
CRITICAL PATH ANALYSIS FOR CONTINUUM

PERCOLATION
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Abstract. We prove the validity of the Critical path analysis for
a continuum percolation model close to Golden-Kozlov one. This
is obtained in the limit of strong disorder.

On montre la validité de “Critical path analysis” pour un modèle
de percolation continue proche de celui de Goldon-Kozlov. Le
résultat est obtenu à la limite de grand désordre.

1. Introduction

One of the central issues of the theory of disordered materials is the
determination of effective properties (like electrical conductivity or fluid
permeability) from the knowledge of the micro-structural properties. In
many areas of practical importance, the probability distribution of local
physical characteristics is very broad. An interesting property of these
so-called “highly disordered” systems is that the effective conductivity
of the sample can often be approximated by the conductivity of a very
small part of it. Such part is usually composed by a small number of
paths that contribute overwhelmingly to the effective conductivity. It is
thus important to find out the conditions that lead to this behaviour,
since it is usually far less complex to compute the conductivity of a
small number of paths than of the whole sample.

This idea was, for the first time, introduced by [1] and is known
in the physical literature as “Critical Path Analysis (CPA)”. It was
used successfully in many areas of physics [8, 2]. However, rigorous
investigations are sparse up to now [11, 4].

It should be obvious that the creation of strongly conducting paths
(and thus the calculation of effective properties of the sample) is con-
nected with the percolation of highly conducting areas. Let us explain
this relation heuristically on a simple model. The procedure of reduc-
tion of the sample to a small set of “critical paths” follows [3]. We will
call this procedure a “pruning procedure”.

Date: May 28, 2004.
Key words and phrases. Conductivity, continuum percolation, highly disordered

systems, homogenisation.
This work was supported by grant FNRS 21-54118.98.

1



2 JIŘÍ ČERNÝ

Let ΛN be the box of size N in Z2 and let LN be the set of all bonds
connecting nearest neighbours in ΛN . Assign to each bond b ∈ LN a
random i.i.d. conductivity cb. We want to compute the conductivity of
the sample with the potential difference applied on the left and right
edge of the box.

Now we start describing the “pruning procedure”. First, we sort
all the bonds in the graph (ΛN , LN ) according to their conductivity.
Then we delete all the bonds from the graph except the bonds that
are contained in left or right edge of the box, and we start to re-add
them bond by bond in the order of decreasing conductivity. After
each step we check for loops. If there is a loop, we delete the bond
just added and we continue with the next one. At the beginning of
this procedure, there will be no connection between the left and right
edge. After sufficiently many steps, adding the next bond produces
a connection between the left and right edge. We stop the procedure
at this moment. What we get at this point is a treelike structure
containing one connection from left to right and many dead-ends that
we can delete safely, because they do not contribute to the transport.
The conductivity of this connection is easy to obtain. If the distribution
of local characteristics is broad enough, then the CPA claims that the
conductivity of this connection is close to the conductivity of the graph
before the pruning.

One can go further in this type of reasoning. The conductivity of
one-dimensional path of conducting elements with conductivities drawn
from a very broad distribution is essentially determined by the element
with the smallest conductivity. Applying this to the path constructed
by pruning, one can conclude that the conductivity of the box is not
far from the conductivity of the bond we have added as the last one. If
N is large enough, the conductivity of the last added bond should be
close to the largest value of conductivity c? such that the bonds with
cb > c? percolate. More precisely, denoting by F (x) = P(cb ≤ x) the
distribution function of the local conductivity and by pc the percolation
threshold of the bond percolation, the conductivity of the box should
be close to

c? = sup{x : 1− F (x) ≥ pc}. (1)

In this paper we construct a model where the above heuristic can be
proved. The effective conductivity will be very close (at least in the
limit of strong disorder) to the “critical local conductivity”. This can
be interpreted as a justification of the CPA for this model. The model
we use is a continuous generalisation of the “chess-board” model used
in [4].

2. Definitions and results

We consider the following two-dimensional medium. Let X = X(ω),
ω ∈ Ω be a homogeneous Poisson point process with density λ defined
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on some probability space Ω (see Section 3 for the definition). For
every point x ∈ R2 let S(x) = S(x, ω) denote the minimal distance to
some point of X,

S(x) = inf{d(x, y) : y ∈ X}, (2)

where d(·, ·) denotes the Euclidean distance of two points. We define
the local conductivity of the medium by

σ(x, µ) = σ(x, µ, ω) = exp(µS(x)), (3)

where µ is a positive parameter. That means that our medium can be
considered as the set of insulating grains with the centres in the points
of the point process. The parameter µ controls the amount of disorder
of the system. We will be interested in the case where µ is very large.

The medium we have just defined is obviously statistically isotropic.
Thus, its macroscopic properties can be described by one scalar effec-
tive conductivity σ?(µ, ω) defined as follows. Let ΛN be the box [0, N ]2

and let uN(x, µ) = uN(x, µ, ω) be the solution of the system

div(σ(x, µ)∇uN(x, µ)) = 0 x = (x1, x2) ∈ ΛN

uN(x, µ) = 0 x1 = 0

uN(x, µ) = N x1 = N

∂uN (x, µ)

∂x2
= 0 x2 ∈ {0, N}.

(4)

The function uN(x, µ) is the electrical potential in the box ΛN with
the prescribed boundary conditions. Let JN(µ) = JN(µ, ω) denote the
overall flow through the vertical line x1 = b, b ∈ (0, N),

JN(µ) =

∫ N

0

σ((b, x2), µ)
∂uN((b, x2), µ)

∂x1
dx2, (5)

which obviously does not depend on b. The effective conductivity is
then defined by

σ?(λ, µ, ω) = lim
N→∞

1

N
JN(µ, ω). (6)

Since our medium is evidently ergodic, it follows from the results of
homogenisation theory that this limit exists almost surely and does
not depend on ω (see [7] Theorem 7.4).

To state our first theorem we need one quantity from the continuum
percolation (for a good survey see [10]). It is well known that there
exists a nontrivial value Sc(λ), such that the set {x ∈ R2 : S(x) ≤
r} percolates iff r > Sc(λ), and its complement percolates iff r <
Sc(λ). We call Sc(λ) the critical radius. As we have noted in the
introduction, this value should be important for the estimation of the
effective conductivity in the limit of the strong disorder. Actually, we
have
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Theorem 2.1. For almost all realisations of the medium the value of
the effective conductivity depends only on the parameters λ and µ and
asymptotically satisfies

lim
µ→∞

1

µ
log σ?(λ, µ) = Sc(λ). (7)

To clarify the relation of this result with equation (1) observe that
Theorem 2.1 roughly says that σ?(λ, µ) ∼ exp(µSc(λ)). This value is
the largest σ such that the domain where the conductivity is larger or
equal to σ percolates.

The next theorem shows something that resembles the pruning that
was described before, and also clarifies the meaning of Theorem 2.1.
The pruning in this case cannot be defined in the same way as for
the square lattice. However, it is possible to reduce our medium and to
obtain a medium that essentially consists of points connected by tubes.
These points will not be located on the square lattice, but this does
not pose major problems for the pruning procedure.

As we have already noted, our medium can be regarded as an ensem-
ble of insulating grains in the plane. Between every pair of neighbouring
grains there is a domain where the conductivity is large. The structure
of these grains can be identified with the Voronoi tessellation defined
by the process X(ω). If µ is large, the conductivity decreases very
rapidly with the distance from the borders of Voronoi cells. Hence, the
contribution of a small neighbourhood of these borders to the effective
conductivity should be very important. Thus, we should not make a
large error if we consider the rest of the medium as totally insulat-
ing. We get a medium that consists only of the thin tubes around the
borders of the Voronoi cells.

More precisely, let V(ω) ⊂ R2 denote the set of borders of Voronoi
cells around the points of X(ω) and let ρ > 0 be a small positive
constant. We define first the modified conductivity σ̃(x)

σ̃ρ(x, µ) =

{

σ(x, µ) if d(x,V) < ρ

0 if d(x,V) > 2ρ.
(8)

In the domain between ρ and 2ρ the function σ̃ρ(x) continuously and
“monotonically” interpolates between the values on the boundary of
this domain. The way how the interpolation is done is not impor-
tant. We use it only to make the conductivity continuous and to avoid
problems with the boundary conditions on the walls of the tubes.

The medium σ̃ρ(x) can be “pruned” further. It is obvious that at
each bond b of V there is exactly one point sb where the function
S(x), and thus also σ̃ρ(x, µ), has a saddle point. The flow passing
through the tube around the bond b should therefore go through an
area where the local conductivity is close to σ(sb, µ). Intuitively, the
conductivity of the whole tube around b should be proportional to this
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value, because far from the saddle point the local conductivity is much
larger. Actually, it can be easily proved at least for µ large enough,
but we will not need this claim later. Using this observation, one sees
that the bonds with σ(sb, µ) very small should not contribute too much
to the overall conductivity. So we delete them. More formally, let Vδ

be the subset of V containing only the bonds with S(sb) > Sc(λ)− δ,
i.e. the bonds that are far from the points of X. Let us define another
modified medium σ̂ρ,δ(x, µ) in the same way as we defined σ̃ρ(x, µ) but
using Vδ instead of V:

σ̃ρ,δ(x, µ) =

{

σ(x, µ) if d(x,Vδ) < ρ

0 if d(x,Vδ) > 2ρ.
(9)

The medium σ̂ρ,δ consists of the tubes from σ̃ρ with large conductivity.
Note, that we do not define pruning in the inductive way that we

have described before. The “pruned” medium σ̂ρ,σ(x) does not consist
of a single one-dimensional path crossing the box and it contains more
tubes than it should. However, if the parameter δ is small (how small
it should be, depends on the size of the box that we consider) the
difference should not be substantial.

We use σ̃?
ρ(λ, µ) and σ̂?

ρ,δ(λ, µ) to denote the effective conductivities
of the modified media. Then we have:

Theorem 2.2. For every δ > 0 and ρ > 0, the effective conductivities
of the pruned media σ̃?

ρ(λ, µ) and σ̂?
ρ,δ(λ, µ) satisfy the same relation as

the original medium, i.e.

lim
µ→∞

1

µ
log σ̃?

δ (λ, µ) = lim
µ→∞

1

µ
log σ̂?

ρ,δ(λ, µ) = Sc(λ). (10)

At first sight, the results of our theorems can be found quite un-
satisfactory, because they give us only the estimation in logarithmic
scale and in the limit of the strong disorder. However, they can be
useful to find out the dependence of the effective conductivity on other
parameters. Indeed, let the local conductivity σ(x, α) be defined by
exp(µf(S(x), α)), where f is a strictly increasing and differentiable in
the first argument, and with the first derivative with respect to this ar-
gument in the point Sc(λ) bounded away from zero and infinity. Then
an easy modification of the arguments given in the proof of Theorem
2.1 gives

lim
µ→∞

1

µ
log σ?(λ, µ, α) = f(Sc(λ), α). (11)

This is essentially the way how the idea of CPA was used in the original
article [1].

Note also that there are two reasons for having results only in the
logarithmic scale. The first one is the “non-gaussian” shape of the
graph of the conductivity around the saddle points. This problem can
be probably resolved by a more careful computation. However, there
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is still a second problem. We do not have enough control of the infinite
cluster of continuum percolation near the critical point.

The proofs of Theorems 2.1 and 2.2 can be found in Section 4 and
they use homogenisation techniques. In Section 3 we show some facts
about continuum percolation in R2.

3. Percolation results

In this section we prove some facts that are known to be valid for
discrete percolation. To our knowledge similar results do not exist in
the case of continuum percolation. The proofs we present are rather
standard modifications of the discrete versions. The reader familiar
with the technical details can skip the rest of this section and read
only Propositions 3.1 and 3.7 that will be used later.

Let N be a set of all finite counting measures assigning the weight
at most one to singletons equipped with the usual σ-field N generated
by sets of the form {n ∈ N : n(A) = k}, where A ⊂ R2 is a Borel set
and k ∈ N. Every n ∈ N can be identified with a set of points in R2.
This allows us to write x ∈ n, if n has an atom at x ∈ R.

Let (Ω,F , P) be some probability space. The Poisson point process
with density λ is an N -valued random variable which satisfies the fol-
lowing two conditions. X(A) is a Poisson random variable with mean
λ|A|, where |A| denotes the Lebesgue measure of A. If A1, A2 ⊂ R2,
A1 ∩A2 = ∅, then X(A1) and X(A2) are independent. We write Pλ for
the law of X and Eλ for the corresponding expectation.

Let us now define set X(ω), ω ∈ Ω, as the set {x ∈ R2 : S(x) ≤ 1}.
The set X is the union of unit disks with centres in X(ω). We will call
it the occupied region. The complement of X(ω) is called the vacant
region. For any A ⊂ R2 we use W (A) to denote the union of all
components of X (occupied components) intersecting A. Similarly, we
write V (A) for the union of vacant components intersecting A. It is
well known that in dimension two there exists a constant λc such that
for every bounded set A the following holds

λc = sup{λ : Pλ[diam V (A) =∞] > 0} = inf{λ : Eλ[diam V (A)] <∞}

= inf{λ : Pλ[diam W (A) =∞] > 0} = sup{λ : Eλ[diam W (A)] <∞},
(12)

i.e. occupied region percolates above λc and vacant region percolates
below λc.

Let E be an event. We say that E is increasing event if from ω ∈ E
follows ω′ ∈ E for all ω′ satisfying X(ω′) ⊃ X(ω). The event E is
decreasing if Ec is increasing.

We now introduce some obvious geometrical notation. Let A1, A2,
B be subsets of R2. We write A1

occ
←→
in B

A2 if A1 is connected to A2 in

B ∩ X, i.e. there exists a continuous function φ : [0, 1] 7→ R2 such that
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φ(0) ∈ A1, φ(1) ∈ A2, and φ(t) ∈ X ∩ B for every t ∈ [0, 1]. If the

set B is omitted, then it is understood B = R2. We use A1
occ
←→
out B

A2

for A1
occ
←→
in Bc

A2. Similarly, we write A1
vac
←→
inB

A2 if there exists a curve

connecting A1 and A2 laying completely in B ∩ Xc.
Let BL(x) be the box [x1−L, x1+L]×[x2−L, x2+L]. We say that the

polygonal line xi, i = 0, . . . , n, forms a left-right (LR) occupied crossing
of BL(0) if all points xi are in X, the disks around the successive points
intersect (i.e. d(xi−1, xi) ≤ 2, i = 1, . . . , n), the points xi, i = 1, . . . n−1,
are in BL(0), and the first and the last disk intersect the left, resp. right,
edge of BL(0) (i.e. x1

0 ∈ [−L − 1,−L + 1], x1
n ∈ [L − 1, L + 1]). Two

LR occupied crossings are called disjoint if the corresponding polygonal
lines do not intersect.

A smooth curve φ : [0, 1] 7→ R2 is called LR vacant crossing of
BL(0) if φ(0) ∈ {−L} × [−L, L], φ(1) ∈ {L} × [−L, L], and φ([0, 1]) ∈
BL(0) ∩ Xc. Two LR vacant crossings φ and φ′ are called disjoint if

inf
{

d(φ(t), φ′(t′)) : t, t′ ∈ [0, 1]
}

≥ 2. (13)

The constant 2 has not any particular importance, any other positive
constant can be chosen. Similarly, one defines the top-bottom (TB)
crossings of BL(0). We will need the following proposition to prove
Theorem 2.1.

Proposition 3.1. (a) Let λ > λc, then there exist positive con-
stants β, γ, L0 depending only on λ such that

Pλ[# of disjoint occ. LR crossings of BL(0) ≤ βL] ≤ e−γL (14)

for L ≥ L0.
(b) Let λ < λc, then there exist positive constants β ′, γ′, L′

0 de-
pending only on λ such that

Pλ[# of disjoint vac. LR crossings of BL(0) ≤ β ′L] ≤ e−γ′L (15)

for L ≥ L′
0.

We will prove part (a) of this proposition using the methods that are
strongly inspired by discrete percolation (see [5], Lemma 11.22). We
start with the following lemma.

Lemma 3.2. Let λ > λc, then there exists κ > 0, such that for L large
enough

Pλ[∃ occ. LR crossing of BL(0)] ≥ 1− e−κL. (16)

Proof. Using duality in R2 it is easy to see

Pλ[@ occ. LR crossing of BL(0)] = Pλ[∃ vac. TB crossing of BL(0)].
(17)
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If we place on the upper edge of BL(0) 2L + 1 boxes of size 2, then it
is easy to see that the last expression can be bounded by

≤
L

∑

i=−L

Pλ[B1((i, L))
vac
←→ lower edge of BL(0)]

≤ (2L + 1)Pλ[B1(0)
vac
←→ ∂B2L(0)].

(18)

We used the obvious notation ∂BL(0) for boundary of BL(0) and the
translation invariance of the measure Pλ.

Since λ > λc, it follows from (12) that Eλ[diam(V (B1(0)))] < ∞.
Denoting by diam′(A) the diameter of the set A in ∞-norm and using
the obvious fact diam′(A) ≤ diam(A), we can write

∞ > Eλ[ diam(V (B1(0)))] ≥ Eλ[ diam′(V (B1(0)))]

≥ Eλ[sup{‖x‖∞ : x ∈ V (B1(0))}]

≥
∞

∑

i=0

Pλ[sup{‖x‖∞ : x ∈ V (B1(0))} ≥ i]

=

∞
∑

i=0

Pλ[B1(0)
vac
←→ ∂Bi(0)].

(19)

From the last expression one can see that there exist k such that

4(k + 2)P(0
vac
←→ ∂Bk(0)) ≤ η < 1. (20)

Indeed, suppose on the contrary that P (0
vac
←→ ∂Bk(0)) > η/4(k + 2)

for every k. Then the last sum in (19) is clearly infinite and we get the
contradiction with the first inequality in (19).

Let N ≥ k +2. By dividing the vacant connection from 0 to ∂BN (0)
into two parts, first one from 0 to ∂Bk(0) and second one from ∂Bk+2(0)
to ∂BN (0) we get

Pλ[B1(0)
vac
←→ ∂BN (0)] ≤

≤ Pλ[(B1(0)
vac
←→ ∂Bk(0)) ∩ (∂Bk+2(0)

vac
←→

out Bk+2(0)
∂BN (0))]. (21)

Further, let Z be the set of points laying on the segments composing
the boundary of Bk+2 that have the distance from the vertices of these
segments divisible by 2. Around every point of Z we put a box whose
edges have length 2. We get

Pλ[B1(0)
vac
←→ ∂BN (0)] ≤

≤ Pλ

[

B1(0)
vac
←→ ∂Bk(0) ∩

(

⋃

z∈Z

B1(z)
vac
←→

out Bk+2(0)
∂BN (0)

)]

. (22)

The events in the last equation are decreasing and are chosen to be
disjoint (i.e. the disks, that can have influence on the first event cannot



CRITICAL PATH ANALYSIS FOR CONTINUUM PERCOLATION 9

change the second and vice versa). We can thus use BK inequality
proved for continuum percolation by [6]. Hence,

Pλ[B1(0)
vac
←→ ∂BN (0)]

≤ Pλ[B1(0)
vac
←→ ∂Bk(0)]

∑

z

Pλ[B1(z)
vac
←→

out Bk+2(0)
∂BN (0)]

≤ 4(k + 2)Pλ[B1(0)
vac
←→ ∂Bk(0)]Pλ[B1(0)

vac
←→ ∂BN−k−2(0)]

≤ ηPλ[B1(0)
vac
←→ ∂BN−k−2(0)].

(23)

We used again the translation invariance of Pλ and (20). Iterating
equation (23) until N − j(k + 2) ≥ k + 2 we get

Pλ[B1(0)
vac
←→ ∂BN (0)] ≤ ηbN/(k+2)c. (24)

Substituting this into (18) we obtain

Pλ[@ occ. LR crossing of BL(0)] ≤ (2L + 1)ηb2L/(k+2)c (25)

and the proof is finished taking L sufficiently large and κ slightly
smaller than −2 log η/(k + 2) > 0. �

To state the next lemma we need the following definition. Let E
be an increasing event. We define the r-kernel Ir(E) of this event as
Ir(E) = {ω ∈ E : every ω′ such that X(ω) ⊃ X(ω′) and |X(ω) \
X(ω′)| ≤ r is also in E}. The event Ir(E) is the set of configurations
from which we can delete arbitrary r disks and E still occurs. The
utility of this definition follows from the fact that the r-kernel of the
event “there is a LR occupied crossing” is the event “there are r+1 LR
occupied crossings”. We have the following lemma (compare it with
[5], Theorem 2.45).

Lemma 3.3. Let λ2 > λ1 and let E be an increasing event. Then

1− Pλ2
[Ir(E)] ≤

(

λ2

λ2 − λ1

)r

(1− Pλ1
[E]) . (26)

Proof. Let X ′ be the λ1/λ2-thinning of X, i.e. the point process that we
obtain from X by deleting each point independently with probability
1 − λ1/λ2. If X is the Poisson point process with density λ2, then
X ′ is again a Poisson point process, but this time with density λ1. If
ω /∈ Ir(E), then there exists a set B ⊂ X(ω), such that |B| ≤ r and ω̃
obtained from ω by deleting the points in B is not in E. If there are
more such sets B, we choose one according to some predefined order.

Conditionally on B, there is probability (1− λ1/λ2)
|B| that we delete
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all points in B, i.e. we have

P[X ′ /∈ E|X /∈ Ir(E)] ≥

(

1−
λ1

λ2

)r

P[X ′ /∈ E] ≥

(

λ2 − λ1

λ2

)r

P[X /∈ Ir(E)]

(27)

and the claim follows easily. �

Proof of Proposition 3.1(a). Let AL be the event that there exists an
occupied LR crossing of BL(0). If λ > λc, then there exists λ′, such
that λ > λ′ > λc and κ > 0, such that

Pλ′ [AL] ≥ 1− e−κL for L ≥ L0. (28)

Since Ir(AL) = {∃ at least r + 1 disjoint LR occupied crossings} we
choose r = βL. Using Lemma 3.3 we have

1− Pλ[∃ at least βL occ. LR crossings] ≤

(

λ

λ− λ′

)βL

e−κL. (29)

We now take β small enough to have γ(λ, λ′, β) = κ(λ′)−β log λ
λ−λ′

> 0.
Using this choice we easily complete the proof. �

Proof of Proposition 3.1(b). The proof of this part is slightly more com-
plicated since the vacant crossings do not have the discrete underlying
structure. We will use a coarse graining to reduce this case to the
discrete site percolation. We start with the following lemma.

Lemma 3.4. Let H(M, L) be the event that there is vacant crossing of
the rectangle with sides M and 2L connecting the sides with length M .
If λ < λc, then there exist positive constants C, ρ such that

Pλ[H(M, L)] ≥ 1− CLe−ρM . (30)

Proof.

Pλ[H(M, L)] = 1− Pλ[∃ occ. crossing in perpendicular direction]

≤ 1− 2LPλ[0
occ
←→ ∂BM (0)] ≤ 1− 2LCe−ρM ,

(31)

In the last inequality we use the fact that if λ < λc, then (see page 38
of [10])

Pλ(0
occ
←→ ∂BM (0)) ≤ Ce−ρM . (32)

This finishes the proof. �

Using this lemma we will prove a two dimensional version of coarse
graining following closely the proof from [5], page 191. We call the box
Bk(x) good if the next two conditions hold:

(i) there are both TB and LR vacant crossings of Bk(x).
(ii) all other vacant clusters have diameter (in ∞-norm) smaller

than k.
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We want to prove the following lemma.

Lemma 3.5. If λ < λc, then for every ε > 0 there exist k, such that

P[Bk(x) is good ] ≥ 1− ε. (33)

Proof. Without lost of generality we put x = 0. Let ρ be the constant
from Lemma 3.4, ν > 1/ρ, and k large enough such that ν log k ≤ k.
We take four rectangles with sides 2k and ν log k composing an “an-
nulus” around the origin with the “outer radius” k and “inner radius”
k− ν log k. More precisely, let R1 be the rectangle [−k, k]× [−k,−k +
ν log k] and let R2, R3 and R4 be its images under rotations by π/2, π,
and 3π/2 around the origin.

Let B denote the event that there is a vacant crossing connecting
the sides of length ν log k inside of all these rectangles. The probability
of this event can be bounded from below using the FKG inequality,

Pλ[B] ≥
(

Pλ[H(ν log k, k)]
)4

. (34)

Applying the previous lemma we have

Pλ[B] ≥ (1− Ak1−ρν)4. (35)

The last expression converges to 1 as k goes to infinity. Hence, we
verified that condition (i) from the definition of the good block can be
satisfied with arbitrarily large probability.

It remains to exclude the possibility that there is another cluster
with diameter larger than k. This cluster has to cross the rectangle
[−k, k]×[i, i+k] vertically or [i, i+k]×[−k, k] horizontally (−k ≤ i ≤ 0).
However, the probability that there is horizontal or vertical vacant
crossing of this rectangle turns exponentially to 1. Hence, this cluster is
with overwhelming probability connected to the vacant crossing of one
of the four rectangles R1, . . . , R4. This finishes the proof of Lemma 3.5.

�

We now construct a block process Zx, x ∈ Z2. Let ε > 0 and
choose k large enough such that Pλ[Bk(0) is good ] ≥ 1 − ε. Let
Zx = 1 if Bk(xk) is good, and Zx = 0 otherwise. Obviously, Zx is a
dependent site percolation on Z2 with probability that Zx = 1 larger
than 1 − ε. The definition of the good blocks implies the following
property. For every nearest neighbours path x1, . . . , xn in Z2 such that
Zxi

= 1, i = 1, . . . , n, there exist a vacant path of original continuum
percolation passing through the blocks Bk(xik). Hence, if we show
that there is at least βL disjoint crossings of the square BL/k(0) for the
process Zx, the proof will be finished.

To prove this we use the standard method, namely stochastic domi-
nation. Let Ux and Vx be two families of random variables indexed by
x ∈ Z2 and taking values in the set {0, 1}. We say that U stochasti-
cally dominates V if for all bounded, increasing, measurable functions
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f : {0, 1}Z
2

→ R we have

E(f(U)) ≥ E(f(V )). (36)

We say that the family Ux is k-dependent if the random variables Ux

and Uy are independent for all x, y such that ‖x− y‖∞ > k. The block
process Zx is clearly 2-dependent. Let Y p

x denote the independent
Bernoulli site percolation process on Z2 with the density p and let P?

p

denote its measure. We use the following lemma from [9].

Lemma 3.6. Let Vx be a k-dependent family of random variables that
satisfies P[Vx] ≥ δ for all x ∈ Z2. Then there exists a non-decreasing
function π(δ) : [0, 1] → [0, 1] satisfying π(δ) → 1 as δ → 1, such that
V stochastically dominates Y π(δ).

We apply this lemma with V = Z. Let C be the event “there is
at least βL disjoint LR crossings of BL/k(0).” The event C is clearly
increasing. Thus we have

Pλ(C) ≥ P?
π(1−ε)(C). (37)

We take ε such that π(1 − ε) is larger than the percolation threshold
pc of independent site percolation. It is known that for independent
site percolation above the threshold there exist constants β̃ and γ̃ such
that

P?
p[there is at least β̃L crossings of BL(0)] ≥ 1− e−γ̃L. (38)

Using this fact we easily complete the proof. �

For the proof of Theorem 2.2 we will need the following proposition.
We recall that V denotes the set of borders of Voronoi cells around the
points of the point process X. Let W ⊂ V. The LR crossing of BL(0)
in W is the curve φ : [0, 1] → R2 connecting the left and right side of
BL(0) such that φ([0, 1]) is a subset of W ∩ BL(0). Two LR crossings
are disjoint if they do not intersect.

Proposition 3.7. LetW be the set of bonds b in V such that d(b, X) ≥
1 and let 0 < λ < λc. Then there exist positive constants β ′′, γ′′ and
L′′

0 depending only on λ such that

Pλ[# of disjoint LR crossings of BL(0) in W ≤ β ′′L] ≤ e−γ′′L (39)

for L ≥ L′′
0.

Proof. The proof of this proposition can be probably done by more
elementary methods, but we prefer to use the previous result to prove
it. We will use the fact that for every vacant crossing of BL(0) it is
possible to find a path in W that is “not far” from this crossing.

To formalise the previous claim we first define the equivalence rela-
tion between LR vacant crossings of the strip SL = [−L, L] × R (the
LR vacant crossings of SL are defined in the obvious way). We say that
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two crossings φ1 and φ2 are equivalent if there exists a continuous func-
tion Φ(t, s), such that Φ(t, 0) = φ1(t), Φ(t, 1) = φ2(t), for every fixed
s ∈ [0, 1] Φ(t, s) is a LR crossing of SL, and Φ([0, 1] × [0, 1]) ∩X = ∅.
Less formally, two crossings are not equivalent if there is a disk between
them.

Observing now that every component W of the occupied region X
is separated from X \W by a loop in W, it is easy to see that every
vacant LR crossing of BL(0) is equivalent to a path in W that forms a
crossing of SL and, moreover, this path is almost uniquely determined
(up to its starting and ending parts). There are two problems with this
path. First, it can leave the box BL(0), secondly, two disjoint occupied
crossings can be transformed to not disjoint paths in W. Hence, we
should construct a sufficient number of vacant crossings such that these
two cases do not happen.

This can be achieved by a redefinition of the good blocks. We want
to assure that the vacant crossing of the good block does not leave it
after the transformation to a path in W and that the crossings of two
neighbouring good blocks cannot be equivalent. The easiest way how
to achieve it, is to force the good blocks to contain some disks that will
force the paths inW to stay in the box. One way to do it is to consider
the following definition of the good block.

We say that the block B7k(0) is good if every rectangle [(2j−1)k, (2j+
1)k]× [−7k, 7k], j ∈ {−2, 0, 2} contains a vertical vacant crossing and
every rectangle [−7k, 7k]× [(2j − 1)k, (2j + 1)k] contains a horizontal
vacant crossing. More over, every square

Gjl = [(2j− 1)k +1, (2j +1)k− 1]× [(2l− 1)k +1, (2l +1)k− 1], (40)

where j, l ∈ {−3,−1, 1, 3}, contains at least one disk. This construction
is illustrated on Figure 1.

Figure 1. Good block
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The reader can verify that the disks in the squares Gjl do not permit
the paths in W equivalent to the crossings of [−k, k] × [−7k, 7k] and
[−7k, 7k]× [−k, k] to leave the box B7k(0). We define the box B7k(x)
being good in the obvious way.

We should now show that the probability of the block being good can
be made arbitrarily close to one. First, we observe that the crossings of
the rectangles are independent of the configuration of X in the squares
Gjl. The probability of having the long vacant crossings in all six
rectangles can be bounded from below using the FKG inequality and
Lemma 3.4 by (1 − 7Ck exp(−2k))6. The probability that there is at
least one disk in any of Gjl is 1− exp(−λ(2k − 2)2). Hence

P(B7k(x) is good ) ≥

(1− 7Ck exp(−2k))6[1− exp(−λ(2k − 2)2)]16. (41)

Taking k large enough the right hand side of the previous expression
can be made arbitrarily close to one.

We proceed in the obvious way. We define the process Zx, x ∈
Z2. We set Zx = 1 if the block Bk(kx) is good. Otherwise we set
Zx = 0. As before, having path in Z assures us to have a crossing
in W not leaving the boxes corresponding to the points of this path.
Then we can continue exactly in the same manner as in the proof of
Proposition 3.1. �

4. Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. To prove Theorem 2.1 we apply the usual strat-
egy. We express the effective conductivity σ?(λ, µ) in the form of a
variational formula and we construct a test function that plugged into
it will give us the required bound.

Upper bound: We use the following formula

σ? = lim
N→∞

1

N2
inf
u∈P

∫

ΛN

σ(x)|∇u(x)|2 dx, (42)

where ΛN = [0, N ]2 and

P = {u ∈ H1(ΛN) : u satisfies the boundary conditions in (4) }.
(43)

The infimum in (42) is attained by the solution of the system (4).
That is why we are looking for a function that is not far from the
solution and, moreover, the integral on the right-hand side of (42) is
easy to compute.

Using the one dimensional analogy of our problem, it is not difficult
to check that the potential u has large gradient in the places where
there is a barrier to go through, i.e. where the conductivity is small.
In the two-dimensional case such barriers should span all the width of
the box. As we have already noted, our medium can be regarded as an
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ensemble of insulating grains around the points of the point process X.
Hence, the easiest way how to construct a barrier is to have a chain of
closely packed grains crossing the box from the top to the bottom. We
need to specify what we mean by “closely packed”. According to the
definition of Sc(λ) we could not expect to find a crossing of the large
box with the grains that have centres at a distance smaller than 2Sc(λ).
Thus, we will choose the radius of grains slightly larger than Sc(λ).

Let take ε > 0 and consider grains with the radius Sc(λ) + ε. We
rescale temporarily the box ΛN such that these grains become disks
with radius 1. After the scaling we get a point process with density

λ′ = λ(Sc(λ) + ε)2. (44)

From the definition (12) of λc it is easy to see that

Sc(λc) = 1. (45)

Another application of scaling properties of the Poisson point process
gives us

λSc(λ)2 = λc. (46)

If we put together the last three claims, we get λ′ > λc. According to
Proposition 3.1 (a), we know that there are with overwhelming proba-
bility at least

β(λ′)N(2(Sc(λ) + ε))−1 ≡ βεN (47)

top-bottom occupied crossings of rescaled box ΛN with disks of radius
one. If we now return to the original scale, we obtain βεN chains of
disks with radius Sc(λ)+ ε crossing ΛN . Note that it will become clear
in the next part of the proof why we need O(N) crossings. One crossing
would not be sufficient for our purposes.

We now define the test function that we will use. We use Si to
denote the crossings which we discussed in the previous paragraph.
Let i = 1, . . . , R, with R being the random number of crossings. We
denote the crossings in the way that S1 is the left most one, S2 the
second left one, etc. We recall that the occupied crossing was defined

as a sequence of points from X with certain properties. We use x
(i)
j ,

j = 1, . . . , ni, to denote the points composing Si in the way that x
(i)
1 is

the point that is close to the lower edge and x
(i)
ni is close to the upper

edge of ΛN . We use S̄i to denote the polygonal line connecting them.

When x
(i)
1 is in the interior of ΛN , we extend S̄i by the vertical segment

connecting x
(i)
1 with the lower edge of ΛN . Similarly, if x

(i)
ni is in the

interior of ΛN , we connect it to the upper edge. Now, every line S̄i

divides the box into two disjoint parts.
We continue by smoothing off the lines S̄i. By smoothing we mean

replacing the curves S̄i by other set of curves that will be everywhere
once differentiable and will have bounded curvature. The smoothing
is necessary, it allows to construct a test-function that will have well
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defined gradient everywhere around these curves. The way how the
smoothing is defined has no particular importance. For the sake of
definiteness we chose the following one.

We will change the curves S̄i only in the neighbourhoods U(x
(i)
j ) of

x
(i)
j with the radius Sc(λ)/10. Choose one such point x. If there is no

y ∈ Si such that U(x) ∩U(y) 6= ∅, we simply replace the two segments
of S̄i in U(x) by a piece of circle. We do it in the way that the resulting
curve is everywhere once differentiable. Since we can suppose that the

minimal angle by any point x
(i)
j ∈ Si is π/3 (otherwise we can connect

directly x
(i)
j−1 with x

(i)
j+1), we can bound the radius of the circle from

below by some positive constant.
If, on the other hand, there is vertex y ∈ Si satisfying U(x)∩U(y) 6=

∅, we argue in the following way. First, note that we can “optimise”
the sets Si in the way that for every point x there is at most one such
y. Hence, we can consider only the pairs of “close” vertices. We should
replace the polygonal line in the union of neighbourhoods U(x), U(y)
by a smooth curve. We let the reader check that it is possible to make
such replacement by two pieces of circle with the radii bounded from
below.

Finally, we deform S̄i slightly at its ends in the way that the smooth
version is perpendicular to the boundary of ΛN . We denote the smooth
version of S̄i by S̃i. We use cr to denote the lower bound on the radius
of curvature of S̃i.

Let us choose another constant 0 < d < cr. Denote by Si the “tube”
of radius d around S̃i, i.e. the set {x ∈ ΛN : d(x, S̃i) ≤ d}. We use SL

i ,
SR

i to denote left and right boundary of Si. Let SR
0 , resp. SL

R+1, be the
left, resp. right, edge of ΛN .

We construct the test function u?(x) as follows. Let u?(x) be constant
between SR

i and SL
i+1, i = 0, . . . , R, and let u?(x) grow linearly on the

segments perpendicular to S̃i in the tubes Si. The condition d < cr

ensures that for any point in Si there is one and only one such segment.
Let u?(x) be continuous in ΛN and let the difference of the values of
u?(x) on SR

i and SL
i be N/R. Such function is evidently in P.

We plug the function u?(x) into expression (42). Since ∇u?(x) = 0
for all x outside the tubes Si we have

1

N2

∫

ΛN

σ(x)|∇u?(x)|2 dx =
1

N2

R
∑

i=1

∫

Si

σ(x)|∇u?(x)|2 dx. (48)

The value of |∇u?(x)|2 we can bounded from above by

|∇u?(x)|2 ≤
1

4d2
·
N2

R2
. (49)

Indeed, let x be an arbitrary point in Si and let sx 3 x be the segment
perpendicular to S̃i with the length 2d centred at S̃i. The difference
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of the values of u? on the ends of sx is by definition N/R and function
u? is linear on sx. Hence, the value of derivative of u? in the direction
of sx is N/2dR. It remains to check that the derivative of u?(x) in the
direction perpendicular to sx is zero. However, it is easy to verify using
the fact that S̃i is composed by segments and pieces of circle, and that
it is smooth.

We proceed by bounding the value of σ(x). To achieve it, we divide
every tube Si into two disjoint regions. The good one S

g
i = Si ∩ {x ∈

R2 : S(x) ≤ Sc(λ) + ε} and the bad one Sb
i = Si \ S

g
i .

��������������
�������������� ��������������

��������������PSfrag replacements
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Figure 2. Bad region of Si

For x ∈ S
g
i , the conductivity σ(x) is smaller than exp(µ(Sc(λ)+ ε)).

To control the value of σ(x) inside Sb
i we observe that Sb

i consists of
parts similar to the striped regions on Figure 2. It is easy to check that
there exists a constant c1 > 0 such that for d small enough the area of
one such piece is smaller than c1d

3. Similarly, we can find a constant
c2 > 0 such that the conductivity in the bad parts is bounded from
above by exp(µ(Sc(λ) + ε + c2d

2)). Hence, we have
∫

Si

σ(x)|∇u?(x)|2 dx =

∫

S
g
i

σ(x)|∇u?(x)|2 dx +

∫

Sb
i

σ(x)|∇u?(x)|2 dx

(50)
with

∫

S
g
i

σ(x)|∇u?(x)|2 dx ≤
1

4d2
·
N2

R2
exp(µ(Sc(λ) + ε))|Si|, (51)

and
∫

Sb
i

σ(x)|∇u?(x)|2 dx ≤
1

4d2
·
N2

R2
exp(µ(Sc(λ)+ ε+ c2d

2))c1d
3Nb, (52)

where we use Nb to denote the number of bad pieces and |A| to denote
the Lebesgue measure of the set A ⊂ R2.
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Since we try to find the result on the logarithmic scale only, we can
use a rather crude bound, |

⋃

i Si| ≤ N2. We also claim that there
exists a constant c3 depending only on λ such that Nb ≤ c3N

2. The
easiest way to see it, is to observe that bad pieces can come up only if
there are two disks that almost touch in ΛN . It is not possible to pack
more than O(N 2) disks that almost touch on R crossings of the box
ΛN . Putting all these estimates in expression (42) we get

σ?(λ, µ) ≤ lim
N→∞

{

1

N2
·

1

4d2
·
N2

R2
exp[µ(Sc(λ) + ε)]N2+

1

N2
·

1

4d2
·
N2

R2
exp[µ(Sc(λ) + ε + c2d

2)]c3N
2c1d

3

}

.

(53)

By Proposition 3.1(a) and Borel-Cantelli lemma for P-a.e. realisation
of the medium there is N0 such that R ≥ βεN for all N ≥ N0. Hence,
we have with probability one

σ?(λ, µ) ≤ Kd−2β−2
ε eµ(Sc(λ)+ε) + K ′dβ−2

ε eµ(Sc(λ)+ε+c1d2)

= eµ(Sc(λ)+ε)β−2
ε

(

K
1

d2
+ K ′deµd2

)

,
(54)

where K, K ′ are the constants that do not depend on µ, d and ε. From
the last expression we easily get

1

µ
log σ?(λ, µ) ≤ Sc(λ) + ε + d2 +

1

µ
[2 log βε − log d + K ′′] . (55)

We now set d = d(µ) = exp(−µ1/2) and compute the limit µ → ∞ of
the last display. We obtain

lim sup
µ→∞

1

µ
log σ?(λ, µ) ≤ Sc(λ) + ε. (56)

Since ε was arbitrary this gives the required upper bound.
Lower bound: For the lower bound we use the standard variational

formula for the inverse of the homogenised matrix (see Chapters 1 and 8
of [7] for its proofs for periodic, resp. random setting). The isotropic
version of such formula can be written as

(σ?)−1 = inf
f∈V2

sol

1

N2

∫

ΛN

σ(x)−1(e1 + f(x))2 dx, (57)

where V2
sol = {f = (f1, f2) : f1, f2 ∈ L2(ΛN), div f = 0,

∫

ΛN
f(x) dx =

0}, and e1 is the unit vector in x-direction.
The formula (57) can be rewritten using the fact that every function

f ∈ V2
sol can be written as f = ( ∂v

∂x2 ,−
∂v
∂x1 ) for some function v ∈

H1(ΛN) that satisfies v ≡ 0 on ∂ΛN . Setting u(x1, x2) = v(−x2, x1) +
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x1, we have ∇u(x) = e1 + f(x). Thus (57) yields

1

σ?
= lim

N→∞

1

N2
inf

u∈P ′

∫

ΛN

σ−1(x)|∇u(x)|2 dx, (58)

where P ′ = {u ∈ H1(ΛN) : u(x1, x2) = x1 on ∂ΛN}. This is the same
variational formula as we used for the proof of the upper bound only
with σ replaced by σ−1 and with P replaced by P ′. The second change
corresponds to the change of boundary conditions. Since the boundary
conditions do not influence the value of the effective conductivity we
replace P ′ in (58) by P. It allows us to use almost the same test-
function as in the upper bound. The only difference is that the role of
insulating grains and highly conducting domains between them will be
reversed.

As in the proof of the upper bound we start by temporary rescal-
ing of the box ΛN . This time disks with radius Sc(λ) − ε become
disks with radius one. Using the same reasoning as in equations (44)
and (46) we find that the density λ′ of the rescaled point process
is smaller than λc. According to Proposition 3.1 (b), there are at
least β ′(λ′)N(2(Sc(λ)− ε))−1 ≡ β ′

εN vacant crossings of rescaled box.
Returning to the original scale we obtain the same number of paths
traversing ΛN in the complement of disks with radius Sc(λ)− ε.

We now use these crossings to construct the tubes similarly as in
the upper bound. First note, that we can always deform them in the
way that they will become once differentiable and will have the cur-
vature bounded from above. We denote these smooth curves by S̃i,
i = 1, . . . , R, and we construct the tubes Si with the sufficiently small
radius d and the function u?(x) as before. The value of |∇u?|2 in Si is
bounded from above by

|∇u?(x)|2 ≤
1

4d2
·

N2

R(ω)2
(59)

and is zero in the rest of ΛN . For σ−1(x) the following bound is valid
in Si,

σ−1(x) ≤ exp[−µ(Sc(λ)− ε− d)]. (60)

Plugging these two estimates into (58) we get

1

σ?
≤ lim

N→∞

1

N2
exp[−µ(Sc(λ)− ε− d)]

1

4d2
·
N2

R2

R
∑

i=1

|Si|. (61)

We bound the last sum by N 2 and use the fact that with overwhelming
probability R ≥ β ′

εN . Taking the logarithm we get

1

µ
log σ?(λ, µ) ≥ Sc(λ)− ε− d−

1

µ
[2| logβ ′

ε| − log d + K] . (62)
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Setting d = d(µ) = exp(−µ1/2) we obtain

lim inf
µ→∞

1

µ
log σ?(λ, µ) ≥ Sc(λ)− ε. (63)

Since ε was arbitrary it proves the lower bound. �

Proof of Theorem 2.2. From the fact

σ̂ρ,δ(x, µ) ≤ σ̃ρ(x, µ) ≤ σ(x, µ). (64)

and the variational formula (42) we easily get the upper bound,

lim sup
µ→∞

1

µ
log σ̂?

ρ,δ(λ, µ) ≤ lim sup
µ→∞

1

µ
log σ̃?

δ (λ, µ) ≤ Sc(λ). (65)

The dual variational formula (58) together with (64) imply that it is
sufficient to prove the lower bound only for σ̂ρ,δ(x, µ). We use the usual
strategy to show it.

Let ε > 0 such that ε ≤ δ. We rescale ΛN in such a way that the
disks with radius Sc(λ) − ε become the disks with radius one. As in
the proof of the lower bound for Theorem 2.1 we receive the process
with sub-critical density λ′. The image of Vε in this scaling is the set
W defined in Proposition 3.7. As proved in that proposition there
are at least β ′′(λ′)N(2(Sc(λ) − ε))−1 ≡ β ′′

ε N crossings of the rescaled
box in W. If we return back to the original scale, we conclude that
there is β ′′

ε N crossings of ΛN in Vε. Moreover, it is not difficult to
check that every crossing in Vε can be smoothened in the way that the
minimal radius of curvature is ρ and the tubes with radius ρ around
the smooth version rest inside the tubes with the radius ρ around Vε.
We use S̃i to denote the smooth crossings. We choose d < ρ and we
construct the test-function u?(x) in the same way as before. Since
Si ⊂ {x ∈ R2 : d(x,Vε) ≤ ρ} and Vε ⊂ Vδ we have

σ̂ρ,δ(x, µ) = σ(x, µ) in Si. (66)

After this observation the proof of the lower bound can be continued
precisely in the same way as the proof of the lower bound for Theo-
rem 2.1. �
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