
CONCENTRATION OF THE CLOCK PROCESS
NORMALISATION FOR THE METROPOLIS DYNAMICS OF

THE REM

JIŘÍ ČERNÝ

Abstract. In [ČW17], it was shown that the clock process associated with the
Metropolis dynamics of the Random Energy Model converges to an α-stable
process, after being scaled by a random, Hamiltonian dependent, normalisation.
We prove here that this random normalisation can be replaced by a deterministic
one.

1. Introduction

Recently, in [ČW17], it was shown that the out-of-equilibrium Metropolis dy-
namics of the Random Energy Model (REM) in a broad range of time scales falls
into the universality class of Bouchaud’s trap model [Bou92], at least at the level
of the scaling limit of the so-called clock process. Later, in [Gay18], this result was
extended to a usual aging statement, in terms of two-time observables, using differ-
ent set of techniques. This concluded, to a certain extent, the long line of studies
of aging in the REM, started in [BBG03a, BBG03b] (we refer to [ČW17, Gay18]
for in-depth bibliographies).

The scaling limit results of [ČW17] and [Gay18] have one slightly infuriating (at
least for the author of this paper) feature: the scaling functions used to normalise
the clock process depend on the Hamiltonian of the REM and are therefore random
(cf. Theorem 1.1 in [ČW17], and Proposition 1.5 with the subsequent remarks
in [Gay18]).

There are several heuristic arguments why to believe that this apparent necessity
to choose random scaling functions is actually just a shortcoming of the techniques
used in [ČW17, Gay18]. Some of these arguments will be given later in this paper,
others appear in Remark 4 under Theorem 1.1 of [ČW17]. In this remark, we
conjectured that the scaling function may be chosen deterministic. The main aim
of this paper is to prove this conjecture.

2. Setting and result

We work in the setting of [ČW17] which we recall now. We consider the standard
REM whose state space is the N -dimensional hypercube HN = {−1, 1}N , and
whose Hamiltonian is a collection (Ex)x∈HN of i.i.d. standard Gaussian random
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variables defined on some probability space (Ω,A,P). The equilibrium distribution
of this model at the inverse temperature β > 0 is given by the (non-normalized)

Gibbs measure τx = eβ
√
NEx .

The Metropolis dynamics of the REM is a continuous-time Markov chain X =
(Xt)t≥0 on HN with transition rates

rxy = e−β
√
N(Ex−Ey)+1{x∼y} =

(
1 ∧ τy

τx

)
1{x∼y}, x, y ∈ HN . (2.1)

Here, x ∼ y means that x and y are neighbours on HN , that is they differ in exactly
one coordinate. In order to understand the behaviour of X, [ČW17] introduces its
‘accelerated’ version Y = (Yt)t≥0 which is a continuous-time Markov chain with
transition rates

qxy =
τx ∧ τy
1 ∧ τx

1{x∼y}, x, y ∈ HN . (2.2)

It can easily be checked that Y is reversible, with the equilibrium distribution

νx =
1 ∧ τx
ZN

, x ∈ HN , (2.3)

where ZN =
∑

x∈HN (1∧τx) is a τ -dependent normalisation constant. Finally, since

rxy = (1 ∨ τx)−1qxy, X can be written as a time change of Y ,

X(t) = Y (S−1(t)), (2.4)

where S−1 is the generalised right-continuous inverse of the clock process S,

S(t) =

∫ t

0

(1 ∨ τYs) ds. (2.5)

Given the environment τ = (τx)x∈HN , we use P τ
ν and P τ

x to denote the laws of the
process Y started from its stationary distribution ν or from x ∈ HN , respectively,
and write Eτ

ν , Eτ
x for the corresponding expectations. D([0, T ],R) stands for the

space of R-valued càdlàg functions on [0, T ].
The following theorem is the main result of [ČW17]:

Theorem 2.1 ([ČW17],Theorem 1.1). Let α ∈ (0, 1) and β > 0 be such that

1

2
<
α2β2

2 ln 2
< 1, (2.6)

and define

gN = eαβ
2N
(
αβ
√

2πN
)− 1

α . (2.7)

Then there are random variables RN which depend on the Hamiltonian (Ex)x∈HN
only, such that for every T > 0 the rescaled clock processes

SN(t) = g−1N S(tRN), t ∈ [0, T ], (2.8)
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converge in P-probability as N →∞, in P τ
ν -distribution on the space D([0, T ],R)

equipped with the Skorokhod M1-topology, to an α-stable subordinator Vα. The
random variables RN satisfy

lim
N→∞

lnRN

N
=
α2β2

2
, P-a.s. (2.9)

In fact, [ČW17] not only states the existence of the random normalisation scale
RN , but provides an explicit formula for it, (cf. (2.10) there): For α ∈ (0, 1), β > 0
as in Theorem 2.1, fix γ′ such that

1

2
< γ′ < γ :=

α2β2

2 ln 2
< 1, (2.10)

and define the set of deep traps

DN = {x ∈ HN : τx ≥ g′N}, (2.11)

where the scale g′N is chosen so that

P[x ∈ DN ] = 2−γ
′N(1 + o(1)). (2.12)

Let Hx = inf{t ≥ 0 : Yt = x} be the hitting time of x ∈ HN by Y , and let

`t(x) =
∫ t
0
1{Ys=x}ds be the local time of Y at time t ≥ 0 and position x ∈ HN .

Finally, let Tmix be a certain randomized stopping time at which Y is “well mixed”.
Its exact definition is slightly complicated (cf. [ČW17, Proposition 3.3]), but it is
irrelevant here. Then RN is defined by

RN = 2N(γ−γ′)
( ∑
x∈DN

Eτ
x [`Tmix

(x)α]

Eτ
ν [Hx]

)−1
. (2.13)

As mentioned in the introduction, the fact that the normalisation scale RN in
(2.8) is random is rather displeasing, even if (2.9) proves that at least its expo-
nential growth is deterministic. We now improve (2.9) and show the behaviour
conjectured in [ČW17].

Theorem 2.2. For every α, β as in (2.6), there exists a sequence hN independent
of the choice of γ′ in (2.10), satisfying limN→∞N

−1 lnhN = 0, such that

lim
N→∞

h−1N e−α
2β2N/2RN = 1, P-a.s. (2.14)

In particular, the main claim of Theorem 2.1 holds true also when the definition
(2.8) of the rescaled clock process SN is replaced by SN(t) = g−1N S(hNeα

2β2N/2t).

Remark 2.3. (a) While we decided to work in the setting of [ČW17], we are con-
fident that similar techniques can be applied in order to show that the random
normalisation bn defined in (1.41)–(1.43) of [Gay18] has a deterministic asymptotic
behaviour, as well.

(b) The proof of Theorem 2.2 does not use the assumption γ = α2β2

2 ln 2
> 1

2
from

(2.6). This assumption was taken in [ČW17] to make certain arguments simpler.
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As shown in [Gay18], (a variant of) Theorem 2.1 holds for every γ, α ∈ (0, 1).
Hence, our arguments should provide a concentration of the random normalisation
in the whole aging regime.

(c) While the main result of this paper is very model specific, the technique that
we develop here is rather general and can, e.g., be used to show that quenched
expected hitting time of “sparse” random sets by certain processes in random
environment concentrates around its annealed average. Obtaining such a technique
was another motivation for writing this paper.

We close this section by a heuristic explanation why it should be expected that
the quantity RN exhibits a law of large numbers (2.14), as we promised in the
introduction. Remark first that the points of DN are typically well separated
when γ′ > 1/2, in fact their typical minimal distance is of order N , cf. [ČW17,
Lemma 2.1]. Assume now that it is possible to put around every point x ∈ DN
(or at least around most of them) a set Ax 3 x, so that Ax is not connected to Ax′
for all x 6= x′ ∈ DN (ideally, Ax would be a ball B(x, ρN) around x with a radius
1 � ρN � N), and have the property that “when started out of Ax, the process
Y mixes well before hitting x”, that is, slightly more formally,

P τ
y [Tmix ≤ Hx] ≥ 1− o(1), for all y /∈ Ax. (2.15)

If such sets exist, then, viewing the hypercube as an electrical network with con-
ductances cxy = Z−1N (τx ∧ τy)1{x∼y} (cf. [ČW17, (2.4)]), it is relatively standard
to relate the fraction in (2.13) to the effective conductance C(x,Acx) from x to the
complement of Ax. Indeed, if (2.15) holds, then, under P τ

x , `Tmix
(x) can be approx-

imated by `TAx (x), where TAx denotes the exit time from Ax. It is a known fact
that, under P τ

x , `TAx (x) has exponential distribution whose mean can easily be cal-

culated and equals Z−1N C(x,Acx)−1 for every x ∈ DN , see the proof of Corollary 4.3
in [ČW17]. Hence, Eτ

x [`Tmix
(x)α] is approximately equal to cN,αC(x,Acx)−α. On the

other hand, using e.g. arguments as in [ČTW11, Proposition 3.2], if (2.15) holds,
then Eτ

ν [Hx] can be approximated by c′NC(x,Acx)−1. Hence, assuming (2.15), the
sum in the definition (2.13) of RN approximately equals

cN,α
∑
x∈DN

C(x,Acx)1−α. (2.16)

Recalling that Ax are mutually disconnected, and thus the effective conductances
C(x,Acx), x ∈ DN , independent (or even i.i.d. depending on the construction of
Ax), (2.14) then should follow by invoking a suitable law of large numbers for
triangular arrays.

The problem with the reasoning above is that it seems very difficult to find the
sets Ax such that (2.15) holds, due to some “singular” behaviour of Y . Therefore,
in this paper we resort to a second moment computation and estimate the variance
of R−1N using the classical Efron-Stein inequality.
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A key ingredient in the application of this inequality is the observation of [Gay18]
(cf. Proposition 3.8 there) that relations like (2.15), which are hard to prove uni-
formly for all x ∈ DN and y ∈ Acx, typically hold on average, cf. Lemma 4.3
below.

Finally, let us introduce an additional notation. For any A ⊂ HN , we write
HA = inf{t ≥ 0 : Yt ∈ A} for its hitting time by Y . We use λY to denote the
spectral gap of Y . Since λY depends on the random environment τ , we write λτY
when we want to point out this dependence. The same holds true for DN = DτN ,
ZN = Zτ

N , etc. We use c, C, . . . to denote generic finite positive constants whose
value might change from line to line; they may depend on α, β but not on N .
For a function f : N → (0,∞) and a ∈ R we often write f(N) ≤ 2aN(1+o(1)) to
abbreviate lim supN→∞N

−1 ln fN ≤ a ln 2. If f depends on additional parameters,
this is meant to be uniform in them.

3. Preliminaries

This section contains several preparatory steps which will later allow to construct
another random scaling function FN providing a very good approximation of RN ,
and whose variance will be easier to estimate.

We start by replacing the slightly unpleasant randomized stopping time Tmix

appearing in the definition (2.13) of RN by a deterministic time horizon µN ,

µN = N2eβ
√
N . (3.1)

Lemma 3.1. P-a.s. for all N large enough, for all x ∈ HN ,

Eτ
x

[∣∣`αTmix
(x)− `αµN (x)

∣∣] ≤ 2−N(1+o(1))Eτ
x [`αµN (x)] + e−N

2

. (3.2)

Proof. We decompose the expectation appearing in the lemma as

Eτ
x

[∣∣`αTmix
(x)− `αµN (x)

∣∣]
= Eτ

x

[(
`αTmix

(x)− `αµN (x)
)
1{Tmix≥µN}

]
+ Eτ

x

[(
`αµN (x)− `αTmix

(x)
)
1{Tmix<µN}

]
.

(3.3)

By the construction of the mixing time Tmix in [ČW17, Proposition 3.3], P-a.s. for
all N large enough, under P τ

x , Tmix/mN has the geometrical distribution with
parameter 1 − e−1, where mN = N c(β) with c(β) > 0. Using the Cauchy-Schwarz
inequality and the fact that `t(x) ≤ t, the first summand on the right-hand side
of (3.3) satisfies

Eτ
x

[(
`αTmix

(x)− `αµN (x)
)
1{Tmix≥µN}

]
≤ Eτ

x

[(
`αTmix

(x)− `αµN (x)
)2]1/2

P τ
x [Tmix ≥ µN ]1/2

≤ c(mα
N + µαN)e−µN/2mN ≤ e−N

2

,

(3.4)

for all N large enough, since µN � 2N2mN .
For the second summand in (3.3), we observe that on Tmix < µN , since α < 1,

`αµN (x)− `αTmix
(x) ≤ (`µN (x)− `Tmix

(x))α. In addition, by [ČW17, Proposition 3.3]
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again, YTmix
is ν-distributed and independent of Tmix. Therefore, using twice the

strong Markov property, once with Tmix and once with Hx,

Eτ
x

[(
`αµN (x)− `αTmix

(x)
)
1{Tmix<µN}

]
≤ Eτ

x

[(
`µN (x)− `Tmix

(x)
)α
1{Tmix<µN}

]
≤ Eτ

ν [`αµN ]

≤ P τ
ν [Hx ≤ µN ]Eτ

x [`µN (x)α].

(3.5)

By [AB92, Theorem 1], under P τ
ν , the hitting time Hx is approximately exponen-

tially distributed in the sense that∣∣∣P τ
ν [Hx > t]− e

− t
Eτν [Hx]

∣∣∣ ≤ 1

λYEτ
ν [Hx]

. (3.6)

It follows that the right-hand side of (3.5) is bounded by(
1− e

− µN
Eτν [Hx] + (λYE

τ
ν [Hx])

−1)Eτ
x [`µN (x)α]. (3.7)

Finally, by [ČW17, Propositions 3.1 and 4.1], λY ≥ N−c, and Eτ
ν [Hx] = 2N(1+o(1)),

P-a.s. for N large enough, for all x ∈ HN . Hence, the second summand in (3.3) is
bounded by 2−N(1−o(1))Eτ

x [`αµN (x)], which completes the proof. �

The second goal of this section is to estimate the probability of certain bad
random environments τ for which a control of RN is very difficult. To this end,
we fix η > 0 small and call τ good if the following conditions are satisfied:

(i) The normalisation factor Zτ
N of (2.3) satisfies 2N−2 ≤ Zτ

N ≤ 2N .
(ii) The set DτN of deep traps satisfies |DτN | ∈ (1− η, 1 + η)2N(1−γ′).

(iii) The size of the largest connected component of the set {x ∈ HN : τx ≥ eβN
3/4}

is smaller than N .
(iv) The hitting times from equilibrium are well behaving: Eτ

ν [Hx] ≥ 2N−N
η

for
all x ∈ HN .

(v) The spectral gap λτY is not too small, λτY ≥ exp{−β
√
N}.

We write G for the set of good τ ’s. In the next lemma we show that bad
environments have extremely small probability.

Lemma 3.2. There exist small constants η, ε > 0 such that P[τ /∈ G] ≤ 2−(1+ε)N

for all N large enough.

Proof. We estimate the probabilities of the complements of the events in conditions
(i)–(v) one by one:

For (i), recall that ZN =
∑

x∈HN (1∧τx), and thus ZN ≤ 2N . On the other hand,
since τx are i.i.d., ZN stochastically dominates a binomial random variable with
parameters (2N , 1/2). Hence, P [ZN ≤ 2N−2] ≤ exp(−c2N) for some c > 0, by a
standard large deviation estimate.

Similar argument apply for (ii). Since τx’s are independent and (2.12) holds, the
random variable |DN | has binomial distribution with parameters (2N , 2−γ

′N(1+o(1))).
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The standard estimates on large deviations of binomial distribution then lead to
P[|DN | /∈ (1− η, 1 + η)2(1−γ′)N ] ≤ exp(−2(1−γ′−ε)N).

For (iii), observe that by standard Gaussian tail estimates P[τx ≥ eβN
3/4

] =

P[Ex ≥ N1/4] ≤ e−
√
N/2. Therefore, for any y ∈ HN , the usual percolation ar-

guments imply that the size of the connected component Cy of the level set

{x : τx ≥ eβ
√
N} containing y is stochastically dominated by the total progeny T of

a Galton-Watson process with binomial(N, e−
√
N/2) offspring distribution. By, e.g.,

[vdH17, Theorem 3.13], for every k ≥ 1, P[T = k] = k−1P
[∑k

i=1 ξi = k−1
]
, where

ξi are i.i.d. binomial random variables with parameters (N, e−
√
N/2). Therefore, by

the exponential Markov inequality,

P[|Cy| ≥ N ] ≤
∞∑
k=N

P
[ k∑
i=1

ξi ≥ k − 1
]

≤
∞∑
k=N

e−λ(k−1)(1 + e−
√
N/2(eλ − 1))Nk ≤ e−cN

3/2

,

(3.8)

for some c > 0, where the last inequality follows after taking λ =
√
N/4, after

an easy computation. Summing over all y ∈ HN then completes the proof for the
condition (iii).

The probabilities of (iv) and (v) are slightly more difficult to estimate. We
therefore rely on the computations of [ČW17]. For (iv), it was proved in [ČW17,
Proposition 4.1], that P-a.s. for all N large enough Eτ

νHx ≥ 2N−N
η

for η sufficiently
small. Inspecting the proof of this proposition, reveals that Eτ

νHx ≥ 2N−N
η

if τ
satisfies a certain property introduced in Lemma 4.2 of [ČW17]. From the proof of
this lemma then follows that this property is not satisfied with probability smaller
than exp(−N1+ε), see the last formula of the proof of Lemma 4.2 on page 271 in
[ČW17], which is sufficient to deal with the case (iv).

For (v), Proposition 3.1 of [ČW17] provides a lower bound λY ≥ N−c(β), P-a.s. for
all N large. Inspecting the proof of this proposition however reveals that the esti-

mate on the probability of the complementary event is too large, namely e−c
√
N lnN ,

which is not sufficient for our purposes. To show that

P[λY < exp{−β
√
N}] ≤ 2−(1+ε)N , (3.9)

we thus need to rerun the proof of Proposition 3.1 of [ČW17] with different pa-
rameters. The required modifications are luckily rather self-contained, so we only
describe them here: In Lemma 3.2 of [ČW17] and its proof, all occurrences of

N−βC0 should be replaced by e−β
√
N , in particular a point x ∈ HN should be called

good if τx ≥ e−β
√
N , that is Ex ≥ −1. It follows that P[x is good] ≥ 4/5, and
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therefore the inequality (3.2) of [ČW17] becomes

P[∃x ∈ HN : x has fewer than C0

√
N/2 good neighbours]

≤ 2NP[Bin(N, 4/5) ≤ C0

√
N/2] ≤ 2−(1+2ε)N ,

(3.10)

for ε > 0 sufficiently small, where the last inequality again follows by a large
deviation argument. With this change, the remaining parts of the proof require
only straightforward modifications and yield the estimate (3.9). �

The last lemma of this section explains the importance of condition (iii) of the
definition of G. Its proof is inspired by [Gay18, Proposition 3.8], but it is simpler
since we require a weaker statement.We write

RµN = {Yt : t ≤ µN} (3.11)

for the range of Y up to time µN .

Lemma 3.3. If the condition (iii) of τ ∈ G is satisfied, then for every x ∈ HN

Ex[|RµN |] ≤ N2µNeβN
3/4 ≤ 2No(1). (3.12)

Proof. Recall (2.2) and observe that qxy ≥ eβN
3/4

iff both τx and τy is larger than

eβN
3/4

. On the other hand, since τ ∈ G and thus the size of the largest connected
component of {x : τx ≥ eβN

3/4} is at most N , |RµN | ≤ NJµN , where JµN is the

number of jumps of Y before µN along edges with rate smaller than eβN
3/4

,

JµN =
∣∣{t ≤ µN : Yt− = x 6= Yt = y such that qxy < eβN

3/4}
∣∣. (3.13)

Since any x ∈ HN is incident to N edges, the maximal instantaneous rate at
which a new point is added to JµN is NeβN

3/4
, and thus JµN is stochastically

dominated by a Poisson random variable with mean µNNeβN
3/4

, in particular
Eτ
x [|RµN |] ≤ NEτ

x [JµN ] ≤ N2µNeβN
3/4

. The last inequality of the lemma follows
from the definition (3.1) of µN . �

4. Proof of Theorem 2.2

We have now all ingredients needed to show our main result. To this end, we
introduce two convenient abbreviations

Lτx = Eτ
x [`µN (x)α], (4.1)

Hτ
x = Eτ

ν [Hx]. (4.2)

and define random variables

FN = F τ
N = 1{τ∈G}

∑
x∈DN

Lτx
Hτ
x

. (4.3)

In view of the definition (2.13) of RN and Lemmas 3.1, 3.2, P-a.s.,

lim
N→∞

RNFN2(γ′−γ)N = 1. (4.4)
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Hence, to show Theorem 2.2, we should prove that, for hN as in the theorem,

lim
N→∞

hN2γ
′NFN = 1, P-a.s, (4.5)

that is that FN concentrates around its expectation.
To this end, observe first that conditions (ii), (iv) of the definition of G and the

fact that Lτx ≤ µN imply that, uniformly for all τ ,

F τ
N ≤ 2−γ

′N(1−o(1)). (4.6)

On the other hand, due to (2.9) and (4.4), P-a.s. for all N large,

F τ
N ≥ 2−γ

′N(1+o(1)), (4.7)

and thus EFN = 2−γ
′N(1+o(1)). To prove the concentration we should thus show

VarFN(τ) ≤ 2−(2γ
′+ε)N , for some ε > 0. (4.8)

Statement (2.14) of Theorem 2.2 then follows from (4.5)–(4.8) by a Borel-Cantelli
argument. The independence of hN of γ′ is a consequence of Theorem 2.1: Since
the limit of the rescaled clock process SN of (2.8) does not depend on the choice

of γ′ in the definition (2.13) of RN , and (2.14) allows to replace RN by hNeα
2β2/2,

it must be possible to choose hN independent of γ′.
The rest of this paper proves (4.8). As we announced in the introduction, its

proof uses the classical Efron-Stein inequality (see [ES81] for the original reference
and [BLM13, Theorem 3.1] for the version of this inequality that we use). Let (E ′x :
x ∈ HN) be i.i.d. standard normal random variables defined on (Ω,A,P) which
are independent of the original energies (Ex : x ∈ HN). Set τ ′x = exp{β

√
E ′x}, and

for every z ∈ HN define a new random environment τ z by

τ zx =

{
τ ′x, if x = z,

τx, otherwise.
(4.9)

Then, by Efron-Stein inequality,

VarFN ≤
∑
z∈HN

E
[(
FN(τ)− FN(τ z)

)2]
. (4.10)

We start with few preparatory claims. For z ∈ HN , let

Bz = B(z, 1) = {y ∈ HN : dist(y, z) ≤ 1}, (4.11)

and, for x, z ∈ HN , let Hz
x be the first time when Y hits x after hitting Bz,

Hz
x = inf{t ≥ 0 : Yt = x and there is s < t such that Ys ∈ Bz}. (4.12)

Finally, let

P(x, z, τ) = P τ
x [Hz

x ≤ µN ] + P τz

x [Hz
x ≤ µN ]. (4.13)

be the probability that Y makes a round from x to z and back before time µN ,
either in environment τ or τ z.
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The next two lemmas bound the differences Hτ
x−Hτz

x and Lτx−Lτ
z

x in terms of
P(x, z, τ):

Lemma 4.1. For every τ ∈ G and z ∈ HN such that τ z ∈ G as well,∣∣Lτx − Lτzx ∣∣ ≤ µαNP(x, z, τ). (4.14)

Proof. Observe that, by (2.2), the transition rates qyy′ of the process Y depend
on τz only if y ∈ Bz. Hence, the measures P τ

x and P τz

x agree on the “stopped”
σ-algebra σ(Ys : s ≤ HBz). In particular,

Eτ
x

[
`αµN (x)1{HBz>µN}

]
= Eτz

x

[
`αµN (x)1{HBz>µN}

]
,

Eτ
x

[
`αHBz (x)1{HBz≤µN}

]
= Eτz

x

[
`αHBz (x)1{HBz≤µN}

]
.

(4.15)

Therefore, using `αµN (x) ≤ `αHBz (x)+(`µN (x)−`HBz (x))α on HBz ≤ µN , since α < 1,

Lτx − Lτ
z

x = Eτ
x

[
`αµN (x)1{HBz≤µN}

]
− Eτz

x

[
`αµN (x)1{HBz≤µN}

]
≤ Eτ

x

[(
`αHBz (x) + (`µN (x)− `HBz (x))α

)
1{HBz≤µN}

]
− Eτz

x

[
`αHBz (x)1{HBz≤µN}

]
= Eτ

x

[
(`µN (x)− `HBz (x))α1{HBz≤µN}

]
≤ µαNP

τ
x [Hz

x ≤ µN ],

(4.16)

where, in the last inequality, we applied the strong Markov property at the time
HBz and used `µN (x) ≤ µN . Repeating the same argument with the role of τ
and τ z reversed, the claim of the lemma follows by recalling the definition (4.13)
of P(x, z, τ). �

Lemma 4.2. Let τ ∈ G, x ∈ DτN , and let z ∈ HN \ {x} be such that τ z ∈ G as
well. Then ∣∣Hτ

x −Hτz

x

∣∣ ≤ µN
(
1 + ZNP(x, z, τ)

)
. (4.17)

Proof. By, e.g., [AF02, Lemma 2.12] (cf. also Section 2.2.3 in the same reference),

Hτ
x = Eτ

ν [Hx] =
1

νx

∫ ∞
0

(
P τ
x [Ys = x]− νx

)
ds. (4.18)

In addition, by the usual spectral decomposition for Markov chains,

P τ
x [Ys = y] = ν−1x

2N−1∑
i=0

(1x, ψi)e
−λis(1y, ψi), (4.19)

where λi and ψi, i = 0, . . . , 2N − 1, are the eigenvalues and the corresponding
orthonormal eigenfunctions of the operator (Qf)(x) =

∑
y∈HN qxy(f(y) − f(x))

acting on L2(ν), such that ψ0 = 1, and 0 = λ0 < λY = λ1 ≤ λi for any i ≥ 2, and
( · , · ) denotes the scalar product on L2(ν). Taking x = y, this implies

|P τ
x [Ys = x]− νx| ≤ e−λY s. (4.20)
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Hence, the part of (4.18) corresponding to integral over s ≥ µN can be bounded
by ν−1x e−λY µN . If τ ∈ G, then λY µN ≥ N2, cf. (3.1) and condition (v) of τ ∈ G.

Therefore, this part of the integral is smaller than e−N
2/2, which is significantly

smaller than the right-hand side of (4.17). The same holds true for τ z in place
of τ . Therefore, ignoring those negligible errors,∣∣Hτ

x −Hτz

x

∣∣ ≤ ∣∣∣∣ ∫ µN

0

(P τ
x [Ys = x]

ντx
− P τz

x [Ys = x]

ντzx

)
ds

∣∣∣∣
≤
∣∣∣∣ ∫ µN

0

1

ντx

(
P τ
x [Ys = x]− P τz

x [Ys = x]
)

ds

∣∣∣∣
+

∣∣∣∣ ∫ µN

0

P τz

x [Ys = x]
( 1

ντx
− 1

ντzx

)
ds

∣∣∣∣.
(4.21)

By similar arguments as in the proof of the previous lemma, for every s ≤ µN ,∣∣P τ
x [Ys = x]− P τz

x [Ys = x]
∣∣ ≤ P(x, z, τ). (4.22)

In addition, by (2.3), for every x ∈ DτN , ντx = (Zτ
N)−1. Since z 6= x, and thus

x ∈ DτzN as well, ∣∣∣∣ 1

ντx
− 1

ντzx

∣∣∣∣ = |Zτ
N − Zτz

N | ≤ 1, (4.23)

by the definition of ZN (see (2.3)). Inserting these estimates into (4.21) completes
the proof of the lemma. �

The last two lemmas together imply that for any τ ∈ G, x ∈ DτN and z 6= x such
that τ z ∈ G, ∣∣∣∣LτxHτ

x

− L
τz

x

Hτz
x

∣∣∣∣ ≤ Lτx|Hτ
x −Hτz

x |+Hτz

x |Lτx − Lτ
z

x |
Hτ
xHτz

x

. (4.24)

Hence, using also conditions (ii), (iv) of τ ∈ G and Lτx ≤ µαN , the Lemmas 4.1
and 4.2 imply that, for z 6= x such that τ, τ z ∈ G and x ∈ DτN ,∣∣∣∣LτxHτ

x

− L
τz

x

Hτz
x

∣∣∣∣
≤ µ1+α

N 2−2N(1+o(1))
(
1 + 2NP(x, z, τ)

)
+ 2−N(1+o(1))µαNP(x, z, τ)

≤ 2−N(1+o(1))
(
P(x, z, τ) + 2−N(1+o(1))

)
=: E(x, z, τ).

(4.25)

We will need the following estimates on P(x, z, τ) and E(x, z, τ).

Lemma 4.3. Uniformly in x ∈ HN and τ ∈ G,∑
z∈HN

P(x, z, τ) ≤ 2No(1), (4.26)
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and therefore ∑
z∈HN

E(x, z, τ) ≤ 2−N(1+o(1)), (4.27)∑
z∈HN

E(x, z, τ)2 ≤ 2−2N(1+o(1)). (4.28)

Proof. Recall (3.11) and (4.13) and observe that∑
z∈HN

P(x, z, τ) ≤
∑
z∈HN

P τ
x [HBz ≤ µN ] +

∑
z∈HN

P τz

x [HBz ≤ µN ]

≤ (N + 1)
(
Eτ
x [|R(µN)|] + Eτz

x [|R(µN)|]
)
,

(4.29)

where we used the fact that |Bz| = (N +1). Therefore, the first claim follows from
Lemma 3.3

The remaining claims are easy consequences of the first one and the fact that
P(x, τ, z) ≤ 2, and so P(x, z, τ)2 ≤ 2P(x, z, τ). �

We can now finally come back to the computation of the variance of FN .
By (4.10), recalling the definition (4.3) of FN ,

VarFN =
∑
z∈HN

E
[( ∑

x∈DτN

Lτx
Hτ
x

1{τ∈G} −
∑
x∈DτzN

Lτzx
Hτz
x

1{τz∈G}

)2]

=
∑
z∈HN

E
[ ∑
x,y∈HN

(
Lτx
Hτ
x

1{x∈DτN} −
Lτzx
Hτz
x

1{x∈DτzN }

)

×
(Lτy
Hτ
y

1{y∈DτN} −
Lτzy
Hτz
y

1{y∈DτzN }

)
1{τ,τz∈G}

]
+
∑
z∈HN

E
[( ∑

x∈DτN

Lτx
Hτ
x

)2

1{τ∈G,τz /∈G} +

( ∑
x∈DτzN

Lτzx
Hτz
x

)2

1{τ /∈G,τz∈G}

]
.

(4.30)

We first estimate the second sum on the right-hand side of (4.30). On τ ∈ G,
we have Hτ

x ≥ 2N(1+o(1)), |DN | ≤ c2(1−γ′)N , Lτx ≤ µαN , and similarly for τ z. Hence,
this sum is bounded by(

2(1−γ′)N µαN
2N(1+o(1))

)2 ∑
z∈HN

(
P[τ ∈ G, τ z /∈ G] + P[τ /∈ G, τ z ∈ G]

)
= 2−2γ

′N(1+o(1))2N2P[τ /∈ G]

≤ 2−(2γ
′+ε)N ,

(4.31)

where in the last inequality we used Lemma 3.2.
We split the first sum on the right-hand side of (4.30) into four parts, according

to possible mutual equalities of x, y and z:
12



(1) In the case x = y = z, observing that z ∈ DτzN iff τ ′z ≥ g′N (cf. (2.11)
and (4.9))

E
[ ∑
z∈HN

(
Lτz
Hτ
z

1{z∈DτN} −
Lτzz
Hτz
z

1{z∈DτzN }

)2

1{τ,τz∈G}

]

≤ 2E
[ ∑
z∈DτN

(
Lτx
Hτ
x

)2

1{τ∈G}

]
+ 2E

[ ∑
z∈HN

(
Lτzx
Hτz
x

)2

1{τ ′z≥g′N ,τz∈G}

]
≤ cµ2α

N 2(1−γ′)N2−2N(1+o(1)) ≤ 2−(2γ
′+ε)N ,

(4.32)

where we used conditions (ii) and (iv) of τ ∈ G, relation (2.12), Lτx ≤ µαN , and the
fact that γ′ < 1.

(2) In the case when x = y and x 6= z, x ∈ DτN iff x ∈ DτzN . Therefore, by (4.25)
and Lemma 4.3, we obtain

E
[ ∑
z∈HN

∑
x∈DτN\{z}

(
Lτx
Hτ
x

− L
τz

x

Hτz
x

)2

1{τ,τz∈G}

]
≤ E

[ ∑
x∈DτN

∑
z∈HN\{x}

E(x, z, τ)21{τ,τz∈G}

]
,

≤ 2N(1−γ′)2−2N(1+o(1)) ≤ 2−(2γ
′+ε)N ,

(4.33)

where we used condition (ii) of τ ∈ G and γ′ < 1, again.
(3) In the case when y 6= x and exactly one of x, y equals z, say for simplicity

that it is y, we have again x ∈ DτN iff x ∈ DτzN . Therefore, the contribution of this
case to the right-hand side of (4.30) is, by (4.25), at most∑

z∈HN

E
[ ∑
x∈DτN

E(x, z, τ)

∣∣∣∣LτzHτ
z

1{y∈DτN} −
Lτzz
Hτz
z

1{y∈DτzN }

∣∣∣∣1{τ,τz∈G}]

≤ E
[

µαN
2N(1+o(1))

∑
x∈DτN

∑
z∈HN

E(x, z, τ)1{τ,τz∈G}

]
≤ 2(1−γ′)NµN2−2N(1+o(1)) ≤ 2−(2γ

′+ε)N ,

(4.34)

where we used conditions (ii), (iv) of τ ∈ G, γ′ < 1, and Lemma 4.3 again.
(4) We now treat the case when x, y, z are different points. This the most difficult

case and the only place where the fact that P(x, z, τ) is defined using Hz
x and not

HBz is used. In this case, by (4.25), we obtain the upper bound

E
[ ∑
z∈HN

∑
x 6=y∈DτN\{z}

E(x, z, τ)E(y, z, τ)1{τ,τz∈G}

]
. (4.35)
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Recalling first the definition of E(x, z, τ) in (4.25), the summands not containing
either P(x, y, τ) or P(y, z, τ) can be bounded by

2E
[ ∑
x,y∈DτN

∑
z∈HN

2−3N(1+o(1))
(
P(x, z, τ) + 2−N(1+o(1))

)
1{τ,τz∈G}

]
≤ 2−(2γ

′+ε)N ,

(4.36)
similarly as in the previous steps. For the remaining summand

2−2N(1+o(1))E
[ ∑
z∈HN

∑
x,y∈DτN\{z}

P(x, z, τ)P(y, z, τ)1{τ,τz∈G}

]
(4.37)

we recall the definition of P(x, z, τ), and observe that

P τ
x [Hz

x ≤ µN ] ≤
∑
a∈Bz

P τ
x [Ha = HBz ≤ µN ]P τ

a [Hx ≤ µN ]. (4.38)

Therefore,

P(x, z, τ)P(y, z, τ) ≤
∑

τ ′,τ ′′∈{τ,τz}

∑
a,b∈Bz

P τ ′

x [Ha ≤ µN ]P τ ′′

b [Hy ≤ µN ], (4.39)

and thus

E
[ ∑
z∈HN

∑
x,y∈DτN\{z}

P(x, z, τ)P(y, z, τ)1{τ,τz∈G}

]

≤ E
[ ∑
τ ′,τ ′′∈{τ,τz}

∑
x∈DτN

∑
z∈HN

∑
a,b∈Bz

P τ ′

x [Ha ≤ µN ]
∑
y∈HN

P τ ′′

b [Hy ≤ µN ]1{τ,τz∈G}

]
(4.40)

By Lemma 4.3, the summation over y can be bounded by 2No(1) uniformly in b.
Due to the symmetry of Hn, since |Bz| = N +1, the summations over a, and z can
be written as (N + 1)

∑
z∈HN . For the summation over z one can then apply the

Lemma 4.3 again. The summation over x contributes the factor |DτN | ≤ c2(1−γ′)N .
Therefore, the last expression is bounded by 2(1−γ′+o(1))N . Inserting this back
into (4.37), implies that the contribution (4.35) of the forth case is bounded by
2−(1+γ

′+o(1))N ≤ 2−(2γ
′+ε)N .

Putting (4.31) and the estimates from the cases (1)–(4) back into (4.30) im-
plies that VarFN ≤ 2−(2γ

′+ε)N . This completes the proof of (4.8) and thus of
Theorem 2.2.
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