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Abstract. For the Gaussian free field on a (d + 1)-regular tree with d ≥ 2,
we study the percolative properties of its level sets in the critical and the near-
critical regime. In particular, we show the continuity of the percolation probabil-
ity, derive an exact asymptotic tail estimate for the cardinality of the connected
component of the critical level set, and describe the asymptotic behaviour of the
percolation probability in the near-critical regime.

1. Introduction

In this paper we study the level-set percolation for the discrete Gaussian free
field on regular trees, with focus on its properties in the critical and the near-
critical regime. Our results include the continuity of the percolation function, an
exact asymptotic tail estimate for the cardinality of the connected component of
the critical level set, and describe the asymptotic behaviour of the percolation
probability in the near-critical case.

The level-set percolation of the Gaussian free field, in particular on Zd, is one of
the most important and studied percolation models with long range dependencies,
with first studies dating back to 1980s, [MS83, LS86, BLM87]. In the past decade,
a new wave of results on this model was initiated by [RS13], where it was shown
that, on Zd, this model exhibits a non-trivial percolation phase transition at a
critical level h∗ = h∗(d) in any dimension d ≥ 3. In the subsequent papers, see
for instance [RS13, DRS14, PR15, DPR18, Szn19, CN20, GRS22, PS22], the sub-
and supercritical phases of the model were understood thoroughly, often making
use of additional natural critical points in order to work in a strongly sub-/super-
critical regime. In the remarkable paper [DGRS20], it was then shown that all
those critical points agree with h∗, that is the percolation phase transition is sharp
(for a recent, simpler, and more general proof of the sharpness see [Mui22]).

Compared to the sub- and supercritical regime, the critical and near-critical
regimes are much less understood. On Zd, the situation is to some extend similar
to the Bernoulli percolation: it is not known whether the percolation probability
is continuous at h∗, and the existence of various critical exponents is only con-
jectured. Only very recently, [Mui22] provided a first (conjecturally not-optimal)
upper bound on the critical exponent β involved in near-critical asymptotics of
the percolation probability.
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Incidentally, the critical behaviour is much better understood on the related
model of Gaussian free field on the metric graph of Zd, where the continuity of
the percolation function is known [DW20, DPR22], and various critical exponents
were computed in [DPR21].

Here, we study the critical behaviour in a considerably simpler situation, for
the level-set percolation of the Gaussian free field on regular trees. This model
was initially investigated in [Szn16] where the critical value h∗ was characterised
as the largest eigenvalue of certain integral operator, and a coupling with random
interlacements was used to derive bounds on h∗, implying in particular that 0 <
h∗ < ∞. Later, in [AČ20], the sub- and supercritical phase of the model was
studied in detail. Their results include the continuity of the percolation probability
away from the critical level h∗, and rather precise estimates for the cardinality of
the connected components of the level sets in the sub- and super-critical phase.
We complement these results with critical and near-critical estimates.

Similarly to [Szn16] and, in particular, to [AČ20], we will take advantage of a
connection of the Gaussian free field on regular trees to certain multi-type branch-
ing processes (cf. Section 3 below). The analysis of these branching processes is
not completely straightforward, as their type space is uncountable and unbounded
and they do not satisfy the conditions used in the classical literature on branching
processes [Har63, Mod71, AN72]. Fortunately, these conditions can be substituted
by certain hypercontractivity estimates (cf. Proposition 3.2 below), which have
already been featured in the previous works. We are also not aware of any results
about near-critical multi-type branching process which resemble our analysis of
the near-critical behaviour of the percolation probability.

2. Model and results

We now define our model. Let T be the infinite (d+ 1)-regular tree, with d ≥ 2,
rooted at an arbitrary fixed vertex o ∈ T. On T we consider the Gaussian free
field ϕ = (ϕx)x∈T, which is a centred Gaussian process whose covariance function
agrees with the Green function of the simple random walk on T, see (3.1) below
for the precise definition. We use P to denote the law of this process on RT, and,
for a ∈ R, we write Pa for the conditional distribution of ϕ given that ϕo = a,

Pa[ · ] := P [ · | ϕo = a]. (2.1)

(For an explicit construction of Pa see (3.3) and the paragraph below it.) Let
further ō ∈ T be an arbitrary fixed neighbour of the root o and define the forward
tree T+ by

T+ := {x ∈ T : ō is not contained in the geodesic path between o and x}. (2.2)

We analyse the percolation properties of the (super-)level sets of ϕ above level
h ∈ R, that is of

Eh
ϕ := {x ∈ T : ϕx ≥ h}. (2.3)
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In particular, we are interested in the connected component of this set containing
the root o,

Cho := {y ∈ T : y is connected to o in Eh
ϕ}, h ∈ R. (2.4)

The critical height h∗ of the level-set percolation is defined by

h∗ = h∗(d) := inf{h ∈ R : P [|Cho | =∞] = 0}. (2.5)

It is well known that h∗ is non-trivial, more precisely h∗ ∈ (0,∞), see [Szn16,
Corollary 4.5]. Moreover, as proved in [Szn16], h∗ can be characterised with help
of the operator norms of a certain family of non-negative operators (Lh)h∈R acting
on the space L2(ν), where ν is the centred Gaussian measure with variance σ2

ν =
d/(d− 1). We give more details of this characterisation in Section 3 below. Here,
we only define λh to be the largest eigenvalue of Lh and χh the corresponding
normed eigenfunction, and recall that h∗ is the unique solution to

λh∗ = 1. (2.6)

Since we will mostly deal with the critical case, we often abbreviate

χ := χh∗ and L := Lh∗ . (2.7)

For a, h ∈ R we further introduce conditioned percolation and forward percola-
tion probabilities by

η(h, a) := Pa[|Cho | =∞] and η+(h, a) := Pa[|Cho ∩ T+| =∞]. (2.8)

It is known that both of these functions are identically 0 when h > h∗, and for
h < h∗ they are strictly positive iff a ∈ [h,∞), see [Szn16, Proposition 3.3 and its
proof].

Our first two results consider the behaviour of Ch0 at the critical height h = h∗.
The first interim result shows that there is no percolation at h∗.

Theorem 2.1. For all a ∈ R,
η(h∗, a) = η+(h∗, a) = 0, (2.9)

and, as consequence,

P [|Ch∗o ∩ T+| =∞] = P [|Ch∗o | =∞] = 0. (2.10)

As corollary of this theorem, we directly obtain the continuity of the percolation
functions. This extends Theorem 5.1 of [AČ20], where it is shown that the func-
tions h 7→ η(h, a) and h 7→ η∗(h, a) are left-continuous everywhere and continuous
on R \ {h∗}.

Corollary 2.2. The functions h 7→ η(h, a) and h 7→ η∗(h, a) are continuous for
every a ∈ R.

The second result considers the cardinality of Ch∗o in the critical case, and de-
scribes its exact asymptotic tail behaviour. In particular it gives a probabilistic
meaning to the eigenfunction χ.
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Theorem 2.3. For every a ≥ h∗, as t→∞,

Pa[|Ch
∗

o ∩ T+| > t] = C1χ(a)t−1/2
(
1 + o(1)

)
, (2.11)

Pa[|Ch
∗

o | > t] = C1d
−1(d+ 1)χ(a)t−1/2

(
1 + o(1)

)
, (2.12)

where, denoting by 〈·, ·〉ν the scalar product on L2(ν), the constant C1 is given by

C1 =
1

Γ(1/2)

√
2d

d− 1
· 〈1, χ〉ν
〈χ, χ2〉ν

. (2.13)

Remark 2.4. Theorem 2.1 could be seen as a corollary to Theorem 2.3, but we
prefer to state it separately, since the former theorem is used in the proof of the
latter one.

Remark 2.5. Combining Theorem 2.3 with the stochastic domination (see (3.4)
below), it follows that

a 7→ χh∗(a) is non-decreasing, (2.14)
which, to our knowledge, was not known previously.

Our third result considers the percolation probabilities in the near-critical super-
critical regime. We are able to describe their asymptotic behaviour as h ↑ h∗. As in
Theorem 2.3, the limiting objects can be expressed in terms of the eigenfunction χ.

Theorem 2.6. The percolation probabilities η and η+ can be written as

η+(h, a) = C2(h∗ − h)
(
χ(a) + r+

h (a)
)
, (2.15)

η(h, a) = C2
d+ 1

d
(h∗ − h)

(
χ(a) + rh(a)

)
, (2.16)

where for an arbitrary ε ∈ (0, 1] the reminder functions rh and r+
h satisfy

lim
h↑h∗
‖rh‖L2−ε(ν) = lim

h↑h∗
‖r+

h ‖L2−ε(ν) = 0, (2.17)

and where, with Id denoting the identity on R, the constant C2 is given by

C2 = 2 · d− 1

d+ 1

〈Id, χ2〉ν
〈χ, χ2〉ν

. (2.18)

Remark 2.7. As a consequence of Theorem 2.6, the critical exponent β defined by
β = limh↑h∗

logP (|Ch0 |=∞)

log(h∗−h)
satisfies β = 1. This coincides with the conjectured value

of this exponent for the Gaussian free field on Zd, as well as with its rigorously
proved value on a large family of metric graphs, [DPR21, Corollary 1.2].

We now briefly discuss the structure of this article. In Section 3 we introduce
more notation and collect useful known facts about the Gaussian free field on T.
The proof of Theorem 2.1, which used the techniques known from the theory of
multi-type branching processes, and exploits the convergence of a certain non-
negative martingale (see (3.15)), is given in Section 4. In Section 5 we give the
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proof of Theorem 2.3, using the Tauberian theory and investigating the Laplace
transform of the cardinality of Ch∗o . Finally, in Section 6, we use results on bi-
furcations on Banach spaces together with the defining equation for the forward
percolation probability introduced in [AČ20] (see (6.1)) to prove Theorem 2.6.

3. Notation and useful results

In this section we introduce the notation used throughout the paper and recall
several known facts concerning the level set percolation of the Gaussian free field
on trees.

As already stated in the introduction, we use T to denote the (d+1)-regular tree,
d ≥ 2, that is an infinite tree whose every vertex has exactly d+ 1 neighbours. For
two vertices x, y ∈ T we use d(x, y) to denote their usual graph distance. The tree
is rooted at a fixed arbitrary vertex o ∈ T, and ō ∈ T denotes a fixed neighbour of
o. T+ denotes the forward tree as defined in (2.2).

We consider the Gaussian free field ϕ = (ϕx)x∈T which is the centred Gaussian
process on T whose covariance function is the Green function of the simple random
walk on T, that is

E[ϕxϕy] = g(x, y) :=
1

d+ 1
Ex
[ ∞∑
k=0

1Xk=y

]
, x, y ∈ T, (3.1)

where Ex stands for the expectation with respect to the simple random walk
(Xk)k≥0 on T starting at x ∈ T.

We frequently use the fact that that the Gaussian free field on T can be viewed as
multi-type branching process with a continuous type space (see [Szn16, Section 3]
and [AČ20, Section 2.1]). To this end, we define

σ2
ν :=

d

d− 1
and σ2

Y :=
d+ 1

d
, (3.2)

and let (Yx)x∈T be a collection of independent centred Gaussian random variables
on some probability space (Ω,A, P ′) such that Yo ∼ N (0, σ2

ν) and Yx ∼ N (0, σ2
Y )

for x 6= o. We then recursively define another field ϕ̃ on T by

(a) ϕ̃o := Yo,

(b) for x 6= o, ϕ̃x := 1
d
ϕ̃x̄+Yx where x̄ is the direct ancestor of x in T, that

is the first vertex on the geodesic path from x to o different from x.
(3.3)

As explained e.g. in [AČ20, (2.9)], the law of (ϕ̃x)x∈T under P ′ agrees with the
law P of the Gaussian free field ϕ. Therefore, we will always assume that the
considered Gaussian free field is constructed in this way and will not distinguish
between ϕ and ϕ̃.

Representation (3.3) of ϕ can be used to give a concrete construction for the
conditional probability Pa introduced in (2.1): It is sufficient to replace (a) in (3.3)



CRITICAL PERCOLATION OF THE GFF ON REGULAR TREES 6

by ϕ̃0 = a. In addition, (3.3) easily allows to construct a monotone coupling of Pa
and Pb. As the result we obtain:

If a < b, then Pb stochastically dominates Pa, (3.4)

that is Ea[f(ϕ)] ≤ Eb[f(ϕ)] for every bounded increasing function f : RT → R.
From the construction (3.3) it follows that the root o can be viewed as an initial

particle of a multi-type branching process; its type is distributed as Y0. Every
particle x̄ in this branching process has then d offsprings (d + 1 if x̄ = 0) whose
types are independently given by 1

d
ϕx̄ + Y , with Y ∼ N(0, σ2

Y ).
The branching process point of view can be adapted to Cho , by considering the

same multi-type branching process but killing all particles with type lower than
h (and thus also not allowing them to have descendants themselves). Similarly,
Cho ∩ T+ can be constructed the same way, with the only difference that in this
case also the root node o has d potential descendants, instead of d+ 1. We denote
by Zh

n the n-th generation of this branching process

Zh
n := {x ∈ Cho ∩ T+ : d(o, x) = n}, h ∈ R, n ∈ N. (3.5)

We now recall more in detail the spectral machinery introduced in [Szn16] in
order to characterise the critical value h∗. Let ν be a centred Gaussian measure on
R with variance σ2

ν (as defined in (3.2)), and let Y be a centred Gaussian random
variable with variance σ2

Y . The expectation with respect to this random variable
is denoted EY . We consider the Hilbert space L2(ν) := L2(R,B(R), ν), and for
every h ∈ R we define the operator Lh on L2(ν) by

Lh[f ](a) := 1[h,∞)(a) dEY

[
1[h,∞)

(
Y +

a

d

)
f
(
Y +

a

d

)]
= 1[h,∞)(a) d

∫
[h,∞)

f(x)ρY

(
x− a

d

)
dx,

(3.6)

where ρY denotes the density of Y . We let λh to stand for the operator norm of
Lh in L2(ν),

λh := ‖Lh‖L2(ν)→L2(ν). (3.7)
The following proposition summarises some known properties of the operator

Lh as well as the connection between Lh and the critical height h∗.

Proposition 3.1 ([Szn16] Propositions 3.1, 3.3, Corollary 4.5). For all h ∈ R, Lh
is a self-adjoint, non-negative, Hilbert-Schmidt operator on L2(ν), λh is its simple
eigenvalue and there exists a unique χh ≥ 0 with unit L2(ν)-norm, continuous,
strictly positive on [h,∞), vanishing on (−∞, h), such that

Lh[χh] = λhχh. (3.8)

Additionally, the map h 7→ λh is a decreasing homeomorphism from R to (0, d)
and h∗ is the unique value in R such that λh∗ = 1. Finally, for every d ≥ 2,

0 < h∗ <∞. (3.9)
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Later we will need the following estimates on the norms of Lh[f ] which follow
from the hypercontractivity of the Ornstein-Uhlenbeck semigroup, see (3.14) in
[Szn16] and (4.12) in [AČ20].

Proposition 3.2. For every f ∈ L2(ν), h ∈ R, 1 < p <∞ and q ≤ (p− 1)d2 + 1,∥∥Lh[f ]
∥∥
Lq(ν)

≤
∥∥∥dEY [f(Y +

·
d

)]∥∥∥
Lq(ν)

≤ d ‖f‖Lp(ν). (3.10)

In particular (taking p = 2),∥∥Lh[f ]k
∥∥
L2(ν)

≤ d ‖f‖kL2(ν) for all 1 ≤ k ≤ d2 + 1. (3.11)

The eigenfunctions χh of Lh were studied more in detail in [AČ20]. We will need
the following proposition describing their behaviour. (Note that [AČ20] considers
d-regular trees, and thus d in our setting corresponds to d− 1 in [AČ20].)

Proposition 3.3 ([AČ20] Proposition 3.1). (a) There exists c > 0 such that

χh(a) ≤ ca1−logd(λh) for all h ∈ R and a ≥ d. (3.12)

(b) For every h ∈ R there exists ch > 0 such that

χh(a) ≥ cha
1−logd(λh) for all a ≥ h. (3.13)

Finally, we introduce the filtration

Fn := σ
(
ϕx : x ∈ T+, d(o, x) ≤ n

)
, n ≥ 0, (3.14)

and recall from [Szn16, (3.35)], that the (Fn)-adapted process Mh = (Mh
n )n≥0

defined by
Mh

n := λ−nh
∑
x∈Zh

n

χh(ϕx) (3.15)

is a non-negative martingale under P as well as under every Pa, a ∈ R.
Throughout the paper we use the usual notation for the asymptotic relation

of two functions: For functions f and g, we write f(s) ∼ g(s) as s → s0 if
lims→s0

f(s)
g(s)

= 1, and write f(s) = o(g(s)) as s → s0 if lims→s0
|f(s)|
g(s)

= 0. We use
c, c′, c1, . . . to denote finite positive constants whose values may change from place
to place and which can only depend on d. The dependence of these constants on
additional parameters appears in the notation.

4. Percolation probability at the critical height

In this section, we will show Theorem 2.1 which states that there is no percola-
tion at critical height h∗. Its proof uses arguments that are rather common in the
context of branching processes and is given for sake of completeness. It exploits
the fact that the martingale (Mh

n )n≥0 introduced in (3.15) converges almost surely,
which induces certain boundedness of the sizes of the generations Zh

n (see (3.5)) as
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well as of the value of the field on them. This is then enough to show the almost
sure finiteness of Ch∗o ∩ T+.

To keep the notation simple, we often omit h = h∗ from the notation and write,
e.g., Zn := Zh∗

n , Mn := Mh∗
n and χ = χh∗ . Let A be the event that Ch∗o ∩ T+ has

infinite size,
A := {|Ch∗o ∩ T+| =∞}, (4.1)

and let Φn := maxx∈Zn ϕx to be the maximum of the field over Zn (with the
convention that a maximum over the empty set is −∞). For H > 0, N ∈ N we
define the events

CH := {Φn ≤ H for all n ≥ 0} and DN := {|Zn| ≤ N for all n ≥ 0}. (4.2)

We first show that for H and N large those events are typical.

Lemma 4.1. For every a ≥ h∗ and ε > 0 there is H = H(a, ε) < ∞ and
N = N(a, ε) <∞ so that

Pa[CH ] ≥ 1− ε, (4.3)
Pa[DN ] ≥ 1− ε. (4.4)

Proof. From the almost sure convergence of the non-negative martingale M , it
follows that

for every ε > 0 there is N <∞ such that Pa
[

sup
n≥0

Mn ≤ N
]
≥ 1− ε. (4.5)

Indeed, assume that the statement does not hold. Then, there exists a ε0 > 0
such that the events Ak := {supMn ≥ k} satisfy Pa[Ak] > ε0 for all k ∈ N. Since
Ak+1 ⊆ Ak, this implies Pa[supMn = ∞] > ε0 which contradicts the almost sure
convergence of M to a finite limit.

To prove (4.3), observe that λh∗ = 1 implies that Mn =
∑

x∈Zn
χ(ϕx) ≥ χ(Φn).

Therefore, setting H ′ = inf{χ(h) : h > H} and using that Φn > H implies
χ(Φn) ≥ H ′, we obtain

CH =
{

sup Φn ≤ H
}
⊇
{

supχ(Φn) < H ′
}
⊇
{

supMn < H ′
}
. (4.6)

By Proposition 3.3 limx→∞ χ(x) = ∞, and thus for N as in (4.5) there is H ′ so
that H ′ ≥ N + 1. Estimate (4.3) then follows from (4.5) and (4.6).

Estimate (4.4) is proved similarly. By (3.13) there is c > 0 such that c ≤ χ(h)
for every h ∈ [h∗,∞). Therefore, Mn ≥ c|Zn|, and thus DN ⊇ {supMn ≤ cN}.
Claim (4.5) then directly implies (4.4). �

We now argue that the events CH and DN exclude the percolation event A.

Lemma 4.2. Pa[A ∩ CH ∩ DN ] = 0 for every a ≥ h∗, H ≥ h∗, and N ≥ 1.

Proof. For given H ≥ h∗ and N > 0, let Θn be the event that up to generation n,
no generation of Ch∗o ∩ T+ exceeds N and the field is bounded by H,

Θn := {|Zk| ≤ N and Φk ≤ H for all k ≤ n}, n ≥ 0, (4.7)
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and let An be the event that the n-th generation is non-empty,

An := {|Zn| > 0}, n ≥ 0. (4.8)

The sequences An and Θn are decreasing, with ∩n≥0Θn = CH ∩DN , ∩n≥0An = A.
Therefore,

Pa[A ∩ CH ∩ DN ] = lim
n→∞

Pa[An ∩Θn]. (4.9)

We will show that this limit is zero. Conditionally on the event Θn ∩ An, the
number of particles in Zn is limited by N and their types are bounded by H.
Therefore, by the stochastic domination (3.4), the conditional probability that
Zn+1 is empty can be bounded from below by the probability that N independent
particles of type H have no descendants,

Pa[Acn+1 | An ∩Θn] ≥ PH [|Z1| = 0]N ≥ c > 0. (4.10)

As consequence, since An+1 ∩Θn+1 ⊂ An ∩Θn,
Pa[An+1 ∩Θn+1]

Pa[An ∩Θn]
= Pa[An+1 ∩Θn+1 | An ∩Θn] ≤ Pa[An+1 | An ∩Θn] ≤ 1− c.

(4.11)
Applying this bound inductively proves that the limit on the right-hand side of
(4.9) is zero, completing the proof. �

With help of Lemmas 4.1, 4.2, it is straightforward to complete the proof of
Theorem 2.1.

Proof of Theorem 2.1. By Lemma 4.1, for an arbitrary ε > 0 and a ∈ R there is
H and N such that Pa[CH ] ≥ 1 − ε and Pa[DN ] ≥ 1 − ε. Therefore, using also
Lemma 4.2

0 = Pa[A ∩ CH ∩ DN ] ≥ Pa[A]− 2ε. (4.12)
Since ε is arbitrary, this implies Pa[A] = 0 as required. The second claim of the
theorem follows from the equality

P [A] =

∫
Pa[A] ν(da) = 0, (4.13)

which holds due to (3.3). �

5. Distribution of the size of the critical cluster

In this section we prove Theorem 2.3 describing the asymptotic behaviour of the
size of the connected clusters |Ch∗o | and |Ch

∗
o ∩ T+| in the critical case h = h∗.

To this end we denote by T the total size of Ch∗o restricted to the forward tree,

T := |Ch∗o ∩ T+|, (5.1)

and let La(s) be its Laplace transform under Pa,

La(s) := Ea[e
−sT ], a ∈ R, s ≥ 0. (5.2)



CRITICAL PERCOLATION OF THE GFF ON REGULAR TREES 10

The proof of Theorem 2.3 is based on the following classical Tauberian theorem,
that connects the asymptotic behaviour of the cumulative distribution function of
a random variable at infinity and its Laplace transform near zero.

Proposition 5.1 (Corollary 8.1.7, [BGT89]). Let X be a non-negative random
variable with cumulative distribution function F and Laplace transform L(s) =
E[e−sX ]. For 0 ≤ α < 1 and a function ` : [0,∞) → [0,∞) slowly varying at ∞
the following are equivalent:

(a) 1− L(s) ∼ Γ(1− α)sα`(1/s) as s→ 0+,
(b) 1− F (t) ∼ t−α`(t) as t→∞.

In view of this proposition, to show Theorem 2.3 we first need to control the
asymptotic behaviour of 1− La(s).

Proposition 5.2. For every a ≥ h∗,

lim
s↓0

s−1/2
(
1− La(s)

)
= C1Γ(1/2)χ(a), (5.3)

where C1 was defined in (2.13).

We start with some basic observations and definitions that will eventually lead
to the proof of this proposition. By Theorem 2.1, Pa[T =∞] = 0 for every a ∈ R,
and thus

lim
s↓0

(
1− La(s)

)
= 0. (5.4)

Moreover, the Laplace transform La(s) satisfies the recursive equation

La(s) =

{
e−s
(
EY [La

d
+Y (s)]

)d
, if a ≥ h∗,

1, if a < h∗,
(5.5)

where, as in (3.6), Y ∼ N (0, σ2
Y ). To see this in the case a ≥ h∗ (the other case

is trivial), it is sufficient to write T = 1 + T1 + · · · + Td, where Ti is the size of
the intersection of Ch∗0 with the sub-tree of the i-th neighbour xi of the root o, and
observe that T1, . . . , Td are conditionally independent given ϕo = a with respective
Laplace transforms

Ea[e
−sTi ] = Ea

[
Ea[e

−sTi | ϕxi ]
]

= Ea[Lϕxi
(s)] = EY [La

d
+Y (s)], (5.6)

where the last equality uses the branching process representation (3.3) of ϕ.
We further set

γs(a) := 1− La(s), (5.7)
and note that γs(a) = 0 for a < h∗, γs(a) ∈ [0, 1] for every s ≥ 0 and a ∈ R,
and therefore for every s ≥ 0, γs ∈ L2(ν). By (5.5), using the operator L = Lh∗
from (3.6), for a ≥ h∗,

1− γs(a) = e−sEY

[
1− γs

(a
d

+ Y
)]d

= e−s
(

1− 1

d
L[γs](a)

)d
. (5.8)
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Rearranging this equality implies that for a ≥ h∗ and s ≥ 0,

1− e−s − γs(a) + e−sL[γs](a) = e−sf(L[γs](a)), (5.9)

where the function f : [0, d]→ R is defined by

f(x) = fd(x) :=
(

1− x

d

)d
− 1 + x =

d∑
k=2

(
d

k

)
(−1)k

(x
d

)k
. (5.10)

Equation (5.9) will be the starting point for several proofs that follow.
We continue with a simple observation about the function f .

Lemma 5.3. For any d ≥ 2 there are constants c1, c2 such that for all x ∈ [0, d],

c1x
2 ≤ f(x) ≤ c2x

2. (5.11)

Proof. From (5.10) it is easy to see that f is smooth, strictly convex on [0, d] with
f(0) = f ′(0) = 0 and f ′′(0) = c > 0. It follows that cx2/2 ≤ f(x) ≤ 2cx2 for x in
a certain interval [0, ε], and that f is strictly positive and bounded on (ε, d]. From
these two facts the lemma easily follows. �

In the remainder of this section we exclusively work in L2(ν), and denote by ‖ · ‖
and 〈·, ·〉 the corresponding norm and scalar product. Since L is self-adjoint (see
Proposition 3.1), L2(ν) has an orthonormal basis consisting of the eigenfunctions
{ek}k≥1 of L corresponding to the eigenvalues {λk}k≥1. Since h = h∗, by Propo-
sition 3.1 we may assume that 1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ 0 with λk → 0 as
k →∞, and also e1 = χ. Therefore

γs =
∑
k≥1

ak(s)ek, with ak(s) := 〈γs, ek〉. (5.12)

By considering the first summand separately, we write γs as

γs = αs + βs, with αs := a1(s)χ and βs :=
∑
k≥2

ak(s)ek. (5.13)

Observe that

L[γs] =
∑
k≥1

λkak(s)ek = αs +
∑
k≥2

λkak(s)ek = αs + L[βs]. (5.14)

and thus
〈γs − L[γs], χ〉 = 0. (5.15)

Since γs(a) ∈ [0, 1], the definition (3.6) of L and Lemma 5.3 imply that

0 ≤ L[γs] ≤ d and 0 ≤ f(L[γs]) ≤ c2L[γs]
2 ≤ c2d

2. (5.16)

From the pointwise convergence (5.4) of γs to 0, using successively the dominated
convergence theorem and the continuity of L, it follows that

lim
s↓0

γs = lim
s↓0

L[γs] = lim
s↓0

f(L[γs]) = 0 in L2(ν). (5.17)
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In particular ak(s) → 0 as s ↓ 0 for all k ≥ 1. Finally, since ‖γs − L[γs]‖2 =∑
k≥2(1− λk)2ak(s)

2 ≥
∑

k≥2(1− |λ2|)2ak(s)
2 = (1− |λ2|)2‖βs‖2, it holds that

‖βs‖ ≤
1

1− |λ2|
‖γs − L[γs]‖. (5.18)

The following three lemmas are the main preparatory steps for the proof of
Proposition 5.2. They together show that αs dominates βs in norm and then
estimate αs precisely.

Lemma 5.4. There is a constant c < ∞ such that ‖αs‖2 ≤ cs for all s small
enough.

Proof. Noting that χ = 0 on (−∞, h∗) and applying 〈·, χ〉 on both sides of (5.9)
yields

(1− e−s)
(
〈1, χ〉 − a1(s)

)
= e−s

〈
f(L[γs]), χ

〉
for s ≥ 0. (5.19)

By (3.13), χ > c > 0 on [h∗,∞). Therefore, using also Lemma 5.3, the right-hand
side of (5.19) satisfies for s ≤ 1

e−s〈f(L[γs]), χ〉 ≥ c〈L[γs]
2, χ〉 ≥ c′‖L[γs]‖2 ≥ c′‖αs‖2 = c′α1(s)2, (5.20)

where the last inequality follows from the orthogonal decomposition (5.14). To-
gether with (5.19), this gives

(1− e−s)(〈1, χ〉 − a1(s)) ≥ c′α1(s)2 for s ≤ 1. (5.21)

Since, as s ↓ 0, (1− e−s) ∼ s and a1(s)→ 0 this finishes the proof. �

Lemma 5.5. There is a constant c <∞ such that ‖βs‖ ≤ cs for s small enough.

Proof. We rearrange equation (5.9) to obtain

γs − L[γs] = (1− e−s)(1− L[γs])− e−sf(L[γs]) on [h∗,∞). (5.22)

Since the left-hand side is identically zero on (−∞, h∗), taking norms yields

‖γs − L[γs]‖ ≤ (1− e−s)‖1− L[γs]‖+ ‖f(L[γs])‖. (5.23)

Using (5.16), 1− e−s ≤ s, and Lemma 5.3, this implies

‖γs − L[γs]‖ ≤ (1 + d)s+ c‖L[γs]
2‖. (5.24)

The norm on the right-hand side can be bounded using Proposition 3.2 and the
inequality (a+ b)2 ≤ 2a2 + 2b2,

‖L[γs]
2‖ ≤ d‖γs‖2 ≤ d(‖αs‖+ ‖βs‖)2 ≤ 2d(‖αs‖2 + ‖βs‖2). (5.25)

Combining (5.24), (5.25) with (5.18), we obtain that for a constant c <∞ and all
s > 0 small enough

‖βs‖ ≤ cs+ c‖αs‖2 + c‖βs‖2. (5.26)
By (5.17), lims→0‖γs‖ = 0 and thus lims→0‖βs‖ = 0 as well. The claim of the
lemma then follows easily from Lemma 5.4. �
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Lemma 5.6. It holds that lims↓0 s
−1a1(s)2 = (C1Γ(1/2))2, where C1 was defined

in (2.13).

Proof. We start by proving the estimate∥∥∥∥(1− e−s)1[h∗,∞) − γs + L[γs]−
1

d2

(
d

2

)
L[αs]

2

∥∥∥∥ ≤ cs3/2 (5.27)

holding for some constant c < ∞ and all s small enough: Rearranging (5.9) and
subtracting 1

d2

(
d
2

)
L[αs]

2 on both sides shows that, on [h∗,∞),

(1− e−s)− (γs − L[γs])−
1

d2

(
d

2

)
L[αs]

2

= (1− e−s)
(
L[γs]− f(L[γs])

)
+ f(L[γs])−

1

d2

(
d

2

)
L[αs]

2. (5.28)

After taking norms, using again that s ∼ (1− e−s) as s ↓ 0, this implies that∥∥∥∥(1− e−s)1[h∗,∞) − (γs − L[γs])−
1

d2

(
d

2

)
L[αs]

2

∥∥∥∥
≤ cs‖L[γs]‖+ cs‖f(L[γs])‖+

∥∥∥∥f(L[γs])−
1

d2

(
d

2

)
L[αs]

2

∥∥∥∥ (5.29)

for some constant c and s small enough. By Lemmas 5.4 and 5.5, ‖L[γs]‖ ≤
‖γs‖ ≤ ‖αs‖+ ‖βs‖ ≤ cs1/2. Further, by Lemma 5.3–5.5 and (5.25), ‖f(L[γs])‖ ≤
‖cL[γs]

2‖ ≤ c‖αs‖2 + c‖βs‖2 ≤ cs. Hence, to show (5.27), it remains to bound the
last summand in (5.29) by cs3/2. By the definition (5.10) of f ,

f(L[γs])−
1

d2

(
d

2

)
L[αs]

2 = 2
1

d2

(
d

2

)
L[αs]L[βs]+

1

d2

(
d

2

)
L[βs]

2+
d∑

k=3

ckL[γs]
k (5.30)

for some ck ∈ (0,∞). Hence, after taking the norm,∥∥∥∥f(L[γs])−
1

d2

(
d

2

)
L[αs]

2

∥∥∥∥ ≤ c‖L[αs]L[βs]‖+ c‖L[βs]
2‖+ c

d∑
k=3

‖L[γs]
k‖, (5.31)

for some constant c > 0. By the Cauchy-Schwarz inequality, Proposition 3.2 and
Lemmas 5.4, 5.5,

‖L[αs]L[βs]‖2 = 〈L[αs]L[βs], L[αs]L[βs]〉 = 〈L[αs]
2, L[βs]

2〉
≤ ‖L[αs]

2‖‖L[βs]
2‖ ≤ c‖αs‖2‖βs‖2 ≤ cs3/2,

‖L[βs]
2‖ ≤ c‖βs‖2 ≤ cs2,

(5.32)

and for 3 ≤ k ≤ d, by the same arguments,

‖L[γs]
k‖ ≤ c‖γs‖k ≤ c(‖αs‖+ ‖βs‖)k ≤ c2k−1(‖αs‖k + ‖βs‖k) ≤ cs3/2. (5.33)
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This proves that the third summand on the right-hand side of (5.29) is bounded
by cs3/2 and thus completes the proof of (5.27).

We can now show the lemma. From (5.27), using lims↓0 s
−1(1 − e−s) = 1, it

easily follows that

lim
s↓0

(
1

s
(γs − L[γs]) +

1

d2

(
d

2

)
L[αs]

2

s

)
= 1[h∗,∞) in L2(ν). (5.34)

Since χ = 0 on (−∞, h) and L[αs] = αs = a1(s)χ, this implies that

〈1, χ〉 =

〈
lim
s↓0

(
1

s
(γs − L[γs]) +

1

d2

(
d

2

)
α2
s

s

)
, χ

〉
= lim

s↓0

(〈1

s
(γs − L[γs]), χ

〉
+

1

d2

〈(d
2

)
α2
s

s
, χ
〉)

=
d− 1

2d
〈χ2, χ〉 lim

s↓0

a1(s)2

s
,

(5.35)

where in the last equality we used 〈γs − L[γs], χ〉 = 0, by (5.15). The claim of the
lemma then follows. �

We now have all ingredients to give the proof of Proposition 5.2, directly followed
by the proof of Theorem 2.3.

Proof of Proposition 5.2. By the Lemmas 5.5 and 5.6,

lim
s↓0

γs√
s

= lim
s↓0

(a1(s)χ√
s

+
βs√
s

)
= C1Γ(1/2)χ in L2(ν). (5.36)

By the stochastic domination (3.4), the function a 7→ γs(a) is increasing for any
s > 0, and by Proposition 3.1, the limit function C1Γ(1/2)χ is continuous on
[h∗,∞). This implies that the convergence in (5.36) is pointwise as well. �

Proof of Theorem 2.3. Claim (2.11) follows directly from Propositions 5.1 and 5.2.
To prove (2.12), let L̃a be the Laplace transform of |Ch∗o | under Pa,

L̃a(s) := Ea
[
e−s|C

h∗
o |
]
, a ∈ R, s ≥ 0. (5.37)

Using the same arguments as in the proof of the recursion property (5.5), it follows
that

L̃a(s) = e−s
(
EY [La

d
+Y (s)]

)d+1
, for s > 0, a ≥ h∗, (5.38)

which together with (5.5) yields

L̃a(s) = es/dLa(s)(d+1)/d for s > 0, a ≥ h∗. (5.39)

Using Proposition 5.2, this implies that, as s ↓ 0,

L̃a(s) =
(

1− s

d
+ o(s)

)(
1− C1Γ(1/2)χ(a)s1/2 + o(s1/2)

)(d+1)/d

= 1− d+ 1

d
C1Γ(1/2)χ(a)s1/2 + o(s1/2).

(5.40)
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Claim (2.12) then follows by another application of Proposition 5.1. �

6. Behaviour of the connectivity for near-critical level set
percolation

In this section we prove Theorem 2.6 which describes the asymptotic behaviour
of the percolation probabilities η(h, a) and η+(h, a) for fixed a ∈ R as h approaches
h∗ from below.

The proof is based on a careful analysis of the functional equation for η+ that
was proved in [AČ20] and that we recall in the next proposition.

Proposition 6.1 ([AČ20] Theorem 4.1). For every h ∈ R, the forward percolation
probability η+

h := η+(h, ·) solves the functional equation

f(a) = 1[h,∞)(a)
(

1−
(
1− d−1Lh[f ]

)d)
, a ∈ R. (6.1)

In addition, the only two solutions of (6.1) in the set

Sh := {f ∈ L2(ν) : 0 ≤ f ≤ 1 and f = 0 on (−∞, h)} (6.2)

are the constant function f = 0 and η+
h . For h ≥ h∗ these two solutions coincide

and for h < h∗ they are distinct.

The last claim of this proposition together with the continuity of the percolation
functions (cf. Corollary 2.2) implies that the solution set to (6.1) has a bifurcation
at the critical point h∗. Therefore, in order to describe the behaviour of η+

h as
h ↑ h∗, we will analyse the solution set around this bifurcation.

Our main tool will be the theorem on transcritical bifurcations on general Ba-
nach spaces, stated as Proposition 6.2 below. To introduce this theorem we need
more notation. For Banach spaces X, Y , let B(X, Y ) be the space of bounded lin-
ear operators from X to Y . For a function F : X → Y , we use DF : X → B(X, Y )
to denote its Fréchet derivative and DF (x) : X → Y its Fréchet derivative evalu-
ated at point x ∈ X. If T is an open interval in R and G : T ×X → Y , then we
use DxG(t, x) : X → Y and DtG(t, x) ∈ Y to denote the partial Fréchet derivative
in the x and t direction, evaluated at point (t, x). Similarly, DxxG or DxtG denote
the respective second partial Fréchet derivatives. Finally, we use N(F ) and R(F )
to denote the kernel and the range of a linear functional F .

Proposition 6.2 ([CR71], Theorems 1.7 and 1.18). Let X, Y be Banach spaces,
V a neighbourhood of 0 in X, I = (t0 − 1, t0 + 1) for some t0 ∈ R. Assume that a
(non-linear) functional F : I × V → Y satisfies:

(a) F (t, 0) = 0 for t ∈ I,
(b) The partial derivatives DtF , DxF and DtxF exist and are continuous,
(c) N(DxF (t0, 0)) = span {x0} for a x0 ∈ X, and codimR(DxF (t0, 0)) = 1,
(d) DtxF (t0, 0)(x0) 6∈ R(DxF (t0, 0)), where x0 is given in (c).
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Then for any complement Z of x0 in X (i.e., for any subspace Z of X with Z ⊕
span{x0} = X) there is a neighbourhood U of (t0, 0) in R×X, an interval (−a, a),
and continuous functions ϕ : (−a, a) → I, ψ : (−a, a) → Z such that ϕ(0) = t0,
ψ(0) = 0 and

F−1(0) ∩ U = {(ϕ(α), αx0 + αψ(α)) : |α| < a} ∪ {(t, 0) : (t, 0) ∈ U}. (6.3)

If, in addition to (a)–(d), DxxF is continuous, then the functions ϕ and ψ have a
continuous derivative with respect to α and

1

2
DxxF (t0, 0)(x0, x0) +DxF (t0, 0)(ψ′(0)) + ϕ′(0)DtxF (t0, 0)(x0) = 0. (6.4)

One of the main difficulties in applying this proposition to our situation is to
choose suitable spaces X and Y where its conditions can be verified. We start by
shifting the functions η+

h so that they have a common zero set. To this end, let θa
be the usual shift operator acting on f : R→ R by θaf(x) = f(x+ a), and define
η̃h := θhη

+
h . Note that, for h < h∗, η̃h(a) > 0 iff a ∈ [0,∞). For h ∈ R, let Hh be

an operator defined by
Hh[f ] = d−1θhLh[θ

−1
h f ]. (6.5)

Using the definition (3.6) of Lh, after an easy computation, this operator can be
written more explicitly:

Hh[f ](a) =

{∫∞
0
f(x)ρY

(
x− a

d
+ d−1

d
h
)

dx, when a ≥ 0,

0, otherwise,
(6.6)

where ρY denotes the centred Gaussian density with variance σ2
Y . This notation

allows to rewrite equation (6.1) in terms of η̃h as

0 = −η̃h(a) + 1[0,∞)(a)
(

1−
(
1−Hh[η̃h](a)

)d)
, a ∈ R. (6.7)

Finally, let ν∗ be a Gaussian measure obtained from the Gaussian measure ν
(see above (3.6)) by shifting it by h∗, that is the corresponding densities satisfy
ρν∗ = θh∗ρν .

In view of (6.7), to prove Theorem 2.6, we will show that Proposition 6.2 is
applicable to

F (h, f) = −f + 1[0,∞)

(
1−

(
1−Hh[f ]

)d)
, (6.8)

viewed as a map from I×L2(ν∗) to L2(ν∗), with I = (h∗− 1, h∗+ 1). Showing the
applicability of Proposition 6.2 is divided into multiple steps. First, we prove that
F is indeed a map from I × L2(ν∗) to L2(ν∗). Then we compute the necessary
partial Fréchet derivatives, and finally we verify the remaining assumptions of the
proposition. Before starting with this programme, we state a simple estimate that
will later be useful several times.
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Lemma 6.3. Let ρ be any centred Gaussian density. Then there exist constants
r, c ∈ (0,∞) such that for all x ∈ R and |s| ∈ (−1, 1) \ {0},∣∣∣∣ρ(x+ s)− ρ(x)

s

∣∣∣∣ ≤ c
(
ρ(x+ r) + ρ(x− r)

)
. (6.9)

Proof. By Taylor’s theorem, ρ(x + s) = ρ(x) + ρ′(x)s + 1
2
ρ′′(ξx,s)s

2, for some ξx,s
between x and x+ s. Therefore, for |s| ∈ (0, 1),∣∣∣∣ρ(x+ s)− ρ(x)

s

∣∣∣∣ ≤ |ρ′(x)|+ |ρ′′(ξx,s)|. (6.10)

Since ρ′(x) = P1(x)ρ(x) and ρ′′(x) = P2(x)ρ(x) for some polynomials P1, P2, it
follows easily that there is x0 <∞ such that |ρ′(x)|+|ρ′′(ξx,s)| ≤ (ρ(x+2)+ρ(x−2))
for all x /∈ [−x0, x0] and s ∈ [−1, 1]. Finally, since ρ > 0 on R, we can made the
last inequality valid on whole R by multiplying the right-hand side by a sufficiently
large constant c. �

We now show that F maps I × L2(ν∗) to L2(ν∗). To this end it is enough to
prove that for f ∈ L2(ν∗) and h ∈ R, Hh[f ] ∈ L2d(ν∗). The following lemma
shows a little bit more, as it will be needed in the later proofs, and also proves the
continuity of h 7→ Hh.

Lemma 6.4. (a) If h, s ∈ R and f ∈ L2(ν∗), then

‖θsHh[f ]‖L2d(ν∗) ≤ Ch,s‖f‖L2(ν∗). (6.11)

In particular, θsHh[f ] ∈ L2d(ν∗).
(b) The function h 7→ Hh from I to B(L2(ν∗), L2d(ν∗)) is (strongly) continuous.

Proof. (a) For f ∈ L2(ν∗), let g = θ−1
h∗ f ∈ L2(ν). Then, for a ≥ 0, by (6.6),

Hh[f ](a) =

∫ ∞
0

f(x)ρY

(
x− a

d
+
d− 1

d
h
)

dx

=

∫ ∞
h∗

g(x)ρY

(
x− a+ dh∗ − (d− 1)h

d

)
dx

= G[g]
(
a+ dh∗ − (d− 1)h

)
,

(6.12)

where we defined G[g](a) :=
∫∞
h∗
g(x)ρY (x− a

d
) dx. Note that G is strongly related

to Lh∗ (see (3.6)) which suggests that we eventually should apply Proposition 3.2.
We therefore write∥∥θsHh[f ]

∥∥2d

L2d(ν∗)
≤
∫
R

(
G[g](a+ s+ dh∗ − (d− 1)h)

)2d
ρν(a+ h∗) da

=

∫
R

(
G[g](a)

)2d
ρν
(
a− s− (d− 1)h∗ + (d− 1)h

)
da

=

∫
R

(
G[g](a)

)2dρν
(
a− s− (d− 1)(h∗ − h)

)
ρν(a)

ρν(a) da.

(6.13)
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Hölder’s inequality with p = 5/4 and q = 5 then yields∥∥θsHh[f ]
∥∥2d

L2d(ν∗)
≤
∥∥G[g]

∥∥2d

L5d/2(ν)

∥∥∥ρν(· − s− (d− 1)(h∗ − h))

ρν(·)

∥∥∥
L5(ν)

. (6.14)

The function inside the second norm on the right-hand side grows at most expo-
nentially at infinity and thus its L5(ν)-norm is finite, we denote it C̃h,s. The first
norm satisfies ‖G[g]‖2d

L5d/2(ν)
≤ ‖G[g]‖2d

Ld2+1(ν)
since 5d/2 ≤ d2 + 1 for every d ≥ 2.

Moreover, since G[f ](a) = EY
[
1[h∗,∞)(Y + a

d
)f(Y + a

d
)
]
, the hypercontractivity

(3.10) implies that ‖G[g]‖2d
Ld2+1(ν)

≤ d ‖g‖2d
L2(ν) which is finite because g ∈ L2(ν).

This together implies (6.11) with with Ch,s = (dC̃h,s)
1/(2d).

(b) Let h, h′ ∈ I be such that |h − h′| < 1, and let f ∈ L2(ν∗) and g = θ−1
h∗ f .

Then, analogously to (6.12), using then Lemma 6.3,∣∣Hh[f ](a)−Hh′ [f ](a)
∣∣

≤
∫ ∞
h∗
|g(x)|

∣∣∣∣ρY (x− a+ dh∗ − (d− 1)h

d

)
− ρY

(
x− a+ dh∗ − (d− 1)h′

d

)∣∣∣∣ dx
≤ c|h− h′|

∑
u=±1

∫ ∞
h∗
|g(x)|ρY

(
x− a+ dh∗ − (d− 1)h

d
+ ur

)
dx

≤ c|h− h′|
∑
u=±1

G[|g|]
(
a+ dh∗ − (d− 1)h+ urd

)
.

(6.15)

Therefore, using exactly the same arguments as in the proof of (a) and the triangle
inequality, ∥∥Hh[f ]−Hh′ [f ]

∥∥
L2d(ν∗)

≤ c|h− h′|‖f‖L2(ν∗), (6.16)

which proves the stated continuity. �

We can now compute the first partial Fréchet derivatives of the function F
defined in (6.8).

Lemma 6.5. The partial derivative DfF at point (h, f) is given by

DfF (h, f)(g) = −g + 1[0,∞)d(1−Hh[f ])d−1Hh[g]. (6.17)

In particular, DfF (h, f) is a bounded linear operator on L2(ν∗) and it depends
continuously on h ∈ I and f ∈ L2(ν∗).

Proof. We recall that for every k ≤ d the Fréchet derivative of the power function
f 7→ fk, viewed as a map from L2d(ν∗) to L2d/k(ν∗) is a continuous function of f
and is given by

Df (f
k)(g) = kfk−1g, (6.18)

(see, e.g., [Zei95, Chap. 4.3]), and that the Fréchet derivatives satisfy the chain
rule (e.g., Corollary to Theorem 4.D in [Zei95]). Therefore, using also that Hh[f ] ∈
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L2d(ν∗) by Lemma 6.4(a),

Df

(
(1−Hh[f ])d

)
(g) = −d(1−Hh[f ])d−1DfHh[f ](g)

= −d(1−Hh[f ])d−1Hh[g],
(6.19)

where in the last step we used the fact that Hh is a linear operator and thus
DfHh[f ](g) = Hh[g]. Recalling the definition (6.8) of F , formula (6.17) directly
follows. The fact that DfF (h, f) is a bounded linear operator on L2(ν∗) then
follows by Lemma 6.4(a) and Hölder’s inequality.

To prove the continuity ofDfF (h, f), let h, h′ ∈ I and f, f ′, g ∈ L2(ν∗). Ignoring
the non-essential prefactor d1[0,∞), DfF (h, f)(g)−DfF (h′, f ′)(g), can be written
as

(1−Hh[f ])d−1Hh[g]− (1−Hh′ [f
′])d−1Hh′ [g]

=
(
(1−Hh[f ])d−1 − (1−Hh′ [f

′])d−1
)
Hh[g] + (1−Hh′ [f

′])d−1
(
Hh[g]−Hh′ [g]

)
.

(6.20)

By Hölder’s inequality and (6.16), the L2(ν∗)-norm of the second summand is
bounded by C(1+‖f ′‖L2(ν∗))

d−1‖g‖L2(ν∗)|h−h′|. The first summand can be rewrit-
ten using the formula ak − bk = (a − b)

∑k−1
i=0 a

ibk−1−i, and the so arising term
Hh[f ]−Hh′ [f

′] can be expanded as (Hh[f ]−Hh′ [f ]) + (Hh′ [f ]−Hh′ [f
′]). There-

fore, using the linearity of Hh, Lemma 6.4(a,b), and Hölder’s inequality again, the
L2(ν∗)-norm of the first summand is bounded by

C‖g‖
[
|h− h′|

(
1 + ‖f‖+ ‖f ′‖

)d−1
+ ‖f − f ′‖

(
1 + ‖f‖+ ‖f ′‖

)d−2]
, (6.21)

where all norms are in L2(ν∗). The continuity of (f, h) 7→ Df (f, h) then directly
follows from these estimates. �

Lemma 6.6. The partial derivative DhF at point (h, f) is given by

DhF (h, f) = 1[0,∞)d
(
1−Hh[f ]

)d−1
H ′h[f ], (6.22)

where, for h ∈ I and f ∈ L2(ν∗), H ′h[f ] : R→ L2d(ν∗) is given by

H ′h[f ](a) =
d− 1

d

∫ ∞
0

f(x)ρ′Y

(
x− a

d
+
d− 1

d
h
)

dx, (6.23)

with ρ′Y being the derivative of ρY . In particular, DhF (h, f) ∈ L2(ν∗) and it is a
continuous function of h ∈ I and f ∈ L2(ν∗).

Proof. We start by showing that for any f ∈ L2(ν∗) the h-derivative of Hh[f ] is
given by DhHh[f ] = H ′h[f ] ∈ L2d(ν∗). To see this we have to check that

lim
s→0

1

s

(
Hh+s[f ]−Hh[f ]

)
= H ′h[f ] in L2d(ν∗). (6.24)
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We first show the pointwise convergence. By (6.6), for fixed a ∈ R, it holds

1

s

(
Hh+s[f ](a)−Hh[f ](a)

)
=

∫ ∞
0

f(x)
1

s

(
ρY

(
x− a

d
+
d− 1

d
(h+ s)

)
− ρY

(
x− a

d
+
d− 1

d
h
))

dx

=:

∫ ∞
0

f(x)Φs

(
x− a

d
+
d− 1

d
h
)

dx.

(6.25)

Obviously, lims→0 Φs(x − a
d

+ d−1
d
h) = d−1

d
ρ′Y (x − a

d
+ d−1

d
h), and, by Lemma 6.3,

max|s|<1|Φs(y)| ≤ c(ρY (y + r) + ρY (y − r)) =: Φ̄(y). Since f ∈ L2(ν∗) ⊂ L1(ν∗),
it holds that fρν∗ ∈ L1(dx). Moreover, since the variance of ν∗ is larger than the
variance of Y , that is σ2

ν > σ2
Y , the ratio ρY (y+c)/ρν∗(y) is bounded for any c ∈ R.

As consequence, f(·)Φ̄(·− a
d

+ d−1
d
h) ∈ L1([0,∞), dx), and thus, by the dominated

convergence theorem,

lim
s→0

1

s

(
Hh+s[f ](a)−Hh[f ](a)

)
=

∫ ∞
0

f(x) lim
s→∞

Φs

(
x− a

d
+
d− 1

d
h
)

dx

=
d− 1

d

∫ ∞
0

f(x)ρ′Y

(
x− a

d
+
d− 1

d
h
)

dx = H ′h[f ](a),

(6.26)

which establishes the pointwise convergence in (6.24).
To show the convergence in L2d(ν∗) we observe, by Lemma 6.3 again, that the

function

H̄h[f ](a) :=

∫ ∞
0

|f(x)|Φ̄
(
x− a

d
+
d− 1

d
h
)

dx = c
(
Hh[f ](a+ r) +Hh[f ](a− r)

)
(6.27)

dominates
∣∣1
s
(H(h + s, f) − H(h, s))

∣∣ for all small |s|. Moreover, by Lemma 6.4,
θ±rHh[f ] ∈ L2d(ν∗) and thus also H̄h[f ] ∈ L2d(ν∗). The L2d(ν∗) convergence in
(6.24) thus follows by another application of the dominated convergence theorem.

Claim (6.22) then follows from (6.24) and the definition (6.8) of F by the chain
rule:

DhF (h, f) = −Dh

(
1[0,∞)

(
1−Hh[f ]

)d)
= 1[0,∞)d

(
1−Hh[f ]

)d−1
H ′h[f ], (6.28)

as required.
Finally, we show that (h, f) 7→ DhF (h, f) is continuous. We first observe that by

similar arguments as in the proof of Lemma 6.4, one can show that H ′h[f ] satisfies
analogous estimates as Hh[f ], namely, for h, h′ ∈ R and f ∈ L2(ν∗),

‖H ′h[f ]‖L2d(ν∗) ≤ Ch‖f‖L2(ν∗),

‖H ′h[f ]−H ′h′ [f ]‖L2d(ν∗) ≤ c|h− h′|‖f‖L2(ν∗).
(6.29)



CRITICAL PERCOLATION OF THE GFF ON REGULAR TREES 21

Then, again similarly to the proof of the continuity of DfF (h, f), ignoring the
non-essential prefactor d1[0,∞), DhF (h, f)−DhF (h′, f ′) can be written as

(1−Hh[f ])d−1H ′h[f ]− (1−Hh′ [f
′])d−1H ′h′ [f

′]

=
(
(1−Hh[f ])d−1 − (1−Hh′ [f

′])d−1
)
H ′h[f ] + (1−Hh′ [f

′])d−1
(
H ′h[f ]−H ′h′ [f ′]

)
.

(6.30)

From this the continuity of DhF (h, f) follows by the same arguments as before,
replacing some of the estimates on Hh[f ] by analogous estimates (6.29) when
needed. �

Lemma 6.7. The relevant second partial Fréchet derivatives of F are continuous
and given by

DffF (h, f)(g1, g2) = −1[0,∞)d(d− 1)
(
1−Hh[f ]

)d−2
Hh[g1]Hh[g2]. (6.31)

and

DhfF (h, f)(g) =− 1[0,∞)d(d− 1)
(
1−Hh[f ]

)d−2
Hh[g]H ′h[f ]

+ 1[0,∞)d
(
1−Hh[f ]

)d−1
H ′h[g].

(6.32)

Proof. For fixed h ∈ R, DfF (h, ·) can be written as a composition of functions
DfF (h, ·) = F2◦F1 with F1 : L2(ν∗)→ L2d/(d−1)(ν∗), F1(f) = 1[0,∞)d(1−Hh[f ])d−1

and F2 : L2d/(d−1)(ν∗) → B(L2(ν∗), L2(ν∗)), F2(l)(g) = −g + l · Hh[g]. By (6.18),
F1 is C1 with DF1(f)(g) = −1[0,∞)d(d − 1)(1 − Hh[f ])d−2Hh[g]. Further, via
calculating the term F2(l + u) − F2(l), one gets DF2(l)(u)(g) = u · Hh[g]. Using
the chain rule gives DffF (h, f) as stated in (6.31).

To compute DhfF (h, f), we fix h ∈ R and write DhF (h, ·) as a multiplication of
functions DhF (h, ·) = F1(·)H ′h[·], where F1 is as described above. Noting that due
to linearity, DfH

′
h[f ](g) = H ′[g], and using the product rule for Fréchet derivatives

(see, e.g., Standard Example 3 to Theorem 4.D in [Zei95]) gives (6.32).
To see the continuity of DffF (h, f), let h, h′ ∈ I and f, f ′, g ∈ L2(ν∗). The dif-

ference DffF (h, f)(g1, g2)−DffF (h′, f ′)(g1, g2) can be written as (again ignoring
the prefactor d1[0,∞))

(1−Hh[f ])d−2Hh[g1]Hh[g2]− (1−Hh′ [f
′])d−2Hh′ [g1]Hh′ [g2]

=
(
(1−Hh[f ])d−2 − (1−Hh′ [f

′])d−1
)
Hh[g1]Hh[g2]

+
1

2
(1−Hh′ [f

′])d−2
(
Hh[g1]−Hh′ [g1]

)(
Hh[g2] +Hh′ [g2]

)
+

1

2
(1−Hh′ [f

′])d−2
(
Hh[g1] +Hh′ [g1]

)(
Hh[g2]−Hh′ [g2]

)
.

(6.33)

Using the Hölder’s inequality for three functions on every summand together with
similar arguments as in the proofs of the Lemmas 6.5 and 6.6, then implies the
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continuity of (f, h) 7→ DffF (f, h). Similarly, for DfhF (h, f), the analogous de-
composition of DfhF (h, f)−DfhF (h′, f ′) together with previous arguments gives
the continuity. �

It is left to check that properties (c) and (d) of Proposition 6.2 are satisfied.

Lemma 6.8. Let χ∗ = θh∗χh∗ be a shift of χh∗. It holds that

N(DfF (h∗, 0)) = R(DfF (h∗, 0))⊥ = span{χ∗}, (6.34)

where ⊥ stands for the orthogonal complement in L2(ν∗). In particular,

dimN(DfF (h∗, 0)) = codimR(DfF (h∗, 0)) = 1. (6.35)

Proof. By Lemma 6.5 and (6.5) it holds

DfF (h∗, 0)(g) = −g + 1[0,∞)dHh∗ [g] = −g + θh∗Lh[θ
−1
h∗ g]. (6.36)

Therefore g ∈ N(DfF (h∗, 0)) if and only if θ−1
h∗ g is an eigenfunction of Lh∗ cor-

responding to eigenvalue 1. By Proposition 3.1, χ is the only such eigenfunction,
and thus

N(DfF (h∗, 0)) = span{θh∗χh∗} = span{χ∗} (6.37)

and its dimension is equal to one.
The property that l ∈ R(DfF (h∗, 0))⊥ is equivalent to

〈
l, DfF (h∗, 0)(g)

〉
ν∗

=

0 for all g ∈ L2(ν∗). However, since by Proposition 3.1 Lh is self-adjoint on
L2(ν), (6.36) implies that DfF (h∗, 0) is self-adjoint on L2(ν∗). Therefore, this is
equivalent to 0 =

〈
l, DfF (h∗, 0)(g)

〉
ν∗

=
〈
DfF (h∗, 0)(l), g

〉
ν∗

for all g ∈ L2(ν∗).
However, this is true iff l ∈ N(DfF (h∗, 0)) = span{χ∗}. �

Lemma 6.9. It holds

DhfF (h∗, 0)(χ∗) 6∈ R(DfF (h∗, 0)). (6.38)

Proof. By Lemma 6.8, g ∈ R(DfF (h∗, 0)) iff g orthogonal to span{χ∗}. We thus
only need to show that

〈
χ∗, DhfF (h∗, 0)(χ∗)

〉
ν∗
6= 0.

Recall that σ2
Y = d+1

d
, and thus ρ′Y (x) = − d

d+1
xρY (x). By Lemma 6.7, for

a, s ∈ R, using that Hh∗ [0] = 0 and the definition (6.23) of H ′h,

DhfF (h∗, 0)(χ∗)(a) = 1[0,∞)(a)dH ′h∗ [χ
∗](a)

= 1[0,∞)(a)(d− 1)

∫ ∞
0

χ∗(x)ρ′Y

(
x− a

d
+
d− 1

d
h∗
)

dx

= −1[0,∞)(a)
d(d− 1)

d+ 1

∫ ∞
0

χ∗(x)
(
x− a

d
+
d− 1

d
h∗
)
ρY

(
x− a

d
+
d− 1

d
h∗
)

dx.

(6.39)
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Writing x− a
d

+ d−1
d
h∗ = x + h∗ − 1

d
(a + h∗), and observing that (· + h∗) = θh∗Id

with Id being the identity map on R, this can be written as

= 1[0,∞)(a)
d− 1

d+ 1

(
(a+ h∗)Hh∗ [χ

∗](a)− dHh∗ [χ
∗θh∗Id](a)

)
= 1[0,∞)(a)

d− 1

d+ 1

(1

d
(χ∗θh∗Id)(a)− dHh∗ [χ

∗θh∗Id](a)
)
,

(6.40)

where in the last equality we used that χ∗ is an eigenfunction ofHh∗ with eigenvalue
d−1, by (6.5). Therefore, using χ∗ = 1[0,∞)χ

∗ and the self-adjointness of Hh∗ on
L2(ν2), 〈

χ∗, DhfF (h∗, 0)(χ∗)
〉
ν∗

=
d− 1

d+ 1

(1

d

〈
χ∗, χ∗θh∗Id

〉
ν∗
− d
〈
χ∗, Hh∗ [χ

∗θh∗Id]
〉
ν∗

)
=
d− 1

d+ 1

(1

d

〈
χ∗, χ∗θh∗Id

〉
ν∗
− d
〈
Hh∗ [χ

∗], χ∗θh∗Id
〉
ν∗

)
=
d− 1

d+ 1

(1

d

〈
χ∗, χ∗θh∗Id

〉
ν∗
−
〈
χ∗, χ∗θh∗Id

〉
ν∗

)
= − (d− 1)2

d(d+ 1)
〈χ, χId〉ν 6= 0,

(6.41)

where in the last step we first applied θ−1
h∗ and then used the fact that χ(a) > 0 iff

a ∈ [h∗,∞), and thus 〈χ, χId〉ν > 0. �

We can now prove Theorem 2.6.

Proof of Theorem 2.6. As already explained, we apply Proposition 6.2 to the func-
tion F defined in (6.8), with X = Y = L2(ν∗), h and f playing the role of t and
x, respectively, and with h∗ corresponding to t0. By Lemmas 6.5–6.9, the re-
quirements (a)–(d) of this proposition are satisfied with x0 = χ∗, and DffF is
continuous. Taking for Z = (χ∗)⊥ for sake of concreteness, there is thus a neigh-
bourhood U ⊂ R × L2(ν∗) of (h∗, 0) such that all non-trivial (that is non-zero)
solutions of F (h, f) = 0 in U can be written as {(ϕ(α), αχ∗ + αψ(α)) : |α| < a}
for some a > 0 and C1 functions ϕ : (−a, a) → R, ψ : (−a, a) → (χ∗)⊥ ⊂ L2(ν∗)
with ϕ(0) = h∗, ψ(0) = 0. Further, by (6.4),

1

2
DffF (h∗, 0)(χ∗, χ∗) +DfF (h∗, 0)(ψ′(0)) + ϕ′(0)DhfF (h∗, 0)(χ∗) = 0. (6.42)

Since, ϕ(α) = h∗+αϕ′(0) + o(α) as α→ 0, and thus ϕ−1(h) = h−h∗
ϕ′(0)

+ o(h− h∗)
as h→ h∗, the non-trivial solution αχ∗ + αψ(α) can be expanded as a function of
h, in a neighbourhood of h∗,

ϕ−1(h)χ∗ + ϕ−1(h)ψ(ϕ−1(h)) =
h− h∗

ϕ′(0)
(χ∗ + r∗h), (6.43)

where the reminder function r∗h satisfies limh→h∗‖r∗h‖L2(ν∗) = 0.
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Recall now from (6.7), (6.8) that F (h, f) = 0 is the equation for the shifted
forward percolation probability η̃h. Shifting everything back by θ−1

h , using the fact
that by the continuity of the percolation probabilities (Corollary 2.2), the solution
obtained from the bifurcation analysis must agree with η+(h, a), we obtain from
(6.43) that

η+(h, ·) =
h− h∗

ϕ′(0)
θ−1
h (χ∗ + r∗h) =

h− h∗

ϕ′(0)

(
χ+ (θh∗−hχ− χ) + θ−hr

∗
h

)
. (6.44)

We first show that

r+
h := (θh−h∗χ− χ) + θ−hr

∗
h → 0 as h→ h∗ in L2−ε(ν). (6.45)

For the first summand θh−h∗χ − χ, this follows easily from the continuity of χ
(Proposition 3.1), growth estimates on χ (Proposition 3.3) and the dominated
convergence theorem. For the second summand, it holds that

‖θ−hr∗h‖2−ε
L2−ε(ν) =

∫
|r∗h(a− h)|2−ερν(a) da

=

∫
|r∗h(a)|2−ερν(a+ h)

ρν∗(a)
ρν∗(a) da

≤ ‖r∗h‖2−ε
L2(ν∗)

∥∥∥ρν(a+ h)

ρν∗(a)

∥∥∥
L2/ε(ν∗)

,

(6.46)

where we applied Hölder’s inequality on the last line. The first factor on the right-
hand side converges to 0 as h→ h∗, and the second factor remains bounded, which
completes the proof of (6.45).

We proceed by computing ϕ′(0). To this end we project (6.42) to the χ∗ direc-
tion by applying 〈χ∗, ·〉ν∗ on both sides. Note that, by Lemma 6.8, the range of
DfF (h∗, 0) is orthogonal to χ∗, and thus 〈χ∗, DfF (h∗, 0)(ψ′(0))〉ν∗ = 0. Hence,

ϕ′(0) = −〈χ
∗, DffF (h∗, 0)(χ∗, χ∗)〉ν∗

2〈χ∗, DhfF (h∗, 0)(χ∗)〉ν∗
. (6.47)

The scalar product in the denominator was computed in (6.41). For the numerator,
by Lemma 6.7,

DffF (h∗, 0)(χ∗, χ∗) = −d(d− 1)Hh∗ [χ
∗]Hh∗ [χ

∗] = −d− 1

d
(χ∗)2, (6.48)

and therefore,

〈χ∗, DffF (h∗, 0)(χ∗, χ∗)〉ν∗ = −d− 1

d
〈χ∗, (χ∗)2〉ν∗ = −d− 1

d
〈χ, χ2〉ν . (6.49)

As consequence,

ϕ′(0) = −1

2

d+ 1

d− 1

〈χ, χ2〉ν
〈χ2, Id〉ν

. (6.50)

Claim (2.15) of the theorem then follows directly from (6.44), (6.45) and (6.50).
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To obtain the asymptotics (2.16) of η, note that for any a ≥ h∗, using similar
arguments in the proof of the recursion property (5.5),

η(h, a) = Pa[|Cho | =∞] = 1− Pa[|Cho | <∞]

= 1−
(
EY

[
1− η+

(
h,
a

d
+ Y

)])d+1

= (d+ 1)EY

[
η+
(
h,
a

d
+ Y

)](
1 + o(1)

) (6.51)

as h ↑ h∗. The same argument applied to η+ implies

η∗(h, a) = dEY

[
η+
(
h,
a

d
+ Y

)](
1 + o(1)

)
(6.52)

and thus, for every a ∈ R,

lim
h↑h∗

η(h, a)

η+(h, a)
=
d+ 1

d
. (6.53)

which together with (2.15) shows (2.16) and completes the proof. �
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