
AGING OF THE METROPOLIS DYNAMICS ON THE RANDOM
ENERGY MODEL

JIŘÍ ČERNÝ AND TOBIAS WASSMER

Abstract. We study the Metropolis dynamics of the simplest mean-field spin glass
model, the Random Energy Model. We show that this dynamics exhibits aging by show-
ing that the properly rescaled time change process between the Metropolis dynamics and
a suitably chosen ‘fast’ Markov chain converges in distribution to a stable subordinator.
The rescaling might depend on the realization of the environment, but we show that its
exponential growth rate is deterministic.

1. Introduction

This paper studies the out-of-equilibrium behavior of the Metropolis dynamics on the
Random Energy Model (REM). Our main goal is to answer one of the remaining important
open questions in the field, namely whether this dynamics exhibits aging, and, if yes,
whether its aging behavior admits the usual description in terms of stable Lévy processes.

Aging is one of the main features appearing in the long-time behavior of complex disor-
dered systems (see e.g. [BCKM97] for a review). It was for the first time observed experi-
mentally in the anomalous relaxation patterns of the residual magnetization of spin glasses
(e.g. [LSNB83, Cha84]). One of the most influential steps in the theoretical modeling of the
aging phenomenon is the introduction of the so-called trap models by Bouchaud [Bou92]
and Bouchaud and Dean [BD95]. These models, while being sufficiently simple to allow
analytical treatment, reproduce the characteristic power law decay seen experimentally.

Since then a considerable effort has been made in putting the predictions obtained from
the trap models to a solid basis, that is to derive these predictions from an underlying
spin-glass dynamics. The first attempt in this direction was made in [BBG02, BBG03a,
BBG03b] where it was shown that, for a very particular Glauber-type dynamics, at time
scales very close to the equilibration, a well chosen two-point correlation function converges
to that given by Bouchaud’s trap model.

With the paper [BČ08], where the same type of dynamics was studied in a more general
framework and on a broader range of time scales, it emerged that aging establishes itself
by the fact that scaling limits of certain additive functionals of Markov chains are stable
Lévy processes, and that the convergence of the two-point correlation functions is just a
manifestation of the classical arcsine law for stable subordinators.

The Glauber-type dynamics used in those papers, sometimes called random hopping
time (RHT) dynamics, is however rather simple and is often considered as ‘non-realistic’,
mainly because its transition rates do not take into account the energy of the target state.
Its advantage is that it can be expressed as a time change of a simple random walk on
the configuration space of the spin glass, which allows for a certain decoupling of the
randomness of the dynamics from the randomness of the Hamiltonian of the spin glass,
making its rigorous studies more tractable.
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For more realistic Glauber-type dynamics of spin glasses, like the so-called Bouchaud’s
asymmetric dynamics or the Metropolis dynamics, such decoupling is not possible. As a
consequence, these dynamics are far less understood.

Recently, some progress has been achieved in the context of the simplest mean-field
spin glass model, the REM. First, in [MM15], the Bouchaud’s asymmetric dynamics have
been considered in the regime where the asymmetry parameter tends to zero with the size
of the system. Building on the techniques started in [Mou11], this papers confirms the
predictions of Bouchaud’s trap model in this regime. Second, the Metropolis dynamics
have been studied in [Gay14], for a truncated version of the REM, using the techniques
developed for the symmetric dynamics in [Gay12, Gay10], again confirming Bouchaud’s
predictions.

The weak asymmetry assumption of [MM15] and the truncation of [Gay14] have both
the same purpose. They aim at overcoming some specific features of the asymmetry and
recovering certain features of symmetric dynamics. Our aim in this work is to get rid of
this simplifications and treat the non-modified REM with the usual Metropolis dynamics.

Let us also mention that Bouchaud’s asymmetric dynamics (and implicitly the Metrop-
olis one) is rather well understood in the context of trap models on Zd, see [BČ11, Čer11,
GŠ13], where it is possible to exploit the connections to the random conductance model
with unbounded conductances, [BD10]. Finally, the Metropolis dynamics on the complete
graph was considered in [Gay12].

Before stating our main result, let us briefly recall the general scheme for proving aging
in terms of convergence to stable Lévy processes. The actual spin glass dynamics, X =
(Xt)t≥0, which is reversible with respect to the Gibbs measure of the Hamiltonian, is
compared to another Markov chain Y = (Yt)t≥0 on the same space, which is an ‘accelerated’
version of X and whose stationary measure is uniform. The process Y is typically easier
to be understood, e.g. it is a simple random walk for the RHT dynamics, and the original
process X can be written as its time change,

X(t) = Y (S−1(t)), (1.1)

for the right continuous inverse S−1 of a certain additive functional S of the Markov chain
Y , called the ‘clock process’. The aim is then to show convergence of the properly rescaled
clock process S to an increasing stable Lévy process, that is to a stable subordinator.

We now state our main result. We consider the unmodified REM, as introduced in
[Der80, Der81]. The state space of this model is the N -dimensional hypercube HN =
{−1, 1}N , and its Hamiltonian is a collection (Ex)x∈HN of i.i.d. standard Gaussian random
variables defined on some probability space (Ω,F ,P). The non-normalized Gibbs measure

τx = eβ
√
NEx at inverse temperature β > 0 gives the equilibrium distribution of the system.

The Metropolis dynamics on the REM is the continuous-time Markov chain X = (Xt)t≥0

on HN with transition rates

rxy =

(
1 ∧ τy

τx

)
1{x∼y}, x, y ∈ HN . (1.2)

Here, x ∼ y means that x and y are neighbors on HN , that is they differ in exactly one
coordinate.

As explained above, we will compare the Metropolis chain X with another ‘fast’ Markov
chain Y = (Yt)t≥0 with transition rates

qxy =
τx ∧ τy
1 ∧ τx

1{x∼y}, x, y ∈ HN . (1.3)
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It can be easily checked using the detailed balance conditions that Y is reversible and that
its equilibrium distribution is

νx =
1 ∧ τx
ZN

, x ∈ HN ,

where ZN =
∑

x∈HN (1∧ τx). Finally, since rxy = (1∨ τx)−1qxy, X can be written as a time
change of Y as in (1.1) with the clock process S being given by

S(t) =

∫ t

0

(1 ∨ τYs)ds. (1.4)

For the rest of the paper we only deal with the process Y and the clock process S, the actual
Metropolis dynamics X does not appear anymore after this point. For a fixed environment
τ = (τx)x∈HN , let P τ

ν denote the law of the process Y started from its stationary distribution
ν, and let D([0, T ],R) be the space of R-valued cadlag functions on [0, T ]. We denote by
βc =

√
2 log 2 the (static) critical temperature of the REM. Our main result is the following.

Theorem 1.1. Let α ∈ (0, 1) and β > 0 be such that

1

2
<
α2β2

β2
c

< 1, (1.5)

and define

gN = eαβ
2N(αβ

√
2πN)−

1
α . (1.6)

Then there are random variables RN which depend on the environment (Ex)x∈HN only, such
that for every T > 0 the rescaled clock processes

SN(t) = g−1
N S(tRN), t ∈ [0, T ],

converge in P-probability as N →∞, in P τ
ν -distribution on the space D([0, T ],R) equipped

with the Skorohod M1-topology, to an α-stable subordinator Vα. The random variables RN

satisfy

lim
N→∞

logRN

N
=
α2β2

2
, P-a.s. (1.7)

Let us make a few remarks on this result.
1. The result of Theorem 1.1 confirms that the predictions of Bouchaud’s trap model

hold for the Metropolis dynamics on the REM, at least at the level of scaling limits of
clock processes. It also compares directly to the results obtained for the symmetric (RHT)
dynamics in [BČ08]. The scales gN and RN are (up to sub-exponential prefactors) the
same as previously, including the condition (1.5) or the range of parameters α, β. As in
[BČ08], the right inequality in (1.5) is completely natural, beyond it Y ‘feels’ the finiteness
of HN and aging is not expected to occur. The left inequality in (1.5) is technical, it
ensures that the relevant deep traps are well separated (cf. Lemma 2.1), introducing certain
simplifications in the proof. We believe that this bound might be improved to α2β2/β2

c > 0,
by further exploiting our method. Finally, as previously, note that (1.5) is satisfied also
for β < βc for appropriate α, hence aging can occur above the critical temperature.

2. Our choice of the fast chain Y is rather unusual. In view of the previous papers
[MM15, BČ11], it would be natural to take instead the ‘uniform chain’ Ỹ with transition
rates τx ∧ τy, that is without the correction 1 ∧ τx which appears in (1.3). This chain is
reversible with respect to the uniform distribution on HN . This choice has, however, some
deficiencies. On the heuristic level, Ỹ is not an acceleration of X, since it is much slower
than X on sites with very small Gibbs measure τx � 1. These sites, which are irrelevant



AGING OF THE METROPOLIS DYNAMICS ON THE RANDOM ENERGY MODEL 4

for the statics, then ‘act as traps’ on Ỹ , making them relevant for the dynamics, which is
undesirable. On the technical level, the trapping on sites with small Gibbs measure has
the consequence that the mixing time of Ỹ is very large.

Our choice of the fast chain Y runs as fast as X on the sites with small Gibbs measure
and thus does not have this deficiency. Moreover, since νx = Z−1

N whenever Ex ≥ 0, the
equilibrium distribution of the fast chain Y is still uniform on the relevant deep traps, so
the clock process S retains its usual importance for aging.

Remark also that in order to overcome the similar difficulties, [MM15] truncate the
Hamiltonian of the REM at 0 which effectively sets τx ≥ 1 for all x ∈ HN . We prefer to
retain the full REM and use the modified fast chain Y instead. Finally, [Gay14] uses the
discrete skeleton of X as the base chain, which has some interesting features but introduces
similar undesirable effects.

3. We view Theorem 1.1 as an aging statement, without further considering any two-
point correlation functions. Actually, it seems hard to derive aging statements for the
usual correlation functions from our result without extending the paper considerably. Such
derivation usually requires some knowledge of the fast chain Y that goes over the M1-
convergence of the clock processes. This knowledge is typically automatically obtained in
the previous approaches. The strength (or the weakness) of our method is that we do not
need to obtain such finer knowledge to show the clock process convergence.

4. A rather unusual feature of Theorem 1.1 is the fact that the scaling RN is random, it
depends on the random environment. This again a consequence of our technique. Claim
(1.7) in Theorem 1.1 however shows that at least the exponential growth of RN is deter-
ministic. The random scale RN is explicitly defined in (2.10). We will see that its definition
depends on a somewhat free choice of an auxiliary parameter, but nevertheless the final
result does not depend on this parameter. Not only this property makes us conjecture that
RN should actually satisfy a deterministic law of large numbers,

lim
N→∞

h(N)e−α
2β2N/2RN = 1, P-a.s.,

for some function h(N) growing at most sub-exponentially.

5. The mode of convergence in Theorem 1.1 is not optimal, one would rather like
to obtain the convergence in P τ

ν -distribution for P-almost every environment, which is
usually called ‘quenched’ convergence. Actually, Theorem 1.1 can be strengthened slightly
to a statement which is somewhere between P-a.s. convergence and convergence in P-
probability. Namely, the statement holds for a.e. realization of sites with ‘small’ τx, but
only in probability over sites with ’large’ τx, cf. Remark 6.4.

6. Our proof of Theorem 1.1 strongly exploits the i.i.d. structure of the Hamiltonian of
the REM. At present we do not know if it is possible to combine our techniques with those
used for the RHT dynamics of the p-spin model in [BBČ08, BG12].

We proceed by commenting on the proof of Theorem 1.1, concentrating mainly on its
novelties. The general strategy so far to prove such a result has been to first reduce the
problem to the clock process restricted to a set of deep traps which govern the behavior of
the original clock process. The different methods then all more or less aim at dividing the
contribution of consequently found deep traps into essentially i.i.d. blocks. For example
in [BČ08] or [BČ11], this is achieved by controlling the hitting probabilities of deep traps,
proving that they are hit essentially uniformly in exponentially distributed times, and
controlling the time the chain spends at the deep traps by a sharp control of the Green
function. Similar rather precise estimates on hitting probabilities and/or Green function are
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necessary in other approaches. Using this i.i.d. structure, one can then show convergence
of the clock process by standard methods, e.g. computing the Laplace transform.

The method used in this paper is slightly inspired by the general approach taken in
[FM14] and [ČW15]. There, models of trapped random walks on Zd are considered where
few information about the discrete skeleton as well as the waiting times of a continuous-time
Markov chain are available, and minimal necessary conditions for convergence of the clock
process are found. Taking up this idea, instead of analyzing in detail the behavior of the
fast chain Y , we extract the minimal amount of information needed to show convergence of
the clock process. In particular, we do not need any exact control of hitting probabilities
and Green functions of deep traps, as most previous work did.

The first step in our proof is standard, namely that the main contribution to the clock
process comes from a small set of vertices with large Gibbs measure τx, the so-called deep
traps, and that in fact the clock process of the deep traps converges to a stable subordinator.
Denote the set of deep traps by DN (see Section 2 for details). We will show that the clock
process S can be well approximated by the ‘clock process of the deep traps’

SD(t) =

∫ t

0

(1 ∨ τYs)1{Ys∈DN}ds. (1.8)

Then it remains to show that in fact g−1
N SD(tRN) converges to a stable subordinator.

To this end, we will in some sense invert the standard procedure described above. Instead
of approximating the clock process by an i.i.d. block structure and then use the Laplace
transform to show convergence, we will first compute a certain conditional Laplace trans-
form using some special properties of the Metropolis dynamics. Then we analyze what is
actually needed in order to show convergence of the unconditional Laplace transform.

A bit more detailed, this will be done as follows. Under condition (1.5), the deep traps
are almost surely well separated. This fact and the fact that the definition (1.3) contains
the factor τx ∧ τy imply that the transition rates qxy of the fast chain Y do not depend on
the energies Ex of the deep traps, but only on their location. Therefore, one can condition
on the location of all traps and the energies Ex of the non-deep traps, which determines
the law P τ

ν of Y , and take the expectation over the energies of the deep traps. We call this
a ‘quasi-annealed’ expectation, and denote it by ED for the moment. Let `t(x) denote the
local time of the fast chain Y (see Section 2 for details). As ED is simply an expectation
over i.i.d. random variables, the quasi-annealed Laplace transform of the rescaled clock
process of the deep traps given Y can be computed. It essentially behaves like

ED
[
e
−λ 1

gN
SD(tRn) | Y

]
≈ exp

{
−KλαεN

∑
x∈DN

`tRN (x)α
}
. (1.9)

Here, εN is a deterministic sequence tending to 0 as N → ∞. The above approximation
shows that the only object related to Y we have to control is the local-time functional
εN
∑

x∈DN `tRN (x)α.
We will show that this a priori non-additive functional of Y actually behaves in an

additive way, namely that it converges to t as N →∞, under P τ
ν for P-a.e. environment τ .

For this convergence to hold it is sufficient to have some weak bounds on the mean hitting
time of deep traps as well as some control on the mixing of the chain Y together with an
appropriate choice of the scale RN that depends on the environment.

Using standard methods we then strengthen the quasi-annealed convergence to quenched
convergence (in the sense of Theorem 1.1).
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To conclude the introduction, let us comment on how our method might be extended.
The key argument in the computation of the quasi-annealed Laplace transform, namely
the fact that the chain Y is independent of the depth of the deep traps, seems very specific
for the Metropolis dynamics. However, by adapting the method appropriately and using
network reduction techniques, we believe that one could also treat Bouchaud’s asymmetric
dynamics and Metropolis dynamics in the regime where the left-hand side inequality of
(1.5) fails, i.e. there are neighboring deep traps.

The rest of the paper is structured as follows. Detailed definitions and notations used
through the paper are introduced in Section 2. In Section 3 we analyze the mixing proper-
ties of the fast chain Y , which will be crucial at several points later. In Section 4 we give
bounds on the mean hitting time of deep traps and on the normalizing scale RN . Using
these bounds and the results on the mixing of Y , we show concentration of the local time
functional εN

∑
x∈DN `tRN (x)α in Section 5. We prove convergence of the rescaled clock

process of the deep traps in Section 6 with the above mentioned computation of the quasi-
annealed Laplace transform, using the concentration of the local time functional. Finally,
we treat the shallow traps in Section 7 by showing that their contribution to the clock
process can be neglected. In Appendix A we give the proof of a technical result which is
used to bound the expected hitting times in Section 4.

2. Definitions and notation

In this section we introduce some notation used through the paper and recall a few
useful facts. We use HN to denote the N -dimensional hypercube {−1, 1}N equipped with
the usual distance

d(x, y) =
1

2

N∑
i=1

|xi − yi|,

and write EN for the set of nearest-neighbor edges EN = {{x, y} : d(x, y) = 1}.
For given parameters α and β, let

γ =
α2β2

β2
c

∈ (1/2, 1), (2.1)

by condition (1.5) in Theorem 1.1.
Recall from the introduction that (Ex : x ∈ HN , N ≥ 1), is a family of i.i.d. standard

Gaussian random variables defined on some probability space (Ω,F ,P). Note that we do
not denote the dependence on N explicitly, but we assume that the space (Ω,F ,P) is the

same for all N . For β > 0 the non-normalized Gibbs factor τx is given by τx = eβ
√
NEx .

Using the standard Gaussian tail approximation,

P[Ex ≥ t] =
1

t
√

2π
e−t

2/2
(
1 + o(1)

)
as t→∞, (2.2)

we obtain that gN , as defined in Theorem 1.1, satisfies

P[τx > ugN ] = u−α2−γN
(
1 + o(1)

)
.

This heuristically important computation explains the appearance of stable laws in the
distribution of sums of τx: If we observe 2γN vertices, then finitely many of them have
their rescaled Gibbs measures τx/gN of order unity, and, moreover, those rescaled Gibbs
measures behave like random variables in the domain of attraction of an α-stable law.

Recall also that Y = (Yt)t≥0 stands for the fast Markov chain whose transition rates qxy
are given in (1.3), and that ν = (νx)x∈HN denotes the invariant distribution of this chain,
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νx = 1∧τx
ZN

. For a given environment τ = (τx)x∈HN , let P τ
x and P τ

ν denote the laws of Y
started from a vertex x or from ν respectively, and Eτ

x , Eτ
ν the corresponding expectations.

Note that the normalization factor ZN =
∑

x∈HN (1 ∧ τx) satisfies, for every constant
κ ∈ (0, 1/2),

κ2N ≤ ZN ≤ 2N P-a.s for N large enough. (2.3)

Indeed, obviously ZN ≤ 2N , and ZN ≥
∑

x∈HN 1{Ex≥0}. But 1{Ex≥0} are i.i.d. Bernoulli
random variables, therefore the statement follows immediately by the law of large numbers.

An important role in the study of properties of Y is played by the conductances defined
by

cxy = νxqxy =
τx ∧ τy
ZN

for x ∼ y. (2.4)

Let θs be the left shift on the space of trajectories of Y , that is

(θsY )t = Ys+t. (2.5)

Let Hx = inf{t > 0 : Yt = x} be the hitting time of x by Y , J1 the time of the first jump
of Y , and let H+

x = Hx ◦ θJ1 + J1 = inf{t > J1 : Yt = x} be the return time to x by Y .
Similarly define HA and H+

A for a set A ⊂ HN . The local time `t(x) of Y is given by

`t(x) =

∫ t

0

1{Ys=x}ds.

Using this notation the clock process S introduced in (1.4) can be written as

S(t) =

∫ t

0

(1 ∨ τYs)ds =
∑
x∈HN

`t(x)(1 ∨ τx).

To define the set of deep traps DN and the random scale RN mentioned in the introduc-
tion we introduce a few additional parameters. For α ∈ (0, 1), β > 0 as in Theorem 1.1
and γ as in (2.1), we fix γ′ and α′ such that

1

2
< γ′ < γ, and α′ =

βc
β

√
γ′. (2.6)

An explicit choice of γ′ will be made later in Section 5. We define the auxiliary scale

g′N = eα
′β2N(α′β

√
2πN)−

1
α′ ,

and set
DN = {x ∈ HN : τx ≥ g′N}.

to be the set of deep traps. By the Gaussian tail approximation (2.2) it follows that the
density of DN satisfies

P[x ∈ DN ] = 2−γ
′N(1 + o(1)). (2.7)

We quote the following observation on the size and sparseness of DN . The sparseness will
play a key role in our computation of the quasi-annealed Laplace transform in Section 6.

Lemma 2.1. [BČ08, Lemma 3.7] For every ε > 0, P-a.s. for N large enough,

|DN |2(γ′−1)N ∈ (1− ε, 1 + ε). (2.8)

Moreover, since γ′ > 1/2, there exists δ > 0 such that P-a.s. for N large enough, the
separation event

S = {min{d(x, y) : x, y ∈ DN} ≥ δN} (2.9)

holds.
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Finally, for the sake of concreteness, let us give the explicit form of the random scale
RN ,

RN = 2(γ−γ′)N

(∑
x∈DN

Eτ
x [`Tmix

(x)α]

Eτ
ν [Hx]

)−1

, (2.10)

where Tmix denotes the mixing time of Y , a randomized stopping time which we will
construct in Section 3. The reason for this definition will become apparent when we prove
the concentration of the local time functional mentioned in the introduction. Although
the definition of RN seems arbitrary by the somewhat free choice of the parameter γ′,
Theorem 1.1 actually shows that asymptotically RN will be independent of γ′.

For the rest of the paper, c, c′, c′′ will always denote positive constants whose values may
change from line to line. We will use the notation g = o(1) for a function g(N) that tends
to 0 as N →∞, and g = O(f) for a function g(N) that is asymptotically at most of order
f(N), i.e. limN→∞ |g(N)|/f(N) ≤ c, for some c > 0.

3. Mixing properties of the fast chain

The fact that the chain Y mixes fast, namely on a scale polynomial in N , plays a crucial
role in many of our arguments. In this section we analyze the mixing behavior of Y . We
first give a lower bound on the spectral gap λY of Y , which we then use to construct a
strong stationary time Tmix.

Proposition 3.1. There are constants κ > 0, K > 0, C0 > 0, such that P-a.s. for N large
enough,

λY ≥
κ

4
N−K−1−βC0 .

We prove this proposition with help of the Poincaré inequality derived in [DS91]. To
state this inequality, let Γ be a complete set of self-avoiding nearest-neighbor paths on HN ,
that is for each x 6= y ∈ HN there is exactly one path γxy ∈ Γ connecting x and y. Let |γ|
be the length of the path γ. By Proposition 1’ of [DS91], using also the reversibility of Y
and recalling the definition (2.4) of the conductances, it follows that

1

λY
≤ max

e={u,v}∈EN

{
1

cuv

∑
γxy∈Γ:
γxy3e

|γxy|νxνy

}
. (3.1)

To minimize the right-hand side of (3.1), a special care should be taken of the edges
whose conductance cuv = (τu ∧ τv)/ZN is very small, that is which are incident to vertices
with very small τu. Those ‘bad’ edges should be avoided if possible by paths γ ∈ Γ. They
cannot be avoided completely, since Γ should be a complete set of paths. On the other
hand, if such edge is the first or the last edge of some path γxy, its small conductance is
canceled by equally small νx or νy. Therefore, to apply (3.1) efficiently, one should find a
set of paths Γ such that all paths γ ∈ Γ avoid ‘bad’ vertices, except for vertices at both
ends of the paths.

In the context of spin glass dynamics this method was used before in [FIKP98] to find
the spectral gap of the Metropolis dynamics (1.2). Using the same approach, that is using
the same set of paths Γ as in [FIKP98], we could find a lower bound on the spectral gap
of the fast chain Y of leading order exp{−c

√
N logN}. This turns out to be too small for

our purposes, cf. Remark 6.4.
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In the next lemma we construct a set of paths Γ that avoids more ‘bad’ vertices, which
allows to improve the lower bound on the spectral gap to be polynomial in N . This is
possible by using an embedding of HN into its sub-graph of ‘good’ vertices, i.e. vertices
with not too small τx, which is inspired by similar embeddings in [HLN87].

For a nearest-neighbor path γ = {x0, . . . , xn}, we call the vertices x1, . . . , xn−1 the inte-
rior vertices of γ, and the edges {xi, xi+1}, i = 1, . . . , n− 2, the interior edges of γ.

Lemma 3.2. There is an integer K > 0 and a constant C0 > 0, such that P-a.s. for N
large enough there exists a complete set of paths Γ, such that the following three properties
hold.

(i) For every path γ ∈ Γ, every interior edge e = {u, v} satisfies

ZNcuv = τu ∧ τv ≥ N−βC0 .

(ii) |γ| ≤ 8N for all γ ∈ Γ.
(iii) Every edge e ∈ EN is contained in at most NK2N−1 paths γ ∈ Γ.

Proof. For C0 > 0, whose value will be fixed later, we say that x ∈ HN is good if τx ≥
N−βC0 , and it is bad otherwise. To construct the complete set of paths Γ satisfying the
required properties, we will use the fact that the set of good vertices is very dense in HN .
In particular, we will show that

P-a.s. for N large enough, every x ∈ HN has at least 1
2
C0

√
N good neighbors, (3.2)

and

P-a.s. for N large enough, for any pair of vertices x, y at distance 2 or 3, there
is a nearest-neighbor path of length at most 7 connecting x and y, such that
all interior vertices of this path are good,

(3.3)

To prove these two claims, note first that for any x ∈ HN , the probability of being bad
is

P
[
τx < N−βC0

]
= P[Ex < −C0N

− 1
2 logN ] =

1

2
−
∫ C0N

− 1
2 logN

0

1√
2π
e−

s2

2 ds.

For N large enough the integrand is larger than 1
2
, and it follows that

P[x is bad] ≤ 1

2

(
1− C0N

− 1
2 logN

)
=:

1

2
(1− qN).

Hence, the number of bad neighbors of a vertex x ∈ HN is stochastically dominated by
a Binomial

(
N, 1

2
(1 − qN)

)
random variable B. For λ > 0, the exponential Chebyshev

inequality yields

P
[
x has more than N − 1

2
C0

√
N bad neighbors

]
≤ P

[
B ≥ N − 1

2
C0

√
N
]

= P
[
eλB ≥ eλ(N− 1

2
C0

√
N)
]

≤ e−λ(N− 1
2
C0

√
N)
(

1 +
1

2
(1− qN)(eλ − 1)

)N
= e−λ(N− 1

2
C0

√
N)

(
eλ

2

(
1− qN + e−λ(1 + qN)

))N
≤ 2−Ne

λ
2
C0

√
N
(

exp{−qN + e−λ(1 + qN)}
)N
.
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Since qN → 0 as N →∞, the last term in the parenthesis is bounded by 2e−λ for N large
enough. Inserting qN and choosing λ = logN , the above is bounded by

2−N exp
{1

2
C0

√
N logN − C0

√
N logN + 2

}
≤ 2−N exp

{
− 1

4
C0

√
N logN

}
,

for N large enough. With a union bound over all x ∈ HN and using the Borel-Cantelli
lemma, (3.2) follows.

To prove (3.3), we first introduce some notation. For a given vertex x and {i1, . . . , ik} ⊂
{1, . . . , N}, denote by xi1···ik the vertex that differs from x exactly in coordinates i1, . . . , ik.
If two vertices x and y are at distance 2, then y = xkl for some k, l ∈ {1, . . . , N}. Then
for {i, j}∩{k, l} = ∅ we define the path γijxy of length 6 as {x, xi, xij, xijk, xijkl = yij, yj, y}.
Similarly, for x, y with d(x, y) = 3, we have y = xklm, and for {i, j} ∩ {k, l,m} = ∅ we
define the path γijxy of length 7 by {x, xi, xij, xijk, xijkl, xijklm = yij, yj, y}. Observe that for
fixed x, y with d(x, y) = 2 or 3 and for different pairs i, j the innermost 3 or 4 vertices of
the paths γijxy are disjoint.

We now show that with high probability, for every x, y at distance 2 or 3, we may find
i, j such that γijxy has only good interior vertices. Fix a pair x, y ∈ HN at distance 2 or 3,
and let as above k, l or k, l,m be the coordinates in which x and y differ. Assume for the
moment that both x and y have at least 1

2
C0

√
N good neighbors. Then there are at least

1
4
C2

0N pairs i, j such that the vertices xi and yj are good. Moreover, since it is a matter
of dealing with a constant number of exceptions, we may tacitly assume that i 6= j, and
{i, j} ∩ {k, l} = ∅ or {i, j} ∩ {k, l,m} = ∅, respectively.

The remaining interior vertices {xij, xijk, xijkl = yij} or {xij, xijk, xijkl, xijklm = yij} are
all good with probability strictly larger than 1/2, so the probability that one or more
of these vertices are bad is bounded by 15/16. Since these 3 or 4 innermost vertices are
disjoint for different pairs i, j, by independence, the probability that among all 1

4
C2

0N pairs
{i, j} there is none for which all innermost 3 or 4 vertices of γijxy are good is bounded by

(15/16)
1
4
C2

0N . Hence, for one fixed pair x, y ∈ HN at distance 2 or 3, where both x and y

have at least 1
2
C0

√
N good neighbors, the probability that there is no path from x to y of

length 6 or 7 with all interior vertices good is bounded by

(15/16)
1
4
C2

0N .

There are less than 2N(N2 + N3) pairs of vertices at distance 2 or 3 respectively, and we

know from the proof of (3.2) that with probability larger than 1−e−c
√
N logN every x ∈ HN

has at least 1
2
C0

√
N good neighbors. It follows that the probability that the event in (3.3)

does not happen is bounded by

e−c
√
N logN + 2N(N2 +N3)(15/16)

1
4
C2

0N . (3.4)

Choosing C0 >
√

4 log 2
log 15/16

and applying the Borel-Cantelli lemma implies (3.3).

We now use the density properties (3.2) and (3.3) of good vertices to define a (random)
mapping from the hypercube to its sub-graph of good vertices. Let

PN =
{
{x0, . . . , xk} : k ≥ 0, d(xi, xi−1) = 1 ∀ i = 1, . . . , k

}
be the set of finite nearest-neighbor paths on HN , including paths of length zero, which
are just single vertices. Define the mapping ϕN : {HN , EN} → {HN ,PN} in the following



AGING OF THE METROPOLIS DYNAMICS ON THE RANDOM ENERGY MODEL 11

way. For x ∈ HN , let

ϕN(x) =


x, if x is good;

xi, if x and xj, j < i, are bad but xi is good;

x, if x is bad and has no good neighbor.

By (3.2), P-a.s. for N large enough the last option will not be used, and therefore ϕN maps
all vertices to good vertices. In this case, for two neighboring vertices x, y, their good
images ϕN(x) and ϕN(y) can either coincide, or be at distance 1, 2, or 3.

For an edge e = {x, y} ∈ EN , let ϕN(e) be

• the ‘path’ {ϕN(x)}, if ϕN(x) is good and ϕN(x) = ϕN(y);
• the path {ϕN(x), ϕN(y)}, if both ϕN(x) and ϕN(y) are good and at distance 1;
• the path γijϕN (x),ϕN (y) with ‘minimal’ i, j such that all vertices of this path are good,

if both ϕN(x) and ϕN(y) are good with distance 2 or 3 and such path exists;
• the path {x, y} in any other case.

From (3.2) and (3.3) it follows that P-a.s. for N large enough the last option does not occur
and ϕN maps all edges to paths that contain only good vertices.

Finally, we extend ϕN to be a map that sends paths to paths. For γ = {x0, . . . , xn} ∈ PN
we define φN(γ) to be a concatenation of paths φN({xi−1, xi}), i = 1, . . . , n, with possible
loops erased by an arbitrary fixed loop-erasure algorithm. Note that ϕN can make paths
shorter or longer, but by construction, for any path γ ∈ PN ,

|ϕN(γ)| ≤ 7|γ|. (3.5)

We can now construct the random set of paths Γ that satisfies the properties of the
lemma. We first define a certain canonical set of paths Γ̃, and then use the mapping φN
to construct Γ from Γ̃.

For any pair of vertices x 6= y ∈ HN , let γ̃xy be the path from x to y obtained by
consequently flipping the disagreeing coordinates, starting at coordinate 1. These paths
are all of length smaller or equal to N , and the set Γ̃ = {γ̃xy : x 6= y ∈ HN} has the

property that any edge e is used by at most 2N−1 paths in Γ̃. Indeed, if e = {u, v}, then
there is a unique i such that ui 6= vi. By construction, e ∈ γ̃xy if

x = (x1, . . . , xi−1, ui, ui+1, . . . , uN),

y = (v1, . . . , vi−1, vi, yi+1, . . . , yN).

It follows that a total of N − 1 coordinates of x and y are unknown, and so the number of
possible pairs x, y for paths γ̃xy through e is bounded by 2N−1 (cf. [DS91, Example 2.2]).

For any pair x 6= y ∈ HN , let the path γxy in the set Γ be defined by

γxy =


φN(γ̃xy), if x, y are good,

{x} ◦ φN(γ̃xy), if x is bad and y is good,

φN(γ̃xy) ◦ {y}, if x is good and y is bad,

{x} ◦ φN(γ̃xy) ◦ {y}, if x is good and y is bad,

where ‘◦’ denotes the path concatenation.
It remains to check that this set of paths Γ indeed satisfies the required properties. First,

by construction, Γ is complete, that is every path γxy ∈ Γ connects x with y and is nearest-
neighbor and self-avoiding. Further, by construction of ϕN and the properties (3.2) and
(3.3), P-a.s. for N large enough, all interior vertices of all γ ∈ Γ are good, i.e. (i) is satisfied.
Moreover, by (3.5) and the construction of the paths γ̃ ∈ Γ̃, the paths γ ∈ Γ have length
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at most 7N + 2, hence (ii) is satisfied for N ≥ 2. Finally, ϕN deforms the paths γ̃ ∈ Γ̃
only locally, so that the number of paths in Γ passing through an edge e is bounded by
the number of paths in Γ̃ passing through the ball of radius 4 around e. But this number
is bounded by 2N−1 times the number of edges in that ball, which is bounded by NK for
some integer K > 0. This proves (iii) and thus finishes the proof of the lemma. �

We can now prove the spectral gap estimate.

Proof of Proposition 3.1. P-a.s. for every N large enough we can find a complete set of
paths Γ such that (i), (ii) and (iii) of Lemma 3.2 and (2.3) hold. By (ii), the expression in
(3.1) over which the maximum is taken is bounded from above by

8N

ZN

1

τu ∧ τv

∑
γxy3{u,v}

(τx ∧ 1)(τy ∧ 1). (3.6)

We distinguish three cases for the position of the edge {u, v} in a path γxy.

(1) If {u, v} is an interior edge of γxy, then τu∧τv is larger than N−βC0 by (i) of Lemma 3.2.
(2) If {u, v} is at the end of the path γxy, say at u = x, and v is an interior vertex of γxy,

then τx ∧ τv is either larger than N−βC0 , or it is equal to τx in which case it cancels
with τx ∧ 1. Indeed, if τx ∧ τv was smaller than N−βC0 and equal to τv, then v would
be a bad interior vertex of γ, which contradicts (i) of Lemma 3.2.

(3) If γxy only consists of the single edge {x, y}, then τx ∧ τy is either larger than 1, or the
term τx ∧ τy cancels with the smaller one of τx ∧ 1 and τy ∧ 1.

It follows that for every edge {u, v} the expression (3.6) is bounded from above by

8N

ZN
NβC0#{paths through e}.

Since, by (iii) of Lemma 3.2, the number of paths is bounded by NK2N−1, and, by (2.3),
ZN ≥ κ2N , this completes the proof. �

In a next step we construct the mixing time Tmix of the fast chain Y . To this end, define
the mixing scale

mN =
8

κ
NK+3+βC0 . (3.7)

Then Proposition 3.1 reads λN ≥ 2N2m−1
N .

We assume that our probability space (Ω,F ,P) is rich enough so that there exist infin-
itely many independent uniformly on [0, 1] distributed random variables, independent of
anything else. A randomized stopping time T is a positive random variable such that the
event {T ≤ t} depends only on {Ys : s ≤ t}, the environment, and on the values of these
additional random variables.

Proposition 3.3. P-a.s. for N large enough, there exists a randomized stopping time Tmix

with values in {mN , 2mN , 3mN , . . . } such that Tmix is a strong stationary time for Y , that
is for any (possibly random) Y0 ∈ HN ,

(i) P τ
Y0

[YTmix
= y] = νy,

(ii) for any k ≥ 1, P τ
Y0

[Tmix ≥ kmN ] = e−(k−1),
(iii) Tmix and YTmix

are independent.
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Proof. This construction follows closely [MM15, Proposition 3.1], with only minor adapta-
tions. Define the following distances from stationarity,

s(t) = min{s ≥ 0 : ∀x, y ∈ HN , P
τ
x [Yt = y] ≥ (1− s)ν(y)},

d̄(t) = max
x,y∈HN

‖P τ
x [Yt ∈ · ]− P τ

y [Yt ∈ · ]‖TV ,

where ‖ · ‖TV denotes the total variation distance. Define the time

T = inf{t ≥ 0 : d̄(t) ≤ e−1}.

From [AF02, Lemmas 4.5, 4.6 and 4.23] we know that

d̄(t) ≤ e−bt/T c,

s(2t) ≤ 1− (1− d̄(t))2,

T ≤ 1

λY

(
1 +

1

2
log

1

ν∗

)
,

(3.8)

where ν∗ = minx νx. Since P[τx ≤ e−N
2
] ≤ ce−c

′N , by the Borel-Cantelli lemma, P-a.s. for
N large enough, log 1

ν∗
≤ N2. Therefore, by Proposition 3.1 and (3.8), P-a.s. for N large

enough, T ≤ 1
2
mN , d̄(1

2
mN) ≤ e−1, and s(mN) ≤ e−1, which means that for all Y0, y ∈ HN ,

P τ
Y0

[YmN = y] ≥ (1− e−1)νy.

We can now define the strong stationary time Tmix with values in {mN , 2mN , . . . }. Let
U1, U2, . . . be i.i.d. uniformly on [0, 1] distributed random variables, independent of any-
thing else. Conditionally on Y0 = x, YmN = y, let Tmix = mN if

U1 ≤
(1− e−1)νy
P τ
x [YmN = y]

(≤ 1).

Otherwise, we define Tmix inductively: for every k ∈ N, conditionally on Tmix > kmN ,
YkmN = z and Y(k+1)mN = y, let Tmix = (k + 1)mN if

Uk+1 ≤
(1− e−1)νy
P τ
z [YmN = y]

(≤ 1).

By construction, we have for every x ∈ HN ,

P τ
x [Tmix = mN | YmN = y] =

(1− e−1)νy
P τ
x [YmN = y]

,

and thus

P τ
Y0

[Tmix = mN , YmN = y | Y0 = x] = (1− e−1)νy.

Similarly, we have

P τ
Y0

[Tmix = (k + 1)mN , Y(k+1)mN = y | Tmix > kmN , YkmN = x] = (1− e−1)νy.

By induction over k, we obtain that for any k ∈ N and y ∈ HN ,

P τ
Y0

[Tmix = kmN , YkmN = y] = e−(k−1)(1− e−1)νy,

which finishes the proof. �

For future reference we collect here two useful statements that follow directly from the
construction of Tmix.
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Lemma 3.4. For every t > 0 and x ∈ HN and every starting distribution ρ,

P τ
ρ [Yt = x|Tmix < t] = νx,∣∣P τ

ρ [Yt = x]− νx
∣∣ ≤ P τ

ρ [Tmix > t] = e−bt/mN−1c.

4. Bounds on mean hitting time and random scale

In this section we prove bounds on the mean hitting time Eτ
ν [Hx] of deep traps x ∈ DN .

As a corollary of the proof we will obtain a useful bound on the Green function in deep
traps. The bounds on the mean hitting times will further imply bounds on the random
scale RN , which will imply the claim (1.7) of Theorem 1.1.

Proposition 4.1. There exists δ ∈ (0, 1/6), such that P-a.s. for N large enough,

2N−N
1−δ ≤ Eτ

ν [Hx] ≤ 2N+N1−δ
for every x ∈ DN .

The proof of Proposition 4.1 is split in two parts.

Proof of the upper bound. For the upper bound we use [AF02, Lemma 3.17] which states
that

Eτ
ν [Hx] ≤

1− νx
λY νx

.

Since τx ≥ 1 for deep traps x ∈ DN , this is smaller than ZN
λY

, which by Proposition 3.1 and

(2.3) is bounded by 2N+N1−δ
, P-a.s. for N large enough. �

For the lower bound we will use a version of Proposition 3.2 of [ČTW11] which allows to
bound the inverse of the mean hitting time Eτ

ν [Hx] in terms of the effective conductance
from x to a suitable set B. Recall the definition of the conductances cxy from (2.4), and
let cx =

∑
y∼x cxy. Following the terminology of [LP14, Chapter 2], we define the effective

conductance between a vertex x and a set B as

C(x→ B) = P τ
x [H+

x > HB]cx.

By Proposition A.1, which is a generalization of [ČTW11, Proposition 3.2] to arbitrary
continuous-time finite-state-space Markov chains,

1

Eτ
ν [Hx]

≤ C(x→ B)ν(B)−2. (4.1)

To apply this bound effectively, we should find a set B such that C(x → B) is small
and ν(B) close to 1. In the next lemma we construct such sets B for every x ∈ HN . For
these sets we have some control on the conductances connecting B and Bc. Using standard
network reduction techniques we can then give a bound on the effective conductance C(x→
B), which when plugged into (4.1) will imply the lower bound on Eτ

ν [Hx].
Denote by B(x, r) = {y ∈ HN , d(x, y) ≤ r} the ball of radius r around x, and by

∂B(x, r) = {y ∈ HN , d(x, y) = r} the sphere of radius r.

Lemma 4.2. For every δ ∈ (0, 1/6), P-a.s. for N large enough, there exist radii (ρx)x∈HN
satisfying 1 ≤ ρx ≤ N3δ, such that for all x ∈ HN and for all y ∈ ∂B(x, ρx), τy ≤ 2

1
2
N1−δ

.

Proof. Fix δ ∈ (0, 1/6). We say that a sphere ∂B(x, r) is good if τy ≤ 2
1
2
N1−δ

for all
y ∈ ∂B(x, r), otherwise we say that it is bad. Using the Gaussian tail approximation (2.2),
we get that

P
[
τy > 2

1
2
N1−δ] ≤ ce

− log2 2

8β2
N1−2δ

.
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The size of the sphere ∂B(x, r) is bounded by N r, hence the probability that the sphere
∂B(x, r) is bad is bounded by

N rP
[
τy > 2

1
2
N1−δ] ≤ c exp

{
r logN − log2 2

8β2
N1−2δ

}
.

By independence of the τx, the probability that for one fixed x all the spheres ∂B(x, r),
r = 1, . . . , N3δ, are bad is bounded by

N3δ∏
r=1

N rP
[
τy > 2

1
2
N1−δ] ≤ (NN3δP

[
τy > 2

1
2
N1−δ])N3δ

≤ exp
{
N3δ log c+N6δ logN − log2 2

8β
N1+δ

}
.

Finally, by a union bound, the probability that among all 2N vertices in HN there is one
for which all spheres ∂B(x, r), r = 1, . . . , N3δ, are bad is bounded by

2N
(
NN3δP

[
τy > 2

1
2
N1−δ])N3δ

≤ exp
{
N3δ log c+N6δ logN +N log 2− log2 2

8β
N1+δ

}
.

Since δ < 1/6 this decays faster than exponentially, and so by the Borel-Cantelli lemma
the event occurs P-a.s. only for finitely many N , i.e. P-a.s. for N large enough we can find
for every x ∈ HN a radius ρx ≤ N3δ such that the sphere ∂B(x, ρx) is good. �

Proof of the lower bound of Proposition 4.1. For every x ∈ DN we define the set Ax =
B(x, ρx) if the radius ρx from Lemma 4.2 exists, otherwise we takeAx = {x}. By Lemma 4.2
and (2.3), P-a.s. for N large enough, for all x ∈ DN all conductances cyz = (τy ∧ τz)/ZN
connecting Ax and Acx are smaller than 2

1
2
N1−δ

/(κ2N).
By the parallel law (cf. [LP14, Chapter 2.3]), the effective conductance between the

boundaries of Ax and Acx is equal to the sum of all the conductances of edges connecting
Ax and Acx, and so P-a.s. for N large enough,

C(∂Ax → ∂Acx) =
∑
y∈∂Ax
z∈∂Acx

cyz ≤ κ−1Nρx+12
1
2
N1−δ

2−N .

By Rayleigh’s monotonicity principle (cf. [LP14, Chapter 2.4]), comparing the effective
conductances from x to Acx before and after setting all the conductances inside Ax to
infinity, it follows that

C(x→ Acx) ≤ C(∂Ax → ∂Acx) ≤ κ−1Nρx+12
1
2
N1−δ

2−N .

Since δ < 1/6 and ρx ≤ N3δ, we have Nρx+1 ≤ 2
1
2
N1−δ

for N large enough, and thus,
P-a.s. for N large enough,

C(x→ Acx) ≤ c2−N+N1−δ
. (4.2)

Moreover, P-a.s. for N large enough, as νy = (1 ∧ τy)/ZN ≤ 1/ZN , using (2.3) again,

ν(Acx) = 1− ν(Ax) ≥ 1− Z−1
N |Ax| ≥ 1− c2−NNN3δ N→∞−−−→ 1. (4.3)

Plugging (4.2) and (4.3) into (4.1) and readjusting δ to accommodate for constants easily

yields the required lower bound Eτ
ν [Hx] ≥ 2N−N

1−δ
. This completes the proof. �

As a corollary we get a lower bound on Eτ
x [`HAcx (x)] for the deep traps x ∈ DN .
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Corollary 4.3. There are constants δ ∈ (0, 1/6) and c > 0, such that P-a.s. for N large
enough, for all x ∈ DN , under P τ

x the local time of Y in x before leaving Ax, `HAcx (x),

stochastically dominates an exponential random variable with mean c2−N
1−δ

. In particular,
P-a.s. for N large enough,

Eτ
x

[
`HAcx (x)

]
≥ c2−N

1−δ
.

Proof. The local time at x before hitting Acx is an exponential random variable with mean
equal to

Eτ
x

[
#{visits to x before HAcx}

]
· Eτ

x [J1].

The expected number of visits before leaving Ax is P τ
x [H+

x > HAcx ]
−1 = cxC(x → Acx)

−1.
The mean duration of one visit to x is Eτ

x [J1] = (
∑

y∼x qxy)
−1. For the deep traps we have

τx > 1, therefore
∑

y∼x qxy =
∑

y∼x cxy/νx = ZNcx. It follows that the local time at x

before hitting Acx is in fact an exponential random variable with mean Z−1
N C(x → Acx)

−1.
Using the bounds (4.2) and (2.3), the claim follows easily. �

As a next consequence we give bounds on the random scale RN defined in (2.10). Note
that this lemma also proves the statement (1.7) about the asymptotic behavior of RN in
Theorem 1.1.

Lemma 4.4. For every ε > 0, P-a.s. for N large enough,

2(γ−ε)N ≤ RN ≤ 2(γ+ε)N .

Proof. By Proposition 3.3, Tmix/mN is a geometric random variable with parameter e−1,
and thus Eτ

x [`Tmix
(x)α] ≤ Eτ

x [Tmix
α] ≤ cmα

N ≤ eεN by (3.7), for every ε > 0 and N large
enough. Moreover, |DN | ≤ c′2(1−γ′)N by (2.8). Using the lower bound on Eτ

ν [Hx] from
Proposition 4.1, we obtain that for every ε > 0, P-a.s. for N large enough,

RN = 2(γ−γ′)N

(∑
x∈DN

Eτ
x [`Tmix

(x)α]

Eτ
ν [Hx]

)−1

≥ 2(γ−ε)N .

For the upper bound we need a lower bound on Eτ
x [`Tmix

(x)α]. Recall the sets Ax con-
structed in the proof of Proposition 4.1, and note that

Eτ
x [`Tmix

(x)α] ≥ Eτ
x

[
1{Tmix≥HAcx}`HAcx (x)α

]
. (4.4)

By Corollary 4.3, P-a.s. for N large enough, the local time at x before hitting Acx stochas-

tically dominates an exponential random variable with mean c2−N
1−δ

, hence

P τ
x

[
`HAcx (x) ≤ 2−2N1−δ] ≤ 1− e−c2−N

1−δ

≤ c2−N
1−δ
.

Moreover, for every ε > 0, P-a.s. for N large enough,

P τ
x [Tmix < HAcx ] ≤ P τ

x [YTmix
∈ Ax] = ν(Ax) ≤ κ−12−NNN3δ ≤ 2−εN .
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Using the last two observations in (4.4), P-a.s. for N large enough,

Eτ
x [`Tmix

(x)α] ≥ P τ
x

[
{Tmix ≥ HAcx} ∩ {`HAcx (x) ≥ 2−2N1−δ}

] (
2−2N1−δ

)α
≥ 2−2αN1−δ

(
P τ
x

[
`HAcx (x) ≥ 2−2N1−δ]− P τ

x

[
{`HAcx (x) ≥ 2−2N1−δ} ∩ {Tmix < HAcx}

])
≥ 2−2αN1−δ

(
P τ
x

[
`HAcx (x) ≥ 2−2N1−δ]− P τ

x

[
Tmix < HAcx

])
≥ 2−2αN1−δ

(
(1− c′2−N1−δ

)− 2−εN
)

≥ 2−εN .

Combining this with |DN | ≥ c2(1−γ′)N by (2.8) and the upper bound on Eτ
ν [Hx] from

Proposition 4.1, we obtain the required upper bound on RN . �

5. Concentration of the local time functional

In this section we prove the concentration of the local time functional that appears in
the computation of the quasi-annealed Laplace transform of the clock process on the deep
traps, as explained in the introduction (cf. (1.9)). We denote this functional by

LN(t) = 2(γ′−γ)N
∑
x∈DN

`tRN (x)α.

So far we had no restriction on the choice of γ′ other than 1/2 < γ′ < γ, see (2.6).
We now make an explicit choice as follows. Let ε0 = 1

2

(
(1− γ) ∧ (γ − 1

2
)
)
, and define

γ′ = γ − ε0, such that in particular

1− γ ≥ 2ε0, (5.1)

γ − γ′ = ε0. (5.2)

The main result of this section is the following proposition.

Proposition 5.1. For every fixed t ≥ 0, P-a.s. for N large enough,

P τ
ν

[
|LN(t)− t| ≥ 2−

1
5
ε0N
]
≤ c2−

1
10
ε0N .

Proof. We approximate LN(t) by the sum of essentially independent random variables as
follows. Let K =

⌊
2ε0N

⌋
. For a fixed t > 0, define

tk =
tRN

K
k, k = 0, . . . , K.

Recall the notation (2.5). For every x ∈ DN and k = 1, . . . , K, define Hk
x = tk−1 +Hx◦θtk−1

to be the time of the first visit to x after tk−1, and set

`kt,x =

(∫ (Hk
x+N2mN )∧(tk−N2mN )

Hk
x∧(tk−2N2mN )

1{Ys=x}ds

)α

.

The random variable `kt,x gives ‘roughly’ the α-th power of the time that Y spends in x

between tk−1 and tk −N2mN , with some suitable truncations. Let further

Uk
N(t) = 2(γ′−γ)N

∑
x∈DN

`kt,x.

The next lemma, which we prove later, shows that the sum of the Uk
N(t)’s is a good

approximation for LN(t).
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Lemma 5.2. For every t > 0, P-a.s. for N large enough,

P τ
ν

[
LN(t) 6=

K∑
k=1

Uk
N(t)

]
≤ c2−

1
2
ε0N .

With Lemma 5.2, the proof of the proposition reduces to understanding of the approx-
imating sum

∑K
k=1 U

k
N(t). We will compute its expectation and variance under P τ

ν . In
particular, we will show that there is c <∞ such that for every t > 0,∣∣∣∣Eτ

ν

[ K∑
k=1

Uk
N(t)

]
− t
∣∣∣∣ ≤ c2−2ε0N , P-a.s. as N →∞, (5.3)

and

Varτν

( K∑
k=1

Uk
N(t)

)
≤ c2−

1
2
ε0N , P-a.s. as N →∞. (5.4)

The statement of the proposition then follows from Lemma 5.2, (5.3) and (5.4) by routine
application of the Chebyshev inequality. Indeed, P-a.s. for N large enough,

P τ
ν

[
|LN(t)− t| ≥ 2−

1
5
ε0N

]
≤ P τ

ν

[
LN(t) 6=

K∑
k=1

Uk
N(t)

]
+ P τ

ν

[∣∣∣∣ K∑
k=1

Uk
N(t)− Eτ

ν

[ K∑
k=1

Uk
N(t)

]∣∣∣∣ ≥ 2 · 2−
1
5
ε0N

]
≤ c2−

1
2
ε0N + c′2−

1
10
ε0N ≤ c′′2−

1
10
ε0N ,

which is the claim of the proposition.
We proceed by computing the expectation (5.3). We will need two lemmas which we

show later. The first lemma estimates the probability that a deep trap is visited by the
process Y .

Lemma 5.3. For every tN such that 1 ≤ tN ≤ 2N , for every ε > 0, P-a.s. for N large
enough, for all x ∈ DN ,

P τ
ν [Hx ≤ tN ] =

tN
Eτ
ν [Hx]

+O
(
t2N22(ε−1)N

)
+O

(
2(ε−1)N

)
≤ ctN2(ε−1)N .

The second lemma then gives the expected contribution of a single `kt,x to
∑K

k=1 U
k
N(t).

Lemma 5.4. For every fixed t > 0, k = 1, . . . , K and ε > 0, P-a.s. for N large enough,
for all x ∈ DN ,

Eτ
ν

[
`kt,x
]

=
tRN

KEτ
ν [Hx]

Eτ
x

[
`Tmix

(x)α
]

+O
(
2(2γ+3ε−2ε0−2)N

)
.

With Lemma 5.4 it is easy to compute the expectation (5.3). Using that |DN | ≤ c2(1−γ′)N

by (2.8), and the definition (2.10) of RN , for every ε > 0, P-a.s. for N large enough,

Eτ
ν

[ K∑
k=1

Uk
N(t)

]
= 2(γ′−γ)N

∑
x∈DN

K∑
k=1

(
tRN

KEτ
ν [Hx]

Eτ
x [`Tmix

(x)α] +O
(
2(2γ+3ε−2ε0−2)N

))
= t+O

(
2(γ′−γ)N2(1−γ′)N2(2γ−2+3ε−ε0)N

)
= t+O

(
2(γ−1+3ε−ε0)N

)
.

Choosing ε < ε0/3 and recalling (5.1) implies (5.3).
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Next, we estimate the variance (5.4). Since ν is the stationary measure for Y , the random
variables Uk

N(t), k = 1, . . . , K, are identically distributed under P τ
ν . Hence

Varτν

( K∑
k=1

Uk
N(t)

)
= K Varτν

(
U1
N(t)

)
+ 2

∑
1≤k<j≤K

Covτν
(
Uk
N(t), U j

N(t)
)
. (5.5)

The covariances can be neglected easily. Indeed, since by definition Uk
N(t) depends on the

trajectory of Y between times tk−1 and tk −N2mN only, we can use the Markov property
at the later time to write

Covτν
(
Uk
N(t), U j

N(t)
)

= Eτ
ν

[(
Uk
N(t)− Eτ

νU
k
N(t)

)
Eτ [U j

N(t)− Eτ
νU

j
N(t)|Ytk−N2mN ]

]
. (5.6)

By Lemma 3.4,
∣∣P τ [Ytk = y|Ytk−N2mN ] − νy

∣∣ ≤ e−cN
2
. Using in addition that UN

j ≤ ec
′N

for some sufficiently large c′, we see that the inner expectation satisfies∣∣Eτ [U j
N(t)− Eτ

νU
j
N(t)|Ytk−N2mN ]

∣∣ ≤ e−cN
2/2.

Inserting this inequality back to (5.6) and summing over k < j then implies that the second

term in (5.5) is O(e−cN
2
) and thus can be neglected when proving (5.4).

To control the variance of U1
N(t) in (5.5), it is enough to bound its second moment, which

is

Eτ
ν

[
U1
N(t)2

]
= 22(γ′−γ)N

(∑
x∈DN

Eτ
ν

[
(`1
t,x)

2
]

+
∑

x 6=y∈DN

Eτ
ν [`1

t,x`
1
t,y]

)
.

Since, by definition, `1
t,x ≤ N2mN and `1

t,x 6= 0 implies Hx ≤ tRN/K,

Eτ
ν

[
U1
N(t)2

]
≤ 22(γ′−γ)NN4αm2α

N

( ∑
x∈DN

P τ
ν

[
Hx ≤

tRN

K

]
+

∑
x6=y∈DN

P τ
ν

[
Hx, Hy ≤

tRN

K

])
.

(5.7)

By Lemma 5.3 and Lemma 4.4, for every ε > 0, P-a.s. as N →∞,

P τ
ν

[
Hx ≤

tRN

K

]
≤ c2(γ−1+ε−ε0)N . (5.8)

Moreover, by (2.8), |DN | ≤ c2(1−γ′)N , and by (3.7), N4αm2α
N ≤ 2εN , for every ε > 0 and

N large enough. It follows that the contribution of the first sum in (5.7) to the variance,
including the prefactor K = 2ε0N from (5.5), can be bounded by

c2(2(γ′−γ)+1−γ′+γ−1+2ε)N = c2(γ′−γ+2ε)N .

By (5.2), γ′−γ+2ε ≤ −ε0 +2ε < −1
2
ε0 for ε < ε0/4, and hence this contribution is smaller

than c2−
1
2
ε0N as required for (5.4).

For the second summation in (5.7) we write

P τ
ν

[
Hx, Hy ≤

tRN

K

]
≤ P τ

ν

[
Hx < Hy ≤

tRN

K

]
+ P τ

ν

[
Hy < Hx ≤

tRN

K

]
.
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By the Markov property, each of these two probabilities can be bounded by

P τ
ν

[
Hx < Hy ≤

tRN

K

]
=

∫ tRN
K

0

P τ
ν [Hx ∈ du]P τ

x

[
Hy <

tRN

K
− u
]

≤
∫ tRN

K

0

P τ
ν [Hx ∈ du]

(
P τ
x [Hy ≤ Tmix] + P τ

ν

[
Hy ≤

tRN

K

])
≤ P τ

ν

[
Hx ≤

tRN

K

](
P τ
x [Hy ≤ Tmix] + P τ

ν

[
Hy ≤

tRN

K

])
.

Using (5.8) and (2.8) again, the second sum in (5.7) is bounded by

c2(γ−1+ε−ε0)N
(

22(1−γ′)N2(γ−1+ε−ε0)N +
∑

x 6=y∈DN

P τ
x [Hy ≤ Tmix]

)
. (5.9)

The first term in the parentheses of (5.9) together with the prefactors K from (5.5) and
22(γ′−γ)NN4αm2α

N ≤ 2(2(γ′−γ)+ε)N from (5.7), contributes to the variance by at most

c2(ε0+2(γ′−γ)+ε+2(1−γ′)+2(γ−1+ε−ε0))N = c2(3ε−ε0)N ≤ c2−
1
2
ε0N

if ε is small enough, as required by (5.4).
For the second term in the parentheses of (5.9) we need the following lemma whose proof

is again postponed.

Lemma 5.5. Let Wx
t =

∑
y∈DN ,y 6=x 1{Hy≤t}. Then for every ε > 0, P-a.s. for N large

enough, for every x ∈ DN ,
Eτ
x [Wx

Tmix
] ≤ 2εN .

Using Lemma 5.5, and including all the prefactors as before, the contribution of the
second term in (5.9) to the variance (5.5) is bounded by

c2(ε0+2(γ′−γ)+ε+1−γ′+γ−1+ε−ε0+ε)N = c 2(γ′−γ+3ε)N ≤ 2−
1
2
ε0N ,

where for the last inequality we used (5.2) again, and choose ε small enough. This completes
the proof of (5.4) and thus of the proposition. �

We proceed by proving the lemmas used in the above proof.

Proof of Lemma 5.3. By [AB92, Theorem 1] the hitting time Hx is approximately expo-
nential in the sense that ∣∣∣P τ

ν [Hx > t]− e−
t

Eτν [Hx]

∣∣∣ ≤ 1

λYEτ
ν [Hx]

.

Hence, using Propositions 3.1 and 4.1 to bound λY and Eτ
ν [Hx] respectively, we have for

every ε > 0, P-a.s. for N large enough,

P τ
ν [Hx ≤ tN ] = (1− e−

tN
Eτν [Hx] ) +O

(
2(ε−1)N

)
=

tN
Eτ
ν [Hx]

+O
(
t2N22(ε−1)N

)
+O

(
2(ε−1)N

)
.

Finally, if 1 ≤ tN ≤ 2N this is bounded by ctN2(ε−1)N , which proves the lemma. �

Proof of Lemma 5.4. By the strong Markov property and the definition of `kt,x,

Eτ
ν

[
`kt,x
]
≥ P τ

ν

[
Hx ∈ [tk−1, tk − 2N2mN ]

]
Eτ
x

[
`N2mN (x)α

]
,

Eτ
ν

[
`kt,x
]
≤ P τ

ν

[
Hx ∈ [tk−1, tk −N2mN ]

]
Eτ
x

[
`N2mN (x)α

]
.

(5.10)
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We will now give approximations of the expressions appearing in (5.10).
Observe that for every s, t > 0,

`t(x)α ≤ `s(x)α + (`t(x)− `s(x))α.

Using this inequality with t = N2mN and s = Tmix and applying the strong Markov
property at Tmix, observing that YTmix

is ν-distributed,

Eτ
x

[
`N2mN (x)α

]
≤ Eτ

x

[
`Tmix

(x)α
]

+ Eτ
ν

[
`N2mN (x)α

]
.

By Lemma 5.3, using also that by (3.7), `N2mN (x)α ≤ N2αmα
N ≤ 2εN for every ε > 0 and

N large enough,

Eτ
ν

[
`N2mN (x)α

]
≤ P τ

ν

[
Hx ≤ N2mN ]2εN ≤ c2(3ε−1)N .

Hence we obtain the upper bound

Eτ
x

[
`N2mN (x)α

]
≤ Eτ

x

[
`Tmix

(x)α
]

+ c2(3ε−1)N . (5.11)

For a matching lower bound, note that

Eτ
x

[
`N2mN (x)α

]
≥ Eτ

x

[
`Tmix

(x)α1{Tmix≤N2mN}
]
.

But from Proposition 3.3 it follows that

Eτ
x [`Tmix

(x)α1{Tmix>N2mN}] ≤ Eτ
x [Tmix

α1{Tmix>N2mN}] ≤
∞∑

k=N2

(kmN)αe−k ≤ ce−c
′N2

,

so that

Eτ
x

[
`N2mN (x)α

]
≥ Eτ

x

[
`Tmix

(x)α
]
− ce−cN2

. (5.12)

Combining (5.11) and (5.12), we obtain

Eτ
x

[
`N2mN (x)α

]
= Eτ

x

[
`Tmix

(x)α
]

+O
(
2(3ε−1)N

)
. (5.13)

Note also that by (3.7), for every ε > 0 and N large enough,

Eτ
x [`Tmix

(x)α] ≤ Eτ
x [Tmix

α] ≤ cmα
N ≤ 2εN . (5.14)

To approximate the probabilities in (5.10), we apply Lemma 5.3 for tN = tk−1 and
tN = tk − iN2mN , for a fixed t > 0 and i = 1, 2. Using Lemma 4.4 to bound RN and
Proposition 4.1 to bound Eτ

ν [Hx], for every ε > 0, P-a.s. for N large enough, for both
i = 1, 2,

P τ
ν

[
Hx ∈ [tk−1, tk − iN2mN ]

]
=

tRN

KEτ
ν [Hx]

+O
(
22(γ+ε−ε0−1)N

)
= O

(
2(γ+ε−ε0−1)N

)
. (5.15)

Inserting both (5.15) and (5.13) in (5.10), and using (5.14), for every ε > 0, P-a.s. for N
large enough,

Eτ
ν

[
`kt,x
]

=
tRN

KEτ
ν [Hx]

Eτ
x

[
`Tmix

(x)α
]

+O
(
2(2γ+3ε−2ε0−2)N

)
.

This proves the lemma. �

Proof of Lemma 5.2. Note first that{
LN(t) 6=

K∑
k=1

Uk
N(t)

}
⊆
{
∃x ∈ DN : `tRN (x)α 6=

K∑
k=1

`kt,x

}
.
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To control the probability of this event, we introduce some more notation. Set H
(0)
x = 0,

H
(1)
x = Hx, and for k ≥ 2 define the time of the ‘k-th visit after mixing’ inductively as

H(k)
x = inf{t > Tmix ◦ θH(k−1)

x
+H(k−1)

x : Yt = x}.

Let N x
t = min{k ≥ 0, H

(k)
x ≤ t} be the number of ‘visits after mixing’ to x before time t.

Finally, let Ik = [tk − 2N2mN , tk]. Then

P τ
ν

[
∃x ∈ DN : `tRN (x)α 6=

K∑
k=1

`kt,x

]
≤ P τ

ν

[
Ys ∈ DN for some s ∈

K⋃
k=1

Ik

]
+ P τ

ν

[
∃x ∈ DN : N x

tRN
≥ 2
]

+ P τ
ν

[
∃x ∈ DN : Tmix ◦ θHx > N2mN

]
.

(5.16)

We show that each of the three terms on the right-hand side is smaller than c2−
1
2
ε0N , which

will prove the lemma.
For the first term in (5.16), using the stationarity of ν and the Markov property

P τ
ν

[
Ys ∈ DN for some s ∈

K⋃
k=1

Ik

]
≤ K

∑
x∈DN

P τ
ν

[
Hx ≤ 2N2mN

]
. (5.17)

By Lemma 5.3, P-a.s. for all x ∈ DN , for ε > 0 small and N large enough,

P τ
ν [Hx ≤ 2N2mN ] ≤ 2(ε−1)N .

Since |DN | ≤ c2(1−γ′)N by (2.8), the right hand side of (5.17) is bounded by c2ε0N2(ε−γ′)N .
Since γ′ > 1/2 and by definition ε0 ≤ 1/4, when ε is small enough this is smaller than

c2−
1
2
ε0N as required.

For the second term in (5.16), by Lemma 5.3 and the strong Markov property at Tmix,
for every ε > 0, P-a.s. for N large enough,

P τ
ν [H(2)

x ≤ tRN ] ≤ P τ
ν [Hx ≤ tRN ]2 ≤ c22(γ−1+ε)N .

Together with (2.8) to bound |DN |, and using (5.1) and (5.2), P-a.s. for N large enough,

P τ
ν

[
∃x ∈ DN : N x

tRN
≥ 2
]
≤ c2(1−γ′)N22(γ−1+ε)N

= c2(γ−γ′)N+(γ−1)N+εN

≤ c2(−ε0+ε)N ≤ c2−
1
2
ε0N

as required.
Finally we give a bound on the third term in (5.16). By Proposition 3.3, P τ

x [Tmix >

N2mN ] ≤ e−cN
2
. Thus, with (2.8) to bound |DN |, P-a.s. for N large enough,

P τ
ν

[
∃x ∈ DN : Tmix ◦ θHx > N2mN

]
≤ c2(1−γ′)NP τ

x [Tmix > N2mN ]

≤ c′2−
1
2
ε0N .

Together with the previous estimates, this implies that the right-hand side of (5.16) is

bounded by c2−
1
2
ε0N , and concludes the proof of the lemma. �

Proof of Lemma 5.5. Let H0 = 0 and define recursively for i ≥ 1

Hi = inf{t ≥ Hi−1 : Yt ∈ DN \ {YHi−1
}}.

By (2.9), P-a.s. for N large enough, the vertices in DN are at least distance δN from
each other. In particular the balls Ax = B(x, ρx), x ∈ DN , constructed in Lemma 4.2 are
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disjoint. Hence, when on y ∈ DN , the random walk Y should first leave Ay in order to visit
DN \{y}. The strong Markov property and Corollary 4.3 then imply that Hi stochastically

dominates a Gamma random variable with parameters i and µ := c2N
1−δ

.
If Wx

t ≥ i, then Hi ≤ t. Hence, for t ≥ µ,

Eτ
x

[
Wx

t

]
=
∑
i≥1

P τ
x [Wx

t ≥ i] ≤
∑
i≥1

P τ
x [Hi ≤ t] ≤

∑
i≥1

∫ t

0

µiui−1e−µuΓ(i)−1du = µt.

It follows that

Eτ
x

[
Wx

Tmix

]
≤ Eτ

x

[
Wx

N2mN

]
+ |DN |P τ

x [Tmix ≥ N2mN ] ≤ µN2mN + c2(γ′−1)Ne−cN
2 ≤ 2εN

by (2.8), (3.7) and Proposition 3.3. This completes the proof. �

For later applications, we state two further consequences of the proof of Lemma 5.2.

Lemma 5.6. P-a.s. for N large enough,

P τ
ν

[
∃x ∈ DN : `tRN (x) > N2mN

]
≤ c2−

1
2
ε0N ,

and
P τ
ν

[∣∣{x ∈ DN : Hx ≤ tRN}
∣∣ ≥ 2

3
2
ε0N
]
≤ c2−

1
4
ε0N .

Proof. The first claim follows directly from the bounds on the second and third term on
the right hand side of (5.16) in the proof of Lemma 5.2, since the local time in a vertex
that is only ‘visited once after mixing’ is bounded by Tmix ◦ θHx .

The second assertion can be seen in the following way. Using Lemma 5.3 to bound the
probability of a single vertex x ∈ DN to be visited before time tRN and (2.8) to bound the
size of DN , for every ε > 0, P-a.s. for N large enough,

Eτ
ν

[
|{x ∈ DN : Hx ≤ tRN}|

]
≤ c2(1−γ′)N2(γ−1+ε)N ≤ c2(γ−γ′+ε)N .

By (5.2) this is equal to c2(ε0+ε)N , so choosing ε < ε0/4 this is smaller than c2
5
4
ε0N . Then

by the Markov inequality the probability that there are more than 2
3
2
ε0N vertices visited is

smaller than c2−
1
4
ε0N . �

6. Clock process of the deep traps

This section contains the main steps leading to the proof of Theorem 1.1. Recall from
(1.8) that the ‘clock process of deep traps’ SD is given by

SD(t) =

∫ t

0

(1 ∨ τYs)1{Ys∈DN}ds =

∫ t

0

τYs1{Ys∈DN}ds.

We now show that SD converges to a stable process.

Proposition 6.1. Under the assumptions of Theorem 1.1, the rescaled clock processes of
the deep traps g−1

N SD(tRN) converge in P-probability as N →∞, in P τ
ν distribution on the

space D([0, T ],R) equipped with the Skorohod M1-topology, to an α-stable subordinator Vα.

The proof of Proposition 6.1 consists of three steps. In a first step, we show convergence
in distribution of one-dimensional marginals by showing that the Laplace transform of one-
dimensional marginals converges. This step contains, to some extent, the principal insight
of this paper and is split in two parts: We first show the quasi-annealed convergence
mentioned in the introduction, which is then strengthened to convergence in probability
with respect to the environment. The second and third step of the proof of Proposition 6.1
are rather standard and deal with the joint convergence of increments and the tightness.
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6.1. Quasi-annealed convergence. We establish here the connection between the Lap-
lace transform of the clock process of deep traps and the local time functional LN studied
in Section 5. The key observation is that the depths of the deep traps are in some sense
independent of the fast chain Y , and can be thus averaged out easily.

To formalize this, we introduce a two-step procedure to sample the environment τ . Let
ξ = (ξx)x∈HN be i.i.d. Bernoulli random variables such that, cf. (2.7),

P[ξx = 1] = 1− P[ξk = 0] = P[x ∈ DN ] = 2−γ
′N(1 + o(1)).

Further, let E = (Ex)x∈HN be i.i.d. standard Gaussian random variables conditioned to be
larger than 1

β
√
N
g′N , and E = (Ex)x∈HN i.i.d. standard Gaussian random variables condi-

tioned to be smaller than 1
β
√
N
g′N . The collections ξ, E and E are mutually independent.

The Hamiltonian of the REM can be obtained by setting

Ex = Ex1{ξx=1} + Ex1{ξx=0}. (6.1)

From now on, we always assume that Ex are given by (6.1). Observe that in this procedure
the set DN coincides with the set {x ∈ HN : ξx = 1}.

We use G = σ(ξ, E) to denote the σ-algebra generated by the ξ’s and E’s. In particular,
the number and positions of deep traps and all the τy, y /∈ DN , are G-measurable. The
depths of deep traps are however independent of G.

In the next lemma we compute the quasi-annealed Laplace transform of SD. The term
‘quasi-annealed’ refers to the fact that we average over the energies of the deep traps Ex

(and over the law of the process), but we keep quenched the positions of the deep traps ξx
and the energies of remaining traps Ex.

Lemma 6.2. There is a constant K ∈ (0,∞) such that for every λ > 0 and t ≥ 0,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]∣∣∣G] N→∞−−−→ e−Kλ
αt, P-a.s.

Proof. Recall the separation event S defined in (2.9). This event depends only on ξ and
is therefore G-measurable, and by Lemma 2.1 it occurs P-a.s. for N large enough. On S ,
no deep traps x ∈ DN are neighbors. Since moreover τx ≥ 1 for x ∈ DN , all the transition
rates

qxy1S =
τx ∧ τy
1 ∧ τx

1S , x, y ∈ HN ,

are G-measurable. That is, on the event S , the law of the chain Y is in fact G-measurable.
Therefore, on S , the order of taking expectations over the depth of the deep traps and
the chain Y can be exchanged. Namely, denoting by E the expectation over the random
variables Ex, on S ,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )] ∣∣∣G] = Eτ
ν

[
E
[
e
− λ
gN

SD(tRN )
]]

= Eτ
ν

[
E
[

exp
{
− λ

gN

∫ tRN

0

τYs1{Ys∈DN}ds
}]]

= Eτ
ν

[
E
[

exp
{
− λ

gN

∑
x∈DN

`tRN (x)τx

}]]
.

(6.2)

We next approximate the inner expectation on the right-hand side of (6.2). Since its
argument is bounded by one, it will be sufficient to control it on an event of P τ

ν -probability
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tending to 1 as N →∞. Define the event

A =
{

for all x ∈ DN , `tRN (x) ≤ N2mN

}
∩
{∣∣LN(t)− t

∣∣ ≤ 2−
1
5
ε0N
}
. (6.3)

By Proposition 5.1 and Lemma 5.6, P-a.s. for N large enough, P τ
ν [Ac] ≤ e−cN .

When performing the inner expectation of (6.2), the local times `tRN (x) of Y as well
as DN are fixed, the expectation is taken only over the energies of the deep traps. By
independence of the Ex it follows that

E
[
e
− λ
gN

SD(tRN )
]

=
∏
x∈DN

E
[
exp

{
− λ

gN
`tRN (x)eβ

√
N Ex

}]

= exp

{∑
x∈DN

logE
[
exp

{
− λ

gN
`tRN (x)eβ

√
N Ex

}]}
.

(6.4)

For u ∈ [0, N2mN ], let

ϑ(u) = 1− E
[
exp

{
− λ

gN
ueβ

√
N Ex

}]
.

Since (Ex) has standard Gaussian distribution conditioned on being larger than 1
β
√
N

log g′N ,

using that by (2.7),

P
[
Ex >

1

β
√
N

log g′N

]
= P[x ∈ DN ] = 2−γ

′N(1 + o(1)),

it follows that

ϑ(u) =
2γ
′N

√
2π

(1 + o(1))

∫ ∞
1

β
√
N

log g′N

e−
s2

2

(
1− e−

λu
gN

eβ
√
Ns
)
ds.

We use the substitution s = 1
β
√
N

(βz+log gN− log λ− log u). The lower limit of the integral

then becomes
1

β
(log g′N − log gN + log λ+ log u) =: ω(N).

For u ≤ N2mN , ωN is asymptotically dominated by log g′N − log gN ≤ −cN , and thus
limN→∞ ω(N) = −∞. After the substitution,

ϑ(u) =
2γ
′N

√
2π

(1 + o(1))

∫ ∞
ω(N)

e
− 1

2β2N
(βz+log gN−log λ−log u)2

(
1− e−eβz

) 1√
N
dz. (6.5)

For u ∈ [0, N2mN ], using the definition (1.6) of gN , the exponent of the first exponential
satisfies

− 1

2β2N
(βz + log gN − log λ− log u)2

= − 1

2β2N
(βz + αβ2N − 1

α
log(αβ

√
2πN)− log λ− log u)2

= −α
2β2

2
N + α log λ+ α log u+ log(αβ

√
2πN)− αβz + err(z) + o(1).

(6.6)

Here, o(1) is an error independent of the variable z. Note that for the log2 u part to be
o(1) it is important that mN defined in (3.7) is not too large, see also Remark 6.4. The
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second error term is

err(z) = − 1

2N
z2 +

1

βN
z

(
1

α
log(αβ

√
2πN) + log λ+ log u

)
.

Observe that limN→∞ err(z) = 0 for every z ∈ R, and that for every ε there is N0 large
enough, so that for N ≥ N0 and all z ∈ R

err(z) ≤ ε|z|. (6.7)

Inserting the results of the computation (6.6) back into (6.5), using that α2β2/2 = γ log 2,
we obtain

ϑ(u) = αβ2(γ′−γ)Nλαuα
∫ ∞
ω(N)

e−αβz+err(z)
(

1− e−eβz
)
dz (1 + o(1)). (6.8)

We now claim that∫ ∞
ω(N)

e−αβz+err(z)
(

1− e−eβz
)
dz

N→∞−−−→
∫
R
e−αβz

(
1− e−eβz

)
dz =: C. (6.9)

Indeed, the integrand converges point-wise on R to e−αβz(1 − e−e
βz

) which is integrable

if α < 1. Moreover, by (6.7), the integrand is bounded by e−αβz+ε|z|(1 − e−e
βz

), which
is integrable if we choose ε < β(1 − α) ∧ αβ. The claim (6.9) follows by the dominated
convergence theorem.

We now come back to (6.4). Since on A, `tRN (x) ≤ N2mN for all x ∈ DN , and γ′ < γ,
we see that ϑ(`tRN (x)) = o(1) uniformly in x ∈ DN on A. With log(1−x) = −x(1 +O(x))
as x→ 0 this yields

E
[
e
− λ
gN

SD(tRN )
]

= exp
{ ∑
x∈DN

log
(
1− ϑ(`tRN (x))

)}
= exp

{
−
∑
x∈DN

ϑ(`tRN (x))(1 + o(1))
}
.

The inner sum can be easily computed from (6.8). Recalling that on A the local time
functional LN(t) converges, denoting K = αβC, we obtain on A,∑

x∈DN

ϑ(`tRN (x)) = αβCλα2(γ′−γ)N
∑
x∈DN

`tRN (x)α(1 + o(1))

= αβCλαLN(t)(1 + o(1))

= Kλαt+ o(1) as N →∞.

(6.10)

It follows that on A

E
[
e
− λ
gN

SD(tRN )
]

= e−Ktλ
α(1+o(1)) = e−Ktλ

α

+ o(1) as N →∞.

Inserting this into (6.2), using that P τ
ν [Ac] = O(e−cN), we conclude that, on S , P-a.s. as

N →∞,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )
] ∣∣∣G] = Eτ

ν

[
E
[
e
− λ
gN

SD(tRN )
]
1A

]
+O(e−cN) = e−Ktλ

α

+ o(1).

Since S occurs P-a.s. for N large enough, this completes the proof. �
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6.2. Quenched convergence. We strengthen the convergence in Lemma 6.2 in the fol-
lowing way.

Lemma 6.3. The one-dimensional marginals of the rescaled clock processes g−1
N SD(tRN)

converge in P-probability as N → ∞, in P τ
ν -distribution to an α-stable law, that is for

every t > 0 and λ > 0,

Eτ
ν

[
e
− λ
gN

SD(tRN )
]

N→∞−−−→ e−Kλ
αt in P-probability.

Proof. It will be enough to show that P-a.s. for N large enough,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]2∣∣∣G] = e−2Kλαt + o(1). (6.11)

Indeed, if (6.11) holds, then the conditional variance

Var
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]∣∣∣G] N→∞−−−→ 0, P-a.s.,

and the claim follows by an application of the Chebyshev inequality and Lemma 6.2.
To show (6.11), we rewrite

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )]2∣∣∣G] = E
[
Êτ
ν

[
e
− λ
gN

∑
x∈DN

(`
(1)
tRN

(x)+`
(2)
tRN

(x))τx
]∣∣∣G],

where `(1) and `(2) are the local times of two independent Markov chains Y (1) and Y (2), both
having law P τ

ν , and Êτ
ν is the expectation with respect to the joint law P̂ τ

ν of these chains.
Again P-a.s. for N large enough the separation event S holds, and on this event the law
P̂ τ
ν is G-measurable. Therefore we can exchange the expectations similarly as before. As

in Lemma 6.2, it will be enough to control the expression on an event of P̂ τ
ν -probability

tending to 1 as N →∞. We thus set Â = A(1)∩A(2) where A(i) are defined for both chains
Y (i) as in (6.3). Applying Proposition 5.1 and Lemma 5.6 for both independent chains, we

have that P-a.s. as N →∞, P̂ τ
ν [Âc] = O(e−cN).

Let C be the event that Y (1) and Y (2) visit disjoint sets of deep traps,

C =
{
{x ∈ DN : `

(1)
tRN

(x) > 0} ∩ {x ∈ DN : `
(2)
tRN

(x) > 0} = ∅
}
.

We claim that P̂ τ
ν [Cc] = O(e−cN), P-a.s. as N → ∞. Indeed, by Lemma 5.6, with proba-

bility larger than 1− c2− 1
4
ε0N , the chain Y (1) visits at most 2

3
2
ε0N different vertices in DN .

By Lemma 5.3, each of those vertices has probability smaller than c2(γ−1+ε)N of being hit
by Y (2), for every ε > 0, P-a.s. for N large enough. Therefore by the choice (5.1) of ε0,
P-a.s. for N large enough,

P̂ τ
ν [Cc] ≤ c2−

1
4
ε0N + 2

3
2
ε0Nc′2(γ−1+ε)N ≤ c2−

1
4
ε0N + c′2−

1
2
ε0N+εN ,

which decays exponentially if ε < ε0/2.
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Since on C the τx of the vertices x ∈ DN visited by Y (1) and Y (2) are independent, and
since the integrand is bounded by 1, we have on the separation event S ,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )
]2

| G
]

= Êτ
ν

[
E
[
e
− λ
gN

∑
x∈DN

(`
(1)
tRN

(x)+`
(2)
tRN

(x))τx

]]
= Êτ

ν

[
E
[
e
− λ
gN

∑
x∈DN

(`
(1)
tRN

(x)+`
(2)
tRN

(x))τx

]
1Â∩C

]
+O(e−cN)

= Êτ
ν

[
E
[
e
− λ
gN

∑
x∈DN

`
(1)
tRN

(x)τx

]
E
[
e
− λ
gN

∑
x∈DN

`
(2)
tRN

(x)τx

]
1Â∩C

]
+O(e−cN).

Using the same procedure as in the proof of Lemma 6.2, on the event Â, the two inner
expectations, x ∈ DN , both converge to

exp

{
−Kλα2(γ′−γ)N

∑
x∈DN

`
(i)
tRN

(x)α
}

= exp
{
−KλαL(i)

N (t)
}
, i = 1, 2.

Moreover, on Â, the local time functionals L
(i)
N (t) concentrate on t simultaneously. It

follows that on S , P-a.s. as N →∞,

E
[
Eτ
ν

[
e
− λ
gN

SD(tRN )
]2 ∣∣∣G] = e−2Kλαt + o(1).

Noting again that S occurs P-a.s. for N large enough, this shows (6.11), and hence the
lemma. �

Remark 6.4. (a) Inspecting the last proof carefully, it follows that Lemma 6.3 can be
slightly strengthened. Namely, the stated convergence holds a.s. with respect to ξ and E,
and in probability only with respect to E. The same remark then applies to Theorem 1.1.

(b) A closer analysis of the errors made in the computation of the quasi-annealed Laplace
transform, in particular in (6.6), shows that the error in Lemma 6.2 and (6.11) is of order
O(N−1 log2N), where the logarithmic part comes from the log2 u part in (6.6), u being
bounded by N2mN , and mN being polynomial in N . Therefore the variance decay is not
enough to apply the Borel-Cantelli lemma and obtain P-a.s. convergence.

(c) Note also that the previous proof, more precisely bounding the log2 u part of (6.6),
requires that log(N2mN)� N1/2. This is where our improved techniques to estimate the
spectral gap in Proposition 3.1 are necessary. As we already remarked, the techniques of
[FIKP98] show roughly that mN ≤ e

√
N logN only, which is not sufficient.

6.3. Joint convergence of increments. In the next step, we extend the convergence to
joint convergence of increments.

Lemma 6.5. The increments of the rescaled clock processes g−1
N SD(tRN) converge jointly

in P-probability in P τ
ν -distribution to the increments of an α-stable subordinator.

Proof. Fix k ≥ 1 and 0 = t0 < t1 < · · · < tk. We will show that for every λ1, . . . , λk ∈
(0,∞) and P-a.e. environment τ ,

lim
N→∞

Eτ
ν

[
e
− 1
gN

∑k
i=1 λi(SD(tiRN )−SD(ti−1RN ))

]
= lim

N→∞

k∏
i=1

Eτ
ν

[
e
− λi
gN

SD((ti−ti−1)RN )

]
. (6.12)
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Then the lemma follows by using the above proved convergence in P-probability in P τ
ν -

distribution of the one-dimensional marginals.
Let I i = [tiRN −N2mN , tiRN ]. For a set I ⊂ [0,∞), let V(I) be the event

V(I) = {Ys /∈ DN for all s ∈ I}.

On the event V
(
∪ki=1I

i
)
, for every i ≤ k,

SD(tiRN)− SD(ti−1RN) = SD(tiRN −N2mN)− SD(ti−1RN). (6.13)

Moreover, by Lemma 5.3, P-a.s. for all x ∈ DN , for ε > 0 small and N large enough,

P τ
ν [Hx ≤ N2mN ] ≤ 2(ε−1)N .

By (2.8), |DN | ≤ c2(1−γ′)N , hence the expected number of vertices x ∈ DN visited in a
time-interval of length N2mN is smaller than c2(ε−γ′)N , P-a.s. for N large enough. This
still holds for a finite union of intervals of length N2mN , and so we conclude that by the
Markov inequality, P τ

ν

[
V
(
∪ki=1I

i
)]
→ 1, P-a.s. as N →∞.

The reason to shorten the time intervals as above is to give the Markov chain Y the time
it needs to mix. Define the event

M = {Tmix ◦ θtiRN−N2mN ≤ N2mN ∀i = 1, . . . , k}.

It is easy to see using Proposition 3.3 that P τ
ν [M]→ 1, P-a.s. as N →∞. On the eventM

the Markov chain Y always mixes between tiRN−N2mN and tiRN and thus, by Lemma 3.4,
for every i = 1, . . . , k and y ∈ HN ,

P τ
ν [YtiRN = y | M] = νy.

Therefore, on M,(
SD(tiRN −N2mN)− SD(ti−1RN)

)
i=1,...,k

d
=
(
S

(i)
D ((ti − ti−1)RN −N2mN)

)
i=1,...,k

,

(6.14)

where the S
(i)
D are the clock processes of the deep traps of independent stationary started

processes Y (i) having the same law as Y .
Combining observations (6.13) and (6.14), with the estimates on the probabilities of
V
(
∪ki=1I

i
)

andM, since the integrand is bounded by 1, we obtain that P-a.s. as N →∞,

Eτ
ν

[
e
− 1
gN

∑k
i=1 λi(SD(tiRN )−SD(ti−1RN ))

]
= Eτ

ν

[
e
− 1
gN

∑k
i=1 λi(SD(tiRN−N2mN )−SD(ti−1RN ))

1V(∪ki=1I
i)∩M

]
+ o(1)

= Eτ
ν

[
k∏
i=1

Eτ
ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN−N2mN )

]
1V(∪ki=1I

i)∩M

]
+ o(1)

=
k∏
i=1

Eτ
ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN−N2mN )

]
+ o(1).

Using analogous arguments it can be shown that for every i = 1, . . . , k, P-a.s. as N →∞,

Eτ
ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN−N2mN )

]
= Eτ

ν

[
e
− λi
gN

S
(i)
D ((ti−ti−1)RN )

]
+ o(1).

Combining the last two equations proves (6.12) and hence the lemma. �
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6.4. Tightness in the Skorohod topology. The last step in the proof of Proposition 6.1
is to show tightness.

Lemma 6.6. The sequence of probability measures P τ
ν

[
g−1
N SD(tRN) ∈ ·

]
is P-a.s. tight

with respect to the Skorohod M1-topology on D([0, T ],R).

Proof. The proof is standard but we include it for the sake of completeness. By [Whi02,
Theorem 12.12.3], the tightness in the Skorohod M1-topology on D([0, T ],R) is character-
ized in the following way: For f ∈ D([0, T ],R), δ > 0, t ∈ [0, T ], let

wf (δ) = sup

{
inf

α∈[0,1]
|f(t)− (αf(t1) + (1− α)f(t2))| : t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ

}
,

vf (t, δ) = sup {|f(t1)− f(t2)| : t1, t2 ∈ [0, T ] ∩ (t− δ, t+ δ)} .

The sequence of probability measures PN = P τ
ν

[
g−1
N SD(tRN) ∈ ·

]
on D([0, T ],R) is tight

in the M1-topology, if

(i) For every ε > 0 there is c such that

PN [f : ‖f‖∞ > c] ≤ ε, N ≥ 1. (6.15)

(ii) For every ε > 0 and η > 0, there exist δ ∈ (0, T ) and N0 such that

PN [f : wf (δ) ≥ η] ≤ ε, N ≥ N0, (6.16)

and

PN [f : vf (0, δ) ≥ η] ≤ ε and PN [f : vf (T, δ) ≥ η] ≤ ε, N ≥ N0. (6.17)

Since the clock processes are increasing, (6.15) is equivalent to convergence of the dis-
tribution of g−1

N SD(TRN), which follows from the convergence of the Laplace transform of
the marginal at time T . (6.16) is immediate from the fact that the oscillating function
wf (δ) is always zero since the processes g−1

N SD(tRN) are increasing. To check (6.17), again
by the monotonicity of the g−1

N SD(tRN) it is enough to check that for δ small enough and
N ≥ N0, P τ

ν [g−1
N SD(δRN) ≥ η] ≤ ε. By the convergence of the marginal at time δ, we may

take δ such that P[Vα(δ) ≥ η] ≤ ε
2

and N0 such that for N ≥ N0,∣∣∣∣P τ
ν

[
1

gN
SD(δRN) ≥ η

]
− P [Vα(δ) ≥ η]

∣∣∣∣ ≤ ε

2
.

The reasoning for vf (T, δ) is similar. �

7. Shallow traps

In this section we show that the convergence of the clock process of the deep traps shown
in Section 6 is enough for convergence of the clock process itself.

Proposition 7.1. Under the assumptions of Theorem 1.1, the clock process of the deep
traps approximates the clock process, namely, for every t ≥ 0,

1

gN

(
S(tRN)− SD(tRN)

) N→∞−−−→ 0 P-a.s. in P τ
ν -probability.

Proof. We will split the set of shallow traps SN := HN \ DN into two parts and separately
deal with the corresponding contributions to the clock process.

We start with ‘very shallow traps’. Let δ > 0 be a small constant which will be fixed
later and hN = eδαβ

2N . Define the set of very shallow traps as

SN = {x ∈ HN : τx ≤ hN}.
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The contribution of this set to the clock process can easily be neglected as follows. Write

Eτ
ν

[
1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈SN}ds

]
=

1

gN

∑
x∈SN

(1 ∨ τx)Eτ
ν

[
`tRN (x)

]
Note that Eτ

ν [`tRN (x)] = νxtRN = Z−1
N (1 ∧ τx)tRN , and (1 ∨ τx)(1 ∧ τx) = τx ≤ hN on SN .

With (2.3) for ZN , and Lemma 4.4 for RN , for every ε > 0, P-a.s. for N large enough, the
right-hand side of the last equation can be bounded from above by

g−1
N 2NhNZ

−1
N tRN ≤ cg−1

N eδαβ
2N2(γ+ε)N .

To obtain exponential decay of this expression, it is enough to take account of the exponen-

tial part of gN , which is eαβ
2N . Then, up to sub-exponential factors, using that γ = α2β2

2 log 2
,

the above is bounded by

exp
{

((δ − 1)αβ2 +
1

2
α2β2 + ε log 2)N

}
.

Since α < 1, by choosing ε and δ small enough this can be made smaller than e−cN for
some c > 0. Applying the Markov inequality and the Borel-Cantelli lemma,

1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈SN}ds
0−→ P-a.s. in P τ

ν -probability. (7.1)

To control the contribution of the remaining shallow traps SN \ SN , we first split this
set into slices S iN as follows. Set

IN =

⌈
1

log 2
(log g′N − log hN)

⌉
.

Note that by definition of g′N and hN , for δ small as fixed above, IN = cN +O(1) for some
c > 0. For i = 1, . . . , IN , let

S iN =
{
x ∈ SN \ SN : τx ∈ [2−ig′N , 2

−i+1g′N)
}
,

so that SN \ SN = ∪INi=1S iN .
We next control the sizes of the slices S iN . By the tail approximation (2.2), for all

i = 1, . . . , IN ,

P[y ∈ S iN ] ≤ P
[
Ex >

1

β
√
N

(log g′N − i log 2)
]

= f
(1)
N,i exp

{
− 1

2
α′2β2N + α′i log 2− f (2)

N,i − o(1)
}

(1 + o(1)).

(7.2)

We separately control the two expressions f
(1)
N,i and f

(2)
N,i. The first one equals

f
(1)
N,i =

α′β
√

2πN
√

2π
β
√
N

(log g′N − i log 2)
.

To control this, note that by definition of IN , for all i = 1, . . . , IN ,

log g′N − i log 2 ≥ log hN − log 2 = δαβ2N − log 2.

It follows that, for all i = 1, . . . , IN , f
(1)
N,i is bounded by some constant c > 0, which can be

chosen to be independent of i. The second expression to control in (7.2) is

f
(2)
N,i =

i2 log2 2

2β2N
+
i log 2

α′β2N
log(α′β

√
2πN).
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This is strictly positive, so it can be omitted in (7.2) in order to obtain an upper bound.

Using the obtained control on f
(1)
N,i and f

(2)
N,i in (7.2), as well as the fact that γ′ = α′2β2

2 log 2
, we

conclude that for all i = 1, . . . , IN ,

P[y ∈ S iN ] ≤ c2−γ
′N2α

′i.

In particular, the size |S iN | of the i-th slice is dominated by a binomial random variable
with parameters n = 2N and p = c2α

′i2−γ
′N . Then it follows by the Markov inequality

that for every ε > 0,

P
[
|S iN | > 2εNc2α

′i2(1−γ′)N] ≤ 2−εN .

Since IN = cN + O(1), a union bound and the Borel-Cantelli lemma imply that for every
ε > 0, P-a.s. for N large enough,

|S iN | ≤ 2εN c2α
′i2(1−γ′)N , for all i = 1, . . . , IN . (7.3)

Coming back to the contribution of the intermediate traps SN \SN to the clock process,

we use as before that Eτ
ν [`tRN (y)] = νytRN = 1∧τy

ZN
tRN , and (1∨ τy)(1∧ τy) = τy ≤ 2−i+1g′N

on S iN . With (2.3) for ZN , Lemma 4.4 for RN , and (7.3) for the size of S iN , we obtain that
for every ε > 0, P-a.s. for N large enough, for all i = 1, . . . , IN ,

Eτ
ν

[
1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈SiN}ds

]
=

1

gN

∑
y∈SiN

(1 ∨ τy)Eτ
ν [`tRN (y)]

≤ g−1
N |S

i
N |2−i+1g′NZ

−1
N tRN

≤ c
g′N
gN

2(α−1)i2(γ−γ′+2ε)N .

Summing over i = 1, . . . , IN , P-a.s. for N large enough,

Eτ
ν

[
1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈⋃INi=1 SiN}
ds

]
≤ c′

g′N
gN

2(γ−γ′+2ε)N . (7.4)

We claim that the right hand side of (7.4) decays exponentially in N for ε > 0 small
enough. To this end, as before, it is enough to take account of the exponential parts in
both gN and g′N , which contribute to the right hand side of (7.4) by

e(α′−α)β2N = 2(
√
γ′−√γ) 2β

βc
N .

Hence, to show the exponential decay on the right hand side of (7.4), it is sufficient to
prove that we can choose ε > 0 small enough, such that

(
√
γ′ −√γ)

2β

βc
+ γ − γ′ + 2ε < 0. (7.5)

With a first order approximation of the concave function
√
x at γ,

1

2
√
γ

(γ − γ′) < √γ −
√
γ′.

Since, 1
2
√
γ

= βc
2αβ

> βc
2β

and α < 1, this implies

βc
2β

(γ − γ′) < √γ −
√
γ′,
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and (7.5) thus holds for ε > 0 small enough. The right hand side of (7.4) then decays
exponentially, and with Markov inequality we conclude that

1

gN

∫ tRN

0

(1 ∨ τYs)1{Ys∈⋃INi=1 SiN}
ds

N→∞−−−→ 0 P-a.s. in P τ
ν -probability.

This together with (7.1) finishes the proof of the proposition. �

8. Conclusion

Theorem 1.1 is a direct consequence of Propositions 6.1, 7.1 and Lemma 4.4.

Appendix A. Extremal characterization of mean hitting time

In this appendix we give the proof of the formula (4.1) which gives a lower bound on the
mean hitting time of a set when starting from stationarity. This formula is a continuous-
time version of (a half of) Proposition 3.2 from [ČTW11]. This proposition, as well as the
underlying result [AF02, Proposition 3.41], are stated for a continuous-time Markov chain
whose waiting times are mean-one exponential random variables. We were not able to find
analogous statements for general continuous-time Markov chains in the literature, so we
provide short proofs here, for the sake of completeness.

We start by introducing some notation. Let Y be a reversible continuous-time Markov
chain on a finite state space S with transition rates qxy and invariant probability measure
νx, denote by Pν and Px the laws of Y started stationary and from x respectively, and by
Eν , Ex the corresponding expectations. Define the conductances as cxy = νxqxy = νyqyx.
Let qx =

∑
y qxy and cx =

∑
y cxy. The transition probability from x to y is pxy = qxy

qx
= cxy

cx
.

In the same way as in Section 2, we define the hitting time Hx and the return time H+
x to

x by Y , and similarly HA and H+
A for sets A ⊂ S.

A function g on S is called harmonic in x, if
∑

y g(y)pxy = g(x). For x ∈ S and

B ⊂ S \ {x}, the equilibrium potential g?x,B is defined as the unique function on S that is
harmonic on (x ∪B)c, 1 on x and 0 on B. It is well known that

g?x,B(y) = Py[Hx ≤ HB].

For a function g : S → R, the Dirichlet form is defined as

D(g, g) =
1

2

∑
z∈S

∑
y∼z

νzqzy(g(z)− g(y))2, (A.1)

where y ∼ z means that y and z are neighbors in the sense that qzy > 0.
The following proposition is the required generalization of Proposition 3.2 of [ČTW11].

Proposition A.1. For every x ∈ S and B ⊂ S \ {x}
1

Eν [Hx]
≤ D(g?x,B, g

?
x,B)ν(B)−2 = cxPx[H

+
x > HB]ν(B)−2. (A.2)

To prove this proposition we will need a lemma which is a generalization of [AF02,
Proposition 3.41] giving the extremal characterization of the mean hitting time.

Lemma A.2. For every x ∈ S,

1

Eν [Hx]
= inf

{
D(g, g) : g : S → R, g(x) = 1,

∑
y∈S

νyg(y) = 0

}
. (A.3)
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Proof. The proof follows the lines of [AF02] with some minor changes to fit into the setting
of general continuous-time chains.

We first show that there is a minimizing function g that equals g(y) = Zyx
Zxx

, where

Zyx =

∫ ∞
0

(
Py[Yt = x]− νx

)
dt.

To this end, we introduce the Lagrange multiplier γ and consider g as the minimizer of
D(g, g) + γ

∑
z νzg(z) with g(x) = 1. The contribution to this of g(y) for y 6= x is∑

z∼y

νyqyz(g(y)− g(z))2 + γνyg(y),

which is minimized if

2
∑
z∼y

νyqyz(g(y)− g(z)) + γνy = 0.

From this we get for all y ∈ S, by introducing the term including the parameter β for the
case y = x, that

g(y) =
∑
z∼y

qyz
qy
g(z)− γ

2

1

qy
+
β

qy
1{y=x}.

Multiplying by qy and νy, and summing over all y ∈ S,∑
y

∑
z∼y

νyqyzg(y) =
∑
y

∑
z∼y

νyqyzg(z)− γ

2
+ βνx.

By reversibility νyqyz = νzqzy, so the term on the left and the first term on the right are
identical, which gives γ

2
= βνx. Thus there is a minimizing g such that

g(y) =
β

qy

(
1{y=x} − νx

)
+
∑
z∼y

qyz
qy
g(z). (A.4)

We now show that up to the factor β the function y 7→ Zyx satisfies the same relation.
Indeed, by the strong Markov property at the time J1 of the first jump of Y , which under
Py is an exponential random variable with mean 1

qy
,

Zyx =

∫ ∞
0

(∫ J1

0

(
1{y=x} − νx

)
dt+

∑
z∼y

qyz
qy

∫ ∞
0

(
Pz[Yt = x]− νx

)
dt

)
dPy(J1)

=
1

qy

(
1{y=x} − νx

)
+
∑
z∼y

qyz
qy
Zzx.

The function g(y) = Zyx
Zxx

thus satisfies the constrains of the variational problem in (A.3)

and fulfills (A.4) with β = 1/Zxx. It is thus the minimizer of this variational problem.
Moreover, by [AF02, Lemmas 2.11 and 2.12], we have Zxx = Eν [Hx]νx and νxEy[Hx] =

Zxx − Zyx. Denoting h(y) = Ey[Hx] and using these equalities, we obtain

D(g, g) =
1

Eν [Hx]2
D(h, h) =

1

Eν [Hx]
,

where for the last equality we used D(h, h) = Eν [Hx], by e.g. [AB92, Lemma 6]. This
completes the proof. �

With this lemma the proof of Proposition A.1 follows the lines of [ČTW11].
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Proof of Proposition A.1. To prove the inequality in (A.2), it is sufficient to modify the
function g?x,B so that it becomes admissible for the variational problem in Lemma A.2.
Write g? for g?x,B and define g̃ on S as

g̃(z) =
g?(z)−

∑
y∈S νyg

?(y)

1−
∑

y∈S νyg
?(y)

.

Then g̃ equals 1 on x and
∑

z∈S νzg̃(z) = 0. Hence, by Lemma A.2,

1

Eν [Hx]
≤ D(g̃, g̃) = D(g?, g?)

(
1−

∑
y∈S

νyg
?(y)

)−2

.

But g? is non-negative, bounded by 1 and non-zero only on Bc, therefore
∑

y∈S νyg
?(y) ≤

ν(Bc), the first part of Proposition A.1 follows.
To prove the equality in (A.2), we show that

D(g?x,B, g
?
x,B) = Px[H

+
x > HB]cx. (A.5)

Indeed, let again g? = g?x,B. If g? is harmonic in z, the second sum in the Dirichlet form
(A.1) is ∑

y∼z

czy(g
?(z)− g?(y))2 =

∑
y∼z

czy(g
?(y)2 − g?(z)2).

This shows that the contribution to the Dirichlet form of every edge that connects two
vertices in which g? is harmonic or zero vanishes. Therefore D(g?, g?) reduces to

D(g?, g?) =
1

2

(∑
y∼x

cxy(1− g?(y))2 +
∑
y∼x

cxy(1− g?(y)2)

)
=
∑
y∼x

cxy(1− g?(y))

= cx
∑
y∼x

pxyPy[Hx > HB]

= cxPx[H
+
x > HB].

This proves (A.5) and thus the proposition. �
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