(
− c ε2(d− 1)2dTd (z1,z2)

)
, (4.15)

where in (∗) we use the exponential Markov inequality for the centred Gaussian random
variable ϕTd(z1) and in (∗∗) we use that PTd

z2

[
Hz1 <∞

]
= ( 1

d−1)dTd (z1,z2) (see e.g. [Woe00],
proof of Lemma 1.24). Since K1 ⊆ BTd(o, 2Rn), K2 ⊆ BTd(zx,x′ , 2Rn) and BTd(o, 2Rn)∩
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BTd(zx,x′ , 2Rn) = ∅ by assumption, one has the estimate dTd(z1, z2) = dTd(K1,K2) >

2(2Rn−rn) ≥ 5c0
9 logd−1(Nn)−4 for n large enough. Hence exp

(
−c ε2(d−1)2dTd (z1,z2)

)
≤

c exp
(
− c′ε2N

10c0
9

n

)
. Therefore we can combine (4.13), (4.14) and (4.15) to obtain that

for all n ≥ 1, γ > 0 and ε > 0 (using also the symmetry of Td)

PGn
[
AGn,h,γx , AGn,h,γx′

]
≤ PTd

[
A

Td,h− ε2 ,γ
o

]
PTd
[
ATd,h−ε,γ

o

]
+ c exp

(
− c′ε2N

c0
18
n

)
.

This concludes the proof of (4.12) since by (4.3) it holds A
Td,h− ε2 ,γ
o ⊆ ATd,h−ε,γ

o .

We are now ready to for the variance computation. This is the last ingredient for the
proof of Theorem 4.1.

Lemma 4.6. Let h < h?. Then for the ch > 0 from Lemma 4.4 one has

lim
n→∞

1

N2
n

VarPGn
( ∑
x∈Gn

1
A
Gn,h,ch
x

)
= 0. (4.16)

Proof. By expanding the variance one finds that for all γ > 0

VarPGn
( ∑
x∈Gn

1
AGn,h,γx

)
=

∑
x,x′∈Gn

(
PGn

[
AGn,h,γx , AGn,h,γx′

]
− PGn

[
AGn,h,γx

]
PGn

[
AGn,h,γx′

])
=

∑
x,x′∈Gn

PGn
[
AGn,h,γx , AGn,h,γx′

]
− EGn

[ ∑
x∈Gn

1
AGn,h,γx

]2

. (4.17)

We define W ⊆ Gn×Gn to be the set of pairs (x, x′) ∈ Gn×Gn with tx(BGn(x, 2Rn)) = 0,
tx(BGn(x′, 2Rn)) = 0 and BGn(x, 2Rn) ∩ BGn(x′, 2Rn) = ∅. For x, x′ ∈ Gn such that
(x, x′) /∈W we can bound the probability on the right hand side of (4.17) by one. This

will be good enough since for n large enough |(Gn×Gn)\W | ≤ 2Nn ·(d−1)N
1− 2α

3
n +dN

5
3
n ≤

dNn

(
2N

1− 2α
3

n + N
2
3
n

)
by (4.6) and (4.7). For x, x′ ∈ Gn such that (x, x′) ∈ W we use

(4.12) instead. There are at most N2
n such pairs. Thus we obtain for all n ≥ 1, γ > 0

and ε > 0

1

N2
n

VarPGn
( ∑
x∈Gn

1
AGn,h,γx

)
(4.18)

≤ PTd
[
ATd,h−ε,γ

o

]2
+ c exp

(
− c′ε2N

c0
18
n

)
+ d
(
2N
− 2α

3
n +N

− 1
3

n

)
− 1

N2
n

EGn
[ ∑
x∈Gn

1
AGn,h,γx

]2

.

Now we apply (4.18) to γ := ch > 0 for the ch from Lemma 4.4 and deduce that for all
0 < ε < h?−h

2

lim sup
n→∞

1

N2
n

VarPGn
( ∑
x∈Gn

1
A
Gn,h,ch
x

)
(4.18)

≤ lim sup
n→∞

PTd
[
ATd,h−ε,ch

o

]2 − lim inf
n→∞

1

N2
n

EGn
[ ∑
x∈Gn

1
A
Gn,h,ch
x

]2

(1.13)

≤
(4.9)

η+(h− ε)2 − η+(h)2.

The statement follows by letting ε tend to zero and applying (1.13).
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Proof of Theorem 4.1. We will show that the probability of the complementary event
tends to zero. For n ≥ 1 let us define W≥hn :=

∑
x∈Gn 1AGn,h,chx

with ch > 0 as in

Lemma 4.4. Then we can estimate

PGn
[ ∑
x∈Gn

1{
|CGn,hx |≥Nch

n

} < η+(h)

2
Nn

]
≤ PGn

[
W≥hn <

η+(h)

2
Nn

]
= PGn

[ 1

Nn
EGn [W≥hn ]− 1

Nn
W≥hn >

1

Nn
EGn [W≥hn ]− η+(h)

2

]
and therefore

lim sup
n→∞

PGn
[ ∑
x∈Gn

1{
|CGn,hx |≥Nch

n

} < η+(h)

2
Nn

]
(4.9)

≤ lim sup
n→∞

PGn
[ 1

Nn
EGn [W≥hn ]− 1

Nn
W≥hn >

η+(h)

2

]
(∗)
≤ lim sup

n→∞

4

η+(h)2
VarPGn

( 1

Nn
W≥hn

)
(4.16)

= 0,

where in (∗) we use Chebyshev’s inequality. This concludes the proof of Theorem 4.1.

Remark 4.7. It remains open whether in the supercritical phase h < h?, with high
probability for large n, there actually is a macroscopic (giant) connected component of
the level set above level h (i.e. containing a number of vertices comparable to Gn), and
whether this giant component is unique (meaning the size of the second-largest connected
component is negligible compared to Gn). For other probabilistic models on essentially
the same class of graphs this has been shown. One example is the emergence of a unique
giant connected component for Bernoulli bond percolation on d-regular expanders of large
girth (see [ABS04] and also [KLS18]). A second example is the emergence of a unique
giant connected component in the vacant set of simple random walk on the same graphs
(Gn)n≥1 as considered here (see [ČTW11]). As briefly mentioned in the introduction below
(0.9), such results are typically obtained by a sprinkling argument out of an intermediary
result like Theorem 4.1. In our setting, the zero-average property of ΨGn (see below
(1.18)) prevents us from easily implementing such a strategy. In particular, due to the
zero-average property, the field ΨGn neither satisfies an FKG-inequality nor does it possess
the domain Markov property of the Gaussian free field ϕTd (compare (1.20) with (1.8)).
In contrast, the sprinkling argument in [DR15] for constructing an infinite connected
component for the Gaussian free field on Zd for high-dimension d crucially relies on the
domain Markov property of the Gaussian free field on Zd for d ≥ 3.
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