
HITTING TIME OF LARGE SUBSETS OF THE HYPERCUBE

JIŘÍ ČERNÝ AND VÉRONIQUE GAYRARD

Abstract. We study the simple random walk on the n-dimensional hypercube, in
particular its hitting times of large (possibly random) sets. We give simple conditions
on these sets ensuring that the properly-rescaled hitting time is asymptotically expo-
nentially distributed, uniformly in the starting position of the walk. These conditions
are then verified for percolation clouds with densities that are much smaller than
(n log n)−1. A main motivation behind this paper is the study of the so-called aging
phenomenon in the Random Energy Model (REM), the simplest model of a mean-
field spin glass. Our results allow us to prove aging in the REM for all temperatures,
thereby extending earlier results to their optimal temperature domain.

1. Introduction

Let Vn be the n-dimensional hypercube, Vn = {0, 1}n. We equip Vn with the metric

d(x, y) =
n∑

i=1

1l{x(i) 6= y(i)}, (1.1)

where x(i) are the coordinates of x ∈ Vn. Let further Yn be the simple random walk on
Vn. That is, Yn is the discrete-time Markov chain with state space Vn whose transition
probabilities are given by P[Yn(k + 1) = y|Yn(k) = x] = n−1 if d(x, y) = 1, and 0
otherwise. We write Px for the distribution of Yn conditioned on Yn(0) = x. For
A ⊂ Vn we define the hitting time of A by

Hn(A) = min{k ≥ 0 : Yn(k) ∈ A}. (1.2)

We are interested in the distribution of the hitting time of large random subsets of
the hypercube. Specifically, let ρ ∈ [0, 1]. We say that the set A ⊂ Vn is a percolation
cloud on Vn with density ρ if each site x ∈ Vn is in A with probability ρ independently
of all others.

Our main aim is to prove the following theorem.

Theorem 1.1. Let m̄(n) be such that

n log n� m̄(n) � 2n(log n)−1 (1.3)

and let An be a sequence of percolation clouds on Vn with densities m̄(n)−1 defined on
a common probability space (Ω, F, P ). Then, for all a > 0,

lim
n→∞

max
x∈Vn

∣∣∣Px

[
Hn(An \ x) ≥ am̄(n)

]
− e−a

∣∣∣ = 0 , P -a.s. (1.4)

In words, the distribution of the normalised hitting time of An \ x converges to the
exponential distribution uniformly in the starting position x.
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In Theorem 1.2 below we state a similar result for another important class of random
sets, namely sets An that are sampled from Vn without replacement (i.e. each subset
of |An| elements of Vn is equally likely).

Theorem 1.2. Let Mn be a sequence of integers such that, setting m(n) = 2n/Mn,

n log n� m(n) ≤ 2n (1.5)

Let An be subsets of Mn elements sampled from Vn without replacement, and defined
on a common probability space (Ω′, F ′, P ′). Then, for all a > 0,

lim
n→∞

max
x∈Vn

∣∣∣Px

[
Hn(An \ x) ≥ am(n)

]
− e−a

∣∣∣ = 0 , P ′-a.s. (1.6)

Estimates on the distribution of the hitting time of various subsets of the hypercube
have a long history. They can be traced back to the early literature on first passage
times for Markov chains (see [Kem61] and the references therein) where these questions
are reformulated in terms of the (one-dimensional) Ehrenfest urn scheme. These results
provide very sharp estimates on the asymptotic distribution of the hitting time of a
single point. More, recently Matthews [Mat89, p.118] gave finite-n estimates for the
Laplace transform of the hitting time of sets containing one or two points. These
estimates are key ingredients that enter his description of the covering time of the
hypercube and related questions.

The hitting times of much more general sets (possibly random, and whose size is
possibly increasing with n) were studied very recently in [BČ06a] and [BG06]. In
[BG06], Ben Arous and Gayrard give precise conditions for the hitting time of subsets
of Vn to be asymptotically exponentially distributed for a class of subsets for which
the so-called lumping construction can be applied. This construction was fist used in
this context by [BBG03a]. It can be understood as a d-dimensional extension of the
Ehrenfest urn scheme where the random walk Yn on the hypercube is replaced by a
walk defined on a d-dimensional state space of smaller cardinality, and which evolves
in a convex potential that is very steep near its boundary. Such a chain is then studied
using the tools developed in [BEGK01],[BEGK02] for the study of metastability in
reversible Markov chains on discrete state space. This method allows in particular to
show that Theorem 1.1 is valid for m(n) ≥ C2n/ log n.

In [BČ06a], Ben Arous and Černý obtain a result similar to Theorem 1.1. Namely,
they prove convergence to the exponential distribution of the hitting time of percola-
tion clouds for densities of order 2−cn with c ∈ (3/4, 1) (see Lemma 3.7 of [BČ06a]).
The method is based on the formula discovered by Matthews in his study of covering
problems (see Theorem 1.3 in [Mat88]) and on (improved) estimates from [Mat89].

We will show in Section 4 that both Theorem 1.1 and Theorem 1.2 are consequences
of the following more general theorem. To state it we define the function ξn(k) by

ξn(k) = 2−nn

2

(
n

k

)−1 n−k∑
j=1

(
n

k + j

)
1

j
, k = 0, . . . , n. (1.7)

The role of this relatively complicated function will become evident in Lemma 3.6.

Theorem 1.3. Let n log n� m(n) ≤ 2n and Bn ⊂ Vn be such that

0 < |Bn| = 2nm(n)−1(1 + o(1)). (1.8)
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Define

vn(k) = max
x∈Vn

∣∣{y ∈ Bn : d(x, y) = k}
∣∣,

Vn(k) = max
x∈Vn

∣∣{y ∈ Bn : d(x, y) ≤ k}
∣∣. (1.9)

If there exists a function g(n), such that g(n) ≤ n/2,

ξn(g(n)) � 2−nm(n), (1.10)

and

lim
n→∞

g(n)−1∑
k=1

vn(k)ξn(k) = 0, and Vn(g(n)− 1) � |Bn|, (1.11)

then
lim

n→∞
max
x∈Vn

∣∣∣Px

[
Hn(Bn \ x) ≥ am(n)

]
− e−a

∣∣∣ = 0. (1.12)

Remark. 1. While the upper bound on m(n) in the range of validity of the preced-
ing theorem is trivially optimal, we cannot claim the same about the lower bound.
Morally, the proof exploits the fact that the simple random walk on the hypercube
equilibrates after O(n log n) steps, even if an application of this fact is not easy to see
in our actual proof. It is intuitively obvious that after equilibration the hitting time
should be exponentially distributed. The claim of the theorem might stay valid even
for m(n) = O(n log n), however for different reasons. Several serious technical compli-
cations appears in our proof for such m(n). We were not motivated to proceed further
since it is not needed for the applications we have in mind.

2. The results of [BG06] (see Theorem 1.7 of [BG06] and the simpler Corollary 1.8)
imply that Theorem 1.1 holds true for sets Bn whose size is asymptotically constant
that is, when (1.8) holds for m(n) = 2n/M where M is a fixed integer.

3. We will show soon that ξn(1) = O(n−1). Therefore, the conditions appearing
in (1.11) are void when (1.8) holds with m(n) satisfying 2−nm(n) � n−1 (and, in
particular, when |Bn| is constant). As an immediate consequence of Theorem 1.3 we
then obtain:

Corollary 1.4. Theorem 1.1 remains valid on 2n(log n)−1 ≤ m̄(n) ≤ 2n if the term
am̄(n) in (1.4) is replaced by 2n|An|−1.

Proof. It is sufficient to take m(n) in Theorem 1.3 to be m(n) = 2n/|An|, where An is
the percolation cloud with intensity m̄(n). �

Our method of proof relies on a sharp estimate on the distribution of hitting time
of a single point when time is measured on the scale m(n), namely on the quantity

Pzk
[Hn(0) < am(n)] (1.13)

where 0 is the vertex of Vn whose coordinates are all 0 and zk is any vertex at distance
k from it; this estimate is itself derived from an estimate on the Laplace transform
of the hitting time Hn(0) (see respectively Lemma 3.6 and Lemma 3.4). The domain
of validity of the latter determines our bounds on m(n). On this domain the Laplace
transform is well approximated by the sum of two terms: the expected contribution
of an exponential distribution, and the mysterious looking function ξn(k) which is,
essentially, the probability that Yn started from zk hits 0 in the first n log n steps.

The rest of the paper is organised as follows. In the next section we describe our
main motivation and give some important consequences of our results for aging in
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the Random Energy model. In Section 3 we give the proof of Theorem 1.3. Finally,
Theorems 1.1 and 1.2 are proved in Section 4.

2. Aging in the Random Energy Model

The main motivation behind this paper originates in the study of the Random Hop-
ping Time (RHT) dynamics of the Random Energy Model (REM), which is often called
the simplest model of a spin glass. Let us describe this problem briefly (for a recent
review see [BČ06b]). In the REM an energy Ex is attached to every site x ∈ Vn.
The Ex’s are chosen to be i.i.d. with standard normal distribution. Given a collection
E = {Ex : x ∈ Vn} and a parameter β > 0 (representing the inverse of the tempera-
ture), the RHT dynamics in the REM is defined as a continuous-time Markov process
Xn( · ) whose transition rates are given by wE

n (x, y) = exp(−β
√
nEx) if d(x, y) = 1 and

zero otherwise.
The main goal of the study of the processes Xn was to prove aging. In this context

it usually means showing that the two-point function

Rn(tw, tw + t; E) := P [Xn(tw + t) = Xn(tw)|E], (2.1)

has a non-trivial limit as tw, t = θtw and n tend simultaneously to infinity.
The first proof of aging in the REM for β > βc =

√
2 log 2 and times tw ∼ exp(ββcn)

was given in [BBG03a, BBG03b], based on the analysis of the metastable behaviour of
Xn and renewal theory. In [BČ06a] another proof of aging, based on the arc-sine law
for stable subordinators, was given for temperatures satisfying√

3/4 < αβ/βc < 1. (2.2)

and (shorter) time-scales tw(n) = (αβ
√

2πn)−1/α exp(αβ2n), where α ∈ (0, 1) is a free
parameter. We will now explain how our methods allows to improve the lower bound√

3/4 in (2.2) to its optimal value, that is to 0. To this end we need to describe briefly

the background of the techniques of [BČ06a].
The transition rates of the process X do not depend on the energy of the target

vertex y. Therefore, the process Xn is a time change of the simple random walk Yn,
and can be written as Xn(t) = Yn(S−1

n (t)), where

Sn(k) =
k−1∑
i=0

ei exp(β
√
nEYn(i)), (2.3)

S−1
n is the generalised right-continuous inverse of Sn(k), and ei is a sequence of mean-

one i.i.d. exponential random variables. Sn(k) is the time of the kth jump of Xn.
It was proved in [BČ06a] that S(n) behaves (for n large) as an α-stable subordinator

in certain time and temperature regimes. To be more precise, set r(n) = exp(α2β2n/2).
Then, if (2.2) holds then t(n)−1Sn(br(n) · c) converges in distribution to an α-stable
subordinator.

It is a known fact that the value of a stable subordinator at time t can be approxi-
mated by the finite sum of its largest jumps up to this time. The same is true for Sn:
the main contribution to Sn(r(n)) comes from a finite number of visits to sites with
exp(β

√
nEx) � t(n). Such sites form (due to the i.i.d. property of the energies) a per-

colation cloud. To understand properties of Sn it is therefore necessary to understand
how the simple random walk visits such clouds.
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As we have already remarked, the methods of [BČ06a] are sufficient to show The-
orem 1.1 for densities much smaller than 2−3n/4. The constant 3/4 in the exponent
entails the constant 3/4 in (2.2). The result of our Theorem 1.1 thus allows to extend
the domain of validity of Theorem 3.1 in [BČ06a]. As we find this extension important
we state it here:

Theorem 2.1. For α ∈ (0, 1) let tw(n) and r(n) be as above. If

0 < αβ < βc, (2.4)

then tw(n)−1Sn(r(n) · ) converges in distribution to an α-stable subordinator and the
two-point function Rn exhibits aging. Namely, for a.e. realisation of E and for every
θ ∈ (0,∞)

lim
n→∞

Rn(tw(n), (1 + θ)tw(n); E) = Aslα(1/1 + θ), (2.5)

where Aslα(u) stands for the distribution function of the generalised arcsine law with
parameter α, Aslα(z) := π−1 sinαπ

∫ z

0
uα−1(1− u)−α du.

It is worth noting that for any β < ∞ there exists α ∈ (0, 1) such that (2.4) is
satisfied. This implies that aging occurs in the RHT dynamics of the REM at all
temperatures.

Theorem 1.1 allows further to study the RHT dynamics in another interesting time-
temperature regime where denser percolation clouds should be considered: for tw(n) =
(β
√

2πn)−1 exp(β2n), that is for α = 1. It is argued in the physics literature [BB02]
that the two-point function Rn exhibits some interesting ultrametric behaviour in this
case. The rigorous treatment of this problem was the original motivation behind this
paper and will be subject of a forthcoming paper.

3. Proof of Theorem 1.3

As mentioned earlier Theorem 1.3 is already known for small sets, namely when
m(n) = 2n/M for M a fixed integer (see [BG06], Corollary 1.8). Although our method
of proof clearly allows us to cover this case as well, its treatment is, in places, quite
different from the case n log n � m(n) � 2n. Thus, in order to keep this paper as
concise as possible we will prove Theorem 1.3 in that latter case only and assume from
now on that n log n� m(n) � 2n.

Proof of Theorem 1.3 (for n log n� m(n) � 2n). We have

Px[Hn(Bn \ x) ≥ am(n)] = 1− Px

[ ⋃
y∈Bn\x

Hn(y) < am(n)
]
. (3.1)

Therefore, it follows from the inclusion-exclusion principle that for all even ` ∈ N

Px[Hn(Bn \ x) ≥ am(n)] ≤ 1 +
∑̀
i=1

(−1)i

i!

∑′

y1,...,yi∈Bn\x

Px

[ i⋂
j=1

Hn(yj) < am(n)
]
, (3.2)

where
∑′ denotes the sum over all mutually different y’s. Analogous expressions for `

odd give lower bounds.
The following proposition is the key step of the proof.



HITTING TIME OF LARGE SUBSETS OF THE HYPERCUBE 6

Proposition 3.1. Under the assumptions of Theorem 1.3 and assuming that n log n�
m(n) � 2n we have, for all i ∈ N,

lim
n→∞

max
x∈Vn

∣∣∣∣ ∑′

y1,...,yi∈Bn\x

Px

[ i⋂
j=1

Hn(yj) < am(n)
]
− ai

∣∣∣∣ = 0. (3.3)

Using Proposition 3.1 the completion of the proof of Theorem 1.3 under the assump-
tion that n log n� m(n) � 2n is immediate. �

The proof of Proposition 3.1 relies on several technical lemmas which we collect in
the subsection below. The proof of Proposition 3.1 is then concluded in subsection 3.2.

3.1. Preparatory Lemmas. Our first lemma collects the properties of the function
ξn(k) which will be needed later.

Lemma 3.2. (i) For all k ∈ {1, . . . , n}, ξn(k) ≤ K
(

n
k

)−1
n1/2 log n, where K is a

constant independent of n and k.

(ii) For all k ≤ n/2, ξn(k) ≥ 1
2

(
n
k

)−1
.

(iii) For any fixed n the function ξn(k) is decreasing in k.

(iv) If k = o(n), then ξn(k) =
(

n
k

)−1
(1 + o(1)).

Proof. (i) Recall that ξn(k) = 2−n n
2

(
n
k

)−1 ∑n−k
j=1

(
n

j+k

)
1
j
. From a standard moderate

deviations argument it follows that

2−nn

2

n∑
j=0

|j−n/2|≥n7/12

(
n

j

)
≤ c1

n

2
e−c2n1/6

. (3.4)

Therefore, the contribution of j’s with |k + j − n/2| ≥ n7/12 is o(
(

n
k

)−1
). For the

remaining j’s we use the approximation(
n

n/2 + i

)
=

√
2

π
n−1/22ne−2i2/n(1 + o(1)), (3.5)

which is valid uniformly for i = o(n2/3). Setting a = n−1/2(k+j−n/2) and b = n−1/2(k−
n/2), and thus j = n1/2(a − b), the contribution of the j’s with |k + j − n/2| ≤ n7/12

to ξn(k) equals

2−nn

2

(
n

k

)−1 ∑
a∈[−n1/12,n1/12]∩(Z/

√
n)

a≥b+n−1/2

(
n

a
√
n+ n/2

)
1

(a− b)
√
n

≤ K ′n1/2

(
n

k

)−1 ∫ n1/12

(b+n−1/2)∨−n1/12

e−2x2 dx

(x− b)
≤ K

(
n

k

)−1

n1/2 log n.

(3.6)

(ii) For k < n/2, ξn(k) ≥ 2−n n
2

(
n
k

)−1 ∑n/2
j=1

(
n

k+j

)
2
n
≥ 1

2

(
n
k

)−1
.

(iii) The function ξn can be rewritten as

ξn(k) = 2−nn

2

n−k∑
j=1

(
n− k

j

)(
k + j

j

)−1
1

j
. (3.7)

Here, the fact that ξn(k) is decreasing is apparent.
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(iv) Using again the moderate deviations argument, for k = o(n),

ξn(k) = 2−nn

2

(
n

k

)−1 n/2+n7/12−k∑
j=n/2−n7/12−k

(
n

j + k

)
1

j
(1 + o(1)) =

(
n

k

)−1

(1 + o(1)). (3.8)

This completes the proof of Lemma 3.2. �

We now prove that for m(n) in the range considered in Theorem 1.3 there always
exists a function g(n) with g(n) ≤ n/2 satisfying (1.10). We in fact prove a little more:

Lemma 3.3. Let m(n) be such that n log n � m(n) � 2n. Then there exist function
g such that

n/2− g(n) � n1/2 and ξn(g(n)) � 2−nm(n). (3.9)

Proof. Take m′(n) such that n log n� m′(n) � m(n) and define g(n) by

g(n) = min{k : ξn(k) ≤ 2−nm′(n)}. (3.10)

Such g(n) satisfies the second half of (3.9) by definition. By Lemma 3.2(i)

g(n) ≤ min
{
k : K

(
n

k

)−1

n1/2 log n ≤ 2−nm′(n)
}

(3.11)

Write k = n/2− i. Using formula (3.5) for the binomial coefficient we find that

g(n) ≤ n

2
+ min

{
i : e2i2/n ≤ cm′(n)

n log n

}
. (3.12)

Since m′(n) � n log n there exists i0, n
2/3 � i0 � n1/2, for which the inequality in

braces holds. Since n/2− g(n) ≥ i0, the first half of (3.9) is proved. �

Let us assume from now on that g(n) satisfies (3.9). As announced earlier, the key
ingredient of the proof of Proposition 3.1 is a precise estimate on the Laplace transform
of the hitting time of a single point. We now state and prove this result. As we will
see, this is where the function ξn comes in.

Lemma 3.4. Let 0 be the vertex of the hypercube with all coordinates equal to 0 and
let zk ∈ Vn be an arbitrary vertex of the hypercube such that d(zk,0) = k. If n log n�
m(n) � 2n, then for all s > 0

Ezk
exp

(
− s

m(n)
Hn(0)

)
=

[
2−nm(n)

s
+ ξn(k)

]
(1 + o(1)). (3.13)

Proof. By Fourier methods for random walks on finite groups [Dia88], we have as in
[Mat89, BČ06a]

Ezk
e−s/mHn(0) =

∑
y∈Vn

(−1)zk·y
[
1− e−s/m(1− 2d(y,0)

n
)
]−1∑

y∈Vn

[
1− e−s/m(1− 2d(y,0)

n
)
]−1 , (3.14)

where x · y =
∑n

i=1 x(i)y(i) is the standard scalar product in Rn.

Let us first consider the numerator of (3.14). Observe that there are
(

k
i

)(
n−k

j

)
sites

y ∈ Vn such that d(0, y) = i+ j and zk · y = i. Hence the numerator of (3.14) is equal
to

k∑
i=0

n−k∑
j=0

(−1)i

(
k

i

)(
n− k

j

)
1

1− e−s/m(1− 2n−1(i+ j))
. (3.15)

This expression can be simplified using the following lemma.
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Lemma 3.5. For all k, j ∈ {0, 1, . . . } and all s > 0

k∑
i=0

(−1)i
(

k
i

)
1− e−s/m(1− 2n−1(i+ j))

=
nes/m

2
·
Γ(1 + k)Γ(j + n

2
(es/m − 1))

Γ(1 + k + j + n
2
(es/m − 1))

. (3.16)

Proof. Note that the second fraction on the right-hand side of (3.16) can be expressed
using the Beta-integral,

nes/m

2
·
Γ(1 + k)Γ(j + n

2
(es/m − 1))

Γ(1 + k + j + n
2
(es/m − 1))

=
nes/m

2

∫ 1

0

(1− t)kti+
n
2
(es/m−1)−1 dt. (3.17)

Expanding (1 − t)k according to the binomial theorem, and performing an easy inte-
gration then gives the left-hand side of (3.16). �

Using the last lemma the numerator of (3.14) can be rewritten as

n−k∑
j=0

(
n− k

j

)
nes/m

2
·
Γ(1 + k)Γ(j + n

2
(es/m − 1))

Γ(1 + k + j + n
2
(es/m − 1))

. (3.18)

So far we obtained an exact expression which we now want to evaluate. To do so
we will use the following known properties of Γ-functions (we refer to [AS72] for the
definition and the properties of the functions appearing below).

Γ′(x) = Γ(x)ψ0(x), Γ′′(x) = Γ(x)(ψ0(x)
2 + ψ1(x)), lim

x→0
xΓ(x) = 1, (3.19)

where ψ0 is the digamma function and ψ1 = ψ′0. The values of these functions for
integer arguments can be written explicitly:

ψ0(k) =
k−1∑
i=1

1

i
− γE = log k(1 + o(1)), ψ1(k) =

π2

6
−

k−1∑
i=1

1

i2
= O(1/k). (3.20)

where γE is Euler’s constant.
We can now evaluate (3.18). Set ε = n

2
(es/m − 1) and observe that the bound

m� n log n entails ε� (log n)−1. To treat the term j = 0 in (3.18) simply note that,
since εψ0(1 + k) = o(1) for all k ≤ n,

nes/m

2
· Γ(1 + k)Γ(ε)

Γ(1 + k + ε)
=
nes/m

2
· ε

−1(1 + o(1))

1 + εψ0(1 + k)
=
m

s
(1 + o(1)). (3.21)

A similar calculation for the remaining terms combined with (3.7) readily yields

n−k∑
j=1

(
n− k

j

)
nes/m

2
· Γ(1 + k)Γ(j + ε)

Γ(1 + k + j + ε)

=
n−k∑
j=1

n

2j

(
n− k

j

)(
k + j

j

)−1
(1 + εψ0(j))(1 + o(1))

1 + εψ0(1 + k + j)
= 2nξn(k)(1 + o(1)).

(3.22)

For k = 0 the numerator of (3.14) coincides with the denominator. Equations (3.21),
(3.22) and Lemma 3.2(iv) then imply that the denominator behaves like

{ms−1 + 2nξn(0)}(1 + o(1)) = 2n(1 + o(1)). (3.23)

Finally, putting together (3.21), (3.22) and (3.23) yields the claim of Lemma 3.4. �



HITTING TIME OF LARGE SUBSETS OF THE HYPERCUBE 9

Lemma 3.4 now allows us to get information on the form of the probability distri-
bution function of Hn(0). Let us denote by pn(a, k) the probability

pn(a, k) = Pzk
[Hn(0) < am(n)]. (3.24)

Lemma 3.6. (i) There exists C <∞ independent of n and k such that

pn(a, k) ≤ Cea
(
2−nm(n) + ξn(k)

)
. (3.25)

(ii) For any a ∈ [0,∞), uniformly on compact subsets of this interval,

lim
n→∞

max
k≥g(n)

∣∣2nm(n)−1pn(a, k)− a
∣∣ = 0. (3.26)

Proof. Assertion (i) follows from Chebyshev inequality and Lemma 3.4. To prove (ii)
observe that for k ≥ g(n), by (3.9) and by Lemma 3.2(iii), ξn(k) ≤ ξn(g(n)) �
2−nm(n). Therefore, Ezk

exp(−sHn(0)/m(n)) = 2−nm(n)/s(1 + o(1)). Consider the
sequence of measures µn given by

µn([0, t]) = 2nm(n)−1Pzk

[
Hn(0)/m(n) ∈ [0, t]

]
. (3.27)

The Laplace transform of µn then satisfies
∫∞

0
e−stµn(dt)

n→∞−−−→ 1/s. Therefore, µn

converges weakly to the Lebesgue measure (see [Fel71], Section XIII.1, Theorem 2a, p.
433) and thus

2nm(n)−1pn(a, k) = µn([0, a))
n→∞−−−→ a. (3.28)

The uniformity on compact sets follows easily from the fact that the probabilities
pn(a, k) are increasing in a. �

We finally use Lemma 3.6 to get information on the form of the probability distri-
bution function of the hitting time of finite subsets of points of Vn. For y1, . . . , y` ∈ Vn

we define H̄n(y1, . . . , y`) by

H̄n(y1, . . . , y`) =

{
Hn(y`) if Hn(yi) < Hn(yi+1) for all i ∈ {1, . . . , `− 1},
∞ otherwise.

(3.29)

That is H̄n(y1, . . . , y`) is finite only if the y’s were visited in the prescribed order. In
this case it is equal to the time to visit all y’s. Observe that it is always infinite if
yi = yj for some i 6= j.

Lemma 3.7. Let x = y0, let y1, . . . , y` be mutually distinct points in Vn, and let
d(i) = d(yi−1, yi). Then

Px

[
H̄n(y1, . . . , y`) < am(n)

]
≤ C`e`a

∏̀
i=1

(
2−nm(n) + ξn(d(i))

)
. (3.30)

Proof. Obviously, by the strong Markov property,

Px

[
H̄n(y1, . . . , y`) < am(n)

]
≤

∏̀
i=1

Pyi−1
[Hn(yi) < am(n)], (3.31)

which, by Lemma 3.6(i), is bounded by the right-hand side of (3.30). �

Lemma 3.8. Let xn = yn
0 , let yn

1 , . . . , y
n
` ∈ Vn, and let dn(i) = d(yn

i , y
n
i−1). Suppose

that dn(i) ≥ g(n) for all i ∈ {1, . . . , `} and all n. Then, uniformly over all xn and yn
i ,

lim
n→∞

2`nm(n)−`Pxn

[
H̄n(yn

1 , . . . , y
n
` ) < am(n)

]
=
a`

`!
. (3.32)
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Proof. The probability in question can be bounded from above using the strong Markov
property,

Pxn

[
H̄n(yn

1 , . . . , y
n
` ) < am(n)

]
≤

∑
a1,...,a`∈N/m(n)

a1+···+a`<a

∏̀
i=1

Pyi−1
[Hn(yi)/m(n) = ai]. (3.33)

Since d(yi−1, yi) > g(n), it is easy to see from Lemma 3.6(ii) that the sum behaves like

2−n`m(n)`

∫
· · ·

∫
x1+···+x`<a

dx1 . . . dx`(1 + o(1)) = 2−n`m(n)`a`/`!(1 + o(1)). (3.34)

The above expression only provides an upper bound since it does not exclude the
possibility that the random walk visits another yj, j > i, on its way from yi−1 to yi.
To construct a lower bound we should exclude such visits. Therefore, denoting by UB
the upper bound (3.33),

Pxn

[
H̄n(yn

1 , . . . , y
n
` ) < am(n)

]
≥ UB−

∑̀
i=1

∑̀
j=i+1

∑
a1,...,a`∈N/m(n)

a1+···+a`<a

∏̀
k=1
k 6=i

Pyk−1
[Hn(yk)/m(n) = ak]

×
∑

b∈N/m(n)
b∈(0,ai−ai−1)

Pyi−1
[Hn(yj)/m(n) = b]Pyj

[Hn(yi)/m(n) = ai − b].

(3.35)

The negative term on the right-hand side is smaller than

C2−n(`−1)m(n)`−1e(`−1)a
∑̀
i=1

∑̀
j=i+1

Pyi−1
[Hn(yj) < am(n)]Pyj

[Hn(yi) < am(n)]. (3.36)

Hence, if we can show that for all j 6= i

Pyi−1
[Hn(yj) < am(n)]Pyj

[Hn(yi) < am(n)] = o(2−nm(n)), (3.37)

then the proof of Lemma 3.8 is finished.
Let k = d(yi−1, yj) and l = d(yj, yi). Since d(yi−1, yi) ≥ g(n) we have also k+l ≥ g(n).

Obviously k ≥ 1, l ≥ 1. By Lemma 3.6(i),

Pyi−1
[Hn(yj) < am(n)]Pyj

[Hn(yi) < am(n)]

≤ C2e2a
(
2−nm(n) + ξn(k)

)
.
(
2−nm(n) + ξn(l)

)
≤ C2e2a

(
2−2nm(n)2 + 2−nm(n)2ξn(1) + ξn(k)ξn(l)

)
.

(3.38)

The first two summands are o(2−nm(n)) (see Lemma 3.2(iii,iv)). If k or l is larger than
g(n), then the same is valid for the third one. As the last step of the proof we show
that if max{k, l} < g(n) and k + l ≥ g(n), then for any ε > 0 and n large enough

ξn(k)ξn(l) ≤ ε2−nm(n). (3.39)

Let zk+l be as in Lemma 3.4 and let zk be any point such that d(zk,0) = k and
d(zk, zk+l) = l. Since on the way from zk+l to 0, the random walk may pass through
zk we have

Ezk+l
[e−sHn(0)] ≥ Ezk+l

[e−sHn(zk)]Ezk
[e−sHn(0)]. (3.40)
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Lemma 3.4 then yields{
2−nm(n)

s
+ξn(k+ l)

}
(1+o(1)) ≥

{
2−nm(n)

s
+ξn(k)

}{
2−nm(n)

s
+ξn(l)

}
≥ ξn(k)ξn(l).

(3.41)
Since k + l ≥ g(n) we can, in view of (3.9), ignore the term ξn(k + l) on the left-hand
side. Taking s sufficiently large then proves (3.39). This concludes the proof of the
lemma. �

We are now ready to complete the proof of Proposition 3.1.

3.2. Proof of Proposition 3.1. We shall establish that

lim
n→∞

max
x∈Vn

∣∣∣∣ ∑′

y1,...,yi∈Bn\x

Px

[ i⋂
j=1

Hn(yj) < am(n)
]
− ai

∣∣∣∣ = 0. (3.42)

Observe that, with y0 = x,∑′

y1,...,yi∈Bn\x

Px

[ i⋂
j=1

Hn(yj) < am(n)
]

= i!
∑′

y1,...,yi∈Bn\x

Px

[
H̄n(y1, . . . , yi) < am(n)

]
= i!

n∑
d1,...,di=1

∑′

y1,...,yi∈Bn

d(yi,yi−1)=di

Px

[
H̄n(y1, . . . , yi) < am(n)

]
.

(3.43)

Consider first the summation over distances larger than g(n). Using Lemma 3.8 we get
that (uniformly in the starting position x)

i!
n∑

d1,...,di=g(n)

∑′

y1,...,yi∈Bn

d(yi,yi−1)=di

Px

[
H̄n(y1, . . . , yi) < am(n)

]

=
n∑

d1,...,di=g(n)

∑′

y1,...,yi∈Bn

d(yi,yi−1)=di

2−inm(n)iai(1 + o(1)) = ai(1 + o(1)).

(3.44)

For the second equality we used the fact that by (1.8), (1.11) and the finiteness of i
there are 2nm(n)−1(1 + o(1)) choices for every yi.

To estimate the remaining contribution to (3.43), we first bound the sum

g(n)−1∑
d=1

∑
y∈Bn:d(y,x)=d

Cea
(
2−nm(n) + ξn(d)

)
≤

g(n)−1∑
d=1

vn(d)ξn(d) + Vn(g(n)− 1)2−nm(n).

(3.45)
Both summands of in the last formula converge to 0 which can be seen easily from
(1.11) and (1.8). For d > g(n), by Lemma 3.2(iii), ξd(n) � 2−nm(n). Therefore, using
(1.8), for all n large enough

n∑
d=1

∑
y∈Bn:d(y,x)=d

Cea
(
2−nm(n) + ξn(d)

)
≤ 2Cea|Bn|2−nm(n) ≤ 4Cea. (3.46)
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According to Lemma 3.7, the remaining part of (3.43) then satisfies

i!
n∑

d1,...,di=1
∃di≤g(n)

∑′

y1,...,yi∈Bn

d(yi,yi−1)=di

Px

[
H̄n(y1, . . . , yi) < am(n)

]

≤ i!i

g(n)∑
d1=1

∑
y∈Bn

d(y,x)=d1

Ca
(
2−nm(n) + ξn(d1)

)( n∑
d=1

∑
y∈Bn

d(y,x)=d

Ca
(
2−nm(n) + ξn(d)

))i−1

,

(3.47)

which converges to 0 by (3.45) and (3.46). This finishes the proof of Proposition 3.1.

4. Proof of Theorem 1.1 and of Theorem 1.2

In this section we apply Theorem 1.3 to derive the asymptotic hitting distribu-
tion of randomly chosen sets in two different settings: for random clouds (namely
we prove Theorem 1.1) and in the setting of drawing without replacement (which is
Theorem 1.2).

Proof of Theorem 1.1. To prove Theorem 1.1 we will naturally show that the assump-
tions of Theorem 1.3 are satisfied for percolation clouds An of density m̄(n)−1, where
n log n� m̄(n) � 2n(log n)−1.

We first verify condition (1.8), i.e. that P -a.s. |An| = 2nm̄(n)−1(1 + o(1)). By
Chebyshev exponential inequality, for any δ > 0 with λ > 0,

P [|An| ≷ (1± δ)2nn−1] ≤ exp{∓λ(1± δ)2nm̄(n)−1}(1 + (e±λ − 1)m̄(n)−1)2n

≤ exp{∓λ(1± δ)2nm̄(n)−1 + (e±λ − 1)2nm̄(n)−1}.
(4.1)

Taking λ sufficiently small and using the fact that 2nm̄(n)−1 � log n, we see that the
right-hand side of the last equation is summable. Borel-Cantelli lemma then yields the
result.

Let fn(k) = n(log m̄(n))−11l{k = 1} + n1l{k > 1}. To prove that the first part of
(1.11) is satisfied for the percolation cloud we show:

Lemma 4.1. There exists C large enough, such that for a.e. realisation of An and for
n large enough

vn(k) ≤ C
[(n
k

)
m̄(n)−1 + fn(k)

]
∀k ∈ {1, . . . , g(n)}. (4.2)

Proof. Let Fn(k) denote the right-hand side of (4.2). By definition of vn(k),

P [vn(k) ≥ Fn(k)] ≤
∑
x∈Vn

P [|{y ∈ An : d(x, y) = k}| ≥ Fn(k)]

= 2nP [|{y ∈ An : d(0, y) = k}| ≥ Fn(k)].

(4.3)

Using the same calculation as in (4.1) this is bounded from above by

2n exp
{
− Cλ

[(n
k

)
m̄(n)−1 + fn(k)

]
+ (eλ − 1)

(
n

k

)
m̄(n)−1

}
. (4.4)

If we choose λ = log m̄(n) and C large enough for k = 1, or λ = const and C large
enough for k > 1, then the right-hand side of the last equation decays at least as fast
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as e−cn for all k. Summing over k and using Borel-Cantelli Lemma yields the desired
result. �

Lemma 4.1 implies that

g(n)−1∑
k=1

vn(k)ξn(k) ≤
g(n)−1∑

k=1

C
[(n
k

)
m̄(n)−1 + fn(k)

]
ξn(k). (4.5)

Using Lemma 3.2(i),(iv) this can be bounded by

C

{ g(n)−1∑
k=1

ξn(k)

(
n

k

)
m̄(n)−1 +

3∑
k=1

fn(k)

(
n

k

)−1

+

g(n)−1∑
k=4

nfn(k)

(
n

k

)−1}
(4.6)

The last two terms in the last formula are bounded by

C
3∑

k=1

fn(k)n−k + Cn3n−4 n→∞−−−→ 0 (4.7)

as can be seen easily from the definition of fn(k). The first term in (4.6) equals

n2−n

2m̄(n)

g(n)−1∑
k=1

n−k∑
j=1

(
n

j + k

)
1

j
=

n

2m̄(n)

n−1∑
j=1

2−n

j

n∧(g(n)+j−1)∑
k=j+1

(
n

k

)
≤ Cn log n

m̄(n)
. (4.8)

This tends to 0 by the assumptions on m̄(n). Therefore vn(k) verifies the first part of
(1.11) P -a.s. .

To verify the second part observe first that if m̄(n) ≥ δ2nn−1 for some δ > 0, then
(1.10) holds for g(n) = 2. Therefore, by Lemma 4.1, Vn(g(n)− 1) ≤ vn(1) + 1 ≤ C �
|An|. We can hence further suppose that m̄(n) � 2nn−1. By moderate deviations
argument, and since n/2− g(n) � n1/2,

|{y : d(0, y) ≤ g(n)− 1}| ≤ 2ne−cg(n)2/n. (4.9)

Since 2nm̄(n)−1 � n there is a function f(n) such that

2nm̄(n)−1f(n) � n and 1 � f(n) � e−cg(n)2/n. (4.10)

As in (4.1)

P
[
Vn(g(n)− 1) ≥ 2nf(n)

m̄(n)

]
≤ 2n exp

{ 2n

m̄(n)

[
− λf(n) + (eλ − 1)e−cg(n)2/n

]}
. (4.11)

For our choice of f this is summable. Therefore a.s. for n large enough Vn(g(n)− 1) ≤
2nm̄(n)−1f(n) � |An|. This verifies the second part of (1.11).

We have verified that with P probability one the sequence of percolation clouds An

satisfies all the assumptions of Theorem 1.3. This proves Theorem 1.1. �

Proof of Theorem 1.2. For any m(n) satisfying the conditions of Theorem 1.2 it is
possible to choose m̄(n) satisfying the conditions of Theorem 1.1 such that

m̄(n)−1 ≥ (1 + ε)m(n). (4.12)

We now consider a sequence of percolation clouds An with density m̄(n)−1 defined
on the same probability space (Ω′, F ′, P ′) as A′n. Since P ′-a.s. for all n large enough
|An| > 2nm(n)−1 = |A′n|, we can couple A′n and An in the way that for all n large
A′n ⊂ An. Moreover, An satisfies the conditions (1.9)–(1.11) of Theorem 1.3. To finish
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the proof observe that if An satisfies these conditions, then any subset of An satisfies
them too. �
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École Polytechnique Fédérale of Lausanne for financial support. Jǐŕı Černý thank the
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