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Abstract. We consider a version of a Glauber dynamics for a p-spin Sherrington–
Kirkpatrick model of a spin glass that can be seen as a time change of simple ran-
dom walk on the N -dimensional hypercube. We show that, for all p ≥ 3 and all
inverse temperatures β > 0, there exists a constant γβ,p > 0, such that for all ex-
ponential time scales, exp(γN), with γ < γβ,p, the properly rescaled clock process
(time-change process) converges to an α-stable subordinator where α = γ/β2 < 1.
Moreover, the dynamics exhibits aging at these time scales with time-time correla-
tion function converging to the arcsine law of this α-stable subordinator. In other
words, up to rescaling, on these time scales (that are shorter than the equilibration
time of the system) the dynamics of p-spin models ages in the same way as the
REM, and by extension Bouchaud’s REM-like trap model, confirming the latter
as a universal aging mechanism for a wide range of systems. The SK model (the
case p = 2) seems to belong to a different universality class.

1. Introduction and results

Aging has become one of the main paradigms to describe the long-time behavior
of complex and/or disordered systems. Systems that have strongly motivated this
research are spin glasses, where aging was first observed experimentally in the anoma-
lous relaxation patterns of the magnetization [LSNB83, Cha84]. To capture the fea-
tures of activated dynamics, early on people introduced effective dynamics where the
state space is reduced to the configurations with lowest energy [DDOL85, KH89]. The
theoretical modeling of aging phenomena took a major leap with the introduction
of so-called trap models by Bouchaud and Dean in the early 1990’ies [Bou92, BD95]
(see [BCKM98] for a review). These models reproduce the characteristic power law
behavior seen experimentally, while being sufficiently simple to allow for a detailed
analytical treatment. While trap models are heuristically motivated to capture the
behavior of the dynamics of spin glass models, there is no clear theoretical, let alone
mathematical derivation of these from an underlying spin-glass dynamics. The first
attempt to establish such a connection was made in [BBG02, BBG03a, BBG03b]
where it was shown that, starting from a particular Glauber dynamics of the Random
Energy Model (REM), at low temperatures and at a time scale slightly shorter than
the equilibration time of the dynamics, a appropriate time-time correlation function
of the dynamics converges to that given by Bouchaud’s REM-like trap model.

On the other hand, in a series of papers [BČ05, BČM06, BČ08, BČ07] a systematic
investigation of a variety of trap models was initiated. In this process, it emerged
that there appears to be an almost universal aging mechanism based on α-stable
subordinators that governs aging in most trap models. It was also shown that the
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same feature holds for the dynamics of the REM at shorter time scales than those
considered in [BBG03a, BBG03b], and that this also happens at high temperatures,
provided appropriate time scales are considered [BČ08]. For a general review on trap
models see [BČ06].

However, both in the REM and in the trap models that were analyzed so far, the
random variables describing the quenched disorder were considered to be indepen-
dent. Aging in correlated spin glass models was investigated rigorously only in some
cases of spherical SK models and at very short time scales [BDG01]. In the present
paper we show for the first time that the same type of aging mechanism is also rel-
evant in correlated spin glasses, at least on time scales that are short compared to
the equilibration time (but exponentially large in the volume of the system).

Let us first describe the class of models we are considering. Our state spaces will
be the N -dimensional hypercube, SN ≡ {−1, 1}N . RN : SN × SN → [−1, 1] denotes

as usual the normalized overlap, RN(σ, τ) ≡ N−1
∑N

i=1 σiτi. The Hamiltonian of the

p-spin SK-model is defined as
√
NHN , where HN : SN → R is a centered normal

process indexed by SN with covariance

E[HN(σ)HN(τ)] = RN(σ, τ)p, (1.1)

for 3 ≤ p ∈ N. We will denote by H the σ-algebra generated by the random variables
{HN(σ), σ ∈ SN , N ∈ N}. The corresponding Gibbs measure is given by

µβ,N(σ) ≡ Z−1
β,Ne

β
√
NHN (σ), (1.2)

where Zβ,N denotes the normalizing partition function.
We define the dynamics as a nearest neighbor continuous time Markov chain σN(·)

on SN with transition rates

wN(σ, τ) =

{
N−1e−β

√
NHN (σ), if dist(σ, τ) = 1,

0, otherwise;
(1.3)

here dist(·, ·) is the graph distance on the hypercube,

dist(σ, τ) =
1

2

N∑
i=1

|σi − τi|. (1.4)

A simple way to construct this dynamics is as a time change of a simple random
walk on SN : We denote by YN(k) ∈ SN , k ∈ N, the simple unbiased random walk
(SRW) on SN started at some fixed point of SN , say at (1, . . . , 1). For β > 0 we
define the clock-process by

SN(k) =
k−1∑
i=0

ei exp
{
β
√
NHN

(
YN(i)

)}
, (1.5)

where {ei, i ∈ N} is a sequence of mean-one i.i.d. exponential random variables. We
denote by Y the σ-algebra generated by the SRW random variables {YN(k), k ∈ N,
N ∈ N}. The σ-algebra generated by the random variables {ei, i ∈ N}, will be
denoted by E . For non-integer t ≥ 0 we define SN(t) = SN(btc) and we write S−1

N

for the generalized right-continuous inverse of SN . Then the process σN(·) can be
written as

σN(t) ≡ YN(S−1
N (t)). (1.6)
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Obviously, σN is reversible with respect to the Gibbs measure µβ,N , and SN(k) is the
instant of the k-th jump of σN . We will consider all random processes to be defined
on an abstract probability space (Ω,F ,P). Note that the three σ-algebras, H, Y ,
and E , are all independent under P.

We will systematically exploit the construction of the dynamics given by (1.3)
or (1.6). The same dynamics was used in the analysis of the REM and in most
work on trap models. It differs substantially from more popular dynamics such as
the Metropolis or the heat-bath algorithm. The main difference is that in these
dynamics the trajectories are not independent of the environment and are biased
against going up in energy. This may have a substantial effect, and we do not know
whether our results will apply, at least qualitatively, in these cases. The fact is that
we currently do not have the tools to analyze these dynamics even in the case of the
REM!

Let Vα(t) be an α-stable subordinator with the Laplace transform given by

E[e−λVα(t)] = exp(−tλα). (1.7)

Our main technical result is be the following theorem that describes the asymptotic
behavior of the clock process.

Theorem 1.1. There exists a function, ζ(p), such that, for all p ≥ 3, and γ satisfying

0 < γ < min
(
β2, ζ(p)β

)
, (1.8)

under the conditional distribution P[·|Y ] the law of the stochastic process

S̄N(t) = e−γNSN
(⌊
tN1/2eNγ

2/2β2⌋)
, t ≥ 0, (1.9)

defined on the space of càdlàg functions equipped with the Skorokhod M1-topology,
converges, Y-a.s., to the law of the γ/β2-stable subordinator, Vγ/β2(Kt), t ≥ 0, where
K is a positive constant depending on γ, β, and p.

Moreover, the function ζ(p) is increasing and satisfies

ζ(3) ' 1.0291 and lim
p→∞

ζ(p) =
√

2 ln 2. (1.10)

We will explain in Section 5 what the M1-topology is. Roughly, it is a weak topol-
ogy that does not convey much information at the jumps of the limiting process: e.g.,
it allows for several jumps of the approximating processes at rather short distances
in time to merge to one big jump of the limit process. This will actually occur in
our models for p <∞, while it does not happen in the REM. Therefore, we cannot
replace the M1-topology with the stronger J1-topology in Theorem 1.1.

To control the behavior of spin-spin correlation functions that are commonly used
to characterize aging, we need to know more on how these jumps occur at finite N .
What we will show is that if we slightly coarse-grain the process S̄N over blocks of
size o(N), the rescaled process does converge in the J1-topology. What this says,
is that the jumps of the limiting process are compounded by smaller jumps that
are made over ≤ o(N) steps of the SRW. In other words, the jumps of the limiting
process come from waiting times accumulated in one slightly extended trap, and
during this entire time only a negligible fraction of the spins are flipped. This will
imply the following aging result.

Theorem 1.2. Let AεN(t, s) be the event defined by

AεN(t, s) = {RN

(
σN
(
teγN

)
, σN

(
(t+ s)eγN

))
≥ 1− ε

}
. (1.11)
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Then, under the hypothesis of Theorem 1.1, for all ε ∈ (0, 1), t > 0, s > 0, and
α = γ/β2

lim
N→∞

P[AεN(t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1− u)−α du. (1.12)

Remark. We will in fact prove the stronger statement that aging in the above sense
occurs along almost every random walk trajectory, that is

lim
N→∞

P[AεN(t, s)|Y ] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1− u)−α du, Y-a.s. (1.13)

Let us discuss the meaning of these results. eγN is the time-scale at which we want
to observe the process. According to Theorem 1.1, at this time the random walk
will make about N1/2eNγ

2/2β2 � eγN steps. Since this number is also much smaller
than 2N (as follows from (1.10)), the random walk will essentially visit that number
of sites.

If the random process HN were i.i.d., then the maximum ofHN along the trajectory

up to time N1/2eNγ
2/β2

would be
(
2 ln(N1/2eNγ

2/2β2
)
)1/2 ∼ N1/2γ/β, and the time

spent in the site with maximal HN would be of order eγN . Since Theorem 1.1
holds also in the i.i.d. case, that is in the REM (see [BČ08]), the time spent in
the maximum is comparable to the total time and the convergence to the α-stable
subordinator implies that the total accumulated time is composed of pieces of order
eγN that are collected along the trajectory. In fact, each jump of the subordinator
corresponds to one visit to a site that has waiting times of that order. In a common
metaphor, the sites are referred to as traps and the mean waiting times as their
depths.

The theorem in the general case states that the same is essentially true in the
p-spin model. The difference is that now the traps do not consist of a single site, but
of a deep valley (along the trajectory) whose bottom has approximately the same
energy as in the i.i.d. case and whose shape and width we will describe quite precisely.
Remarkably, the number of sites contributing significantly to the residence time in
the valley is essentially finite, and different valleys are statistically independent.

The fact that traps are finite may appear quite surprising to those familiar with
the statics of p-spin models. From the results there (see [Tal03, Bov06]), it is known
that the Gibbs measure concentrates on “lumps” whose diameter is of order Nεp,
with εp > 0. The mystery is however solved easily: the process HN(σ) does indeed
decrease essentially linearly with speed N−1/2 from a local maximum. Thus, the
residence times in such sites decrease geometrically, so that the contributions of a
neighborhood of size K of a local maximum amounts to a fraction of (1 − c−K) of
the total time spend in that valley ; for the support of the Gibbs measure, one needs
however to take into account the entropy, that is the fact that the volume of the balls
of radius r increases like N r. For the dynamics, at least at our time-scales, this is,
however, irrelevant, since the SRW leaves a local minimum essentially ballistically.

The proof of Theorem 1.1 relies on the combination of detailed information on the
properties of the SRW on the hypercube, which is provided in Section 4 (but see
also [Mat89, BG06, ČG08]), and comparison of the process HN on the trajectory of
the SRW to a simpler Gaussian process using interpolation techniques à la Slepian,
familiar from extreme value theory of Gaussian processes.
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Let us explain this in more detail. On the time scales we are considering, the SRW
makes tN1/2 exp(Nγ2/2β2) � tN1/2 exp(Nζ(p)2/2) � 2N steps. In this regime the
SRW is extremely “transient”, in the sense that (i) starting from a given point x, for
a times t ≤ ν ∼ Nω, ω < 1, the distance from x grows essentially linearly with speed
one, that is there are no backtrackings with high probability; (ii) the SRW will never
return to a neighborhood of size ν of the starting point x, with high probability. The
upshot is that we can think of the trajectory of the SRW essentially as of a straight
line.

Next we consider the Gaussian process restricted to the SRW trajectory. We
expect that the main contributions to the sums SN(k) come from places where HN

is maximal (on the trajectory). We expect that the distribution of these extremes
does not feel the correlations between points farther than ν apart. On the other
hand, for points closer than ν, the correlation function RN(YN(i), YN(j))p can be well
approximated by a linear function 1− 2pN−1|i− j| (using that RN(YN(i), YN(j)) ∼
1−2N−1|i−j|). This is convenient since this process has an explicit representation in
terms of i.i.d. random variables, which allows for explicit computations (in fact, this
is one of the famous processes for which the extremal distribution can be computed
explicitly [Sle61, She71]). Thus the idea is to cut the SRW trajectory into blocks of
length ν and to replace the original process HN(YN(i)) by a new one Ui, where Ui and
Uj are independent, if i, j are not in the same block, and E[UiUj] = 1− 2pN−1|i− j|
if they are. For the new process, Theorem 1.1 is relatively straightforward. The
main step is the computation of Laplace transforms in Section 2. Comparing the
real process with the auxiliary one is the bulk of the work and is done in Section 3.
The properties of SRW needed are established in Section 4. In Section 5 we present
the proofs of the main theorems.

Our results exhibit considerable universality of the REM for dynamics of p-spin
models with p ≥ 3. This dynamic universality is close to the static universality
of the REM, which shows that various features of the landscape of energies (that
is of the Hamiltonian HN) are insensitive to correlations. This static universality
in a microcanonical context has been introduced by [BM04] (see [BK06a, BK06b]
for rigorous results in the context of spin-glasses). The static results closest to our
dynamics question are given in [BGK06, BK07], where it is shown that the statistics
of extreme values for the restriction of HN to a random sets XN ⊂ SN are universal,
for p ≥ 3 and |XN | = ecN , for c small enough.

This work was initiated during a concentration period on metastability and aging
at the Max-Planck Institute for Mathematics in the Sciences in Leipzig. GBA and
AB thank the MIP-MIS and Stefan Müller for their kind hospitality during this event.
AB’s research is supported in part by DFG in the Dutch-German Bilateral Research
Group “Mathematics of Random Spatial Models from Physics and Biology”. Finally,
we thank the referees of this paper for their careful reading and helpful suggestions.

2. Behavior of the one-block sums

In this section we analyze the distribution of the block-sums,
∑ν

i=1 eie
β
√
NUi , where

{ei, i ∈ N} are mean-one i.i.d. exponential random variables, and {Ui, i = 1, . . . , ν}
is a centered Gaussian process with the covariance EUiUj = 1−2pN−1|i−j|; ν = νN
is a function of N of the form

ν = bNωc, with ω ∈ (1/2, 1). (2.1)
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As explained in the introduction, this process will serve as a local approximation of
the corresponding block sums along a SRW trajectory. We characterize the distri-
bution of the block-sums in terms of its Laplace transform

FN(u) = E
[

exp
{
− ue−γN

ν∑
i=1

eie
β
√
NUi
}]
. (2.2)

Proposition 2.1. For all γ such that γ/β2 ∈ (0, 1) there exists a constant, K =
K(γ, β, p), such that, uniformly for u in compact subsets of [0,∞),

lim
N→∞

N1/2ν−1eNγ
2/2β2

[1−FN(u)] = Kuγ/β
2

. (2.3)

Proof. For all N the argument of the limit on the left-hand side of (2.3) is continuous
in u ∈ [0,∞) and equals 0 for u = 0. The same is true for the right-hand side of
(2.3). Therefore, the uniform convergence claimed in the proposition is a direct
consequence of the point-wise convergence for u ∈ (0,∞), which we will prove in the
following.

We first compute the conditional expectation in (2.2) given the σ-algebra, U ,
generated by the Gaussian process U .

E
[

exp
{
− ue−γN

ν∑
i=1

eie
β
√
NUi
}∣∣∣U] =

ν∏
i=1

1

1 + ue−γNeβ
√
NUi

= exp

{
−

ν∑
i=1

g
(
ue−γNeβ

√
NUi
)}

,

(2.4)

where
g(x) ≡ ln(1 + x). (2.5)

Note that g(x) is monotone increasing and non-negative for x ∈ R+. We use the
well-known fact (see e.g. [Sle61]) that the random variables Ui can be expressed
using a sequence of i.i.d. standard normal variables, Zi, as follows. Set Z1 = (U1 +
Uν)/(4 − 4p(ν − 1)/N)1/2 and Zk = (Uk − Uk−1)/(4p/N)1/2, k = 2, . . . , ν. Then Zi
are i.i.d. standard normal variables and

Ui = Γ1Z1 + · · ·+ ΓiZi − Γi+1Zi+1 − · · · − ΓνZν , (2.6)

where

Γ1 =

√
1− p

N
(ν − 1) and Γ2 = · · · = Γν =

√
p

N
. (2.7)

Observe that
∑ν

i=1 Γ2
i = 1. Let us define Gi(z) = Gi(z1, . . . , zν) as

Gi(z) = Γ1z1 + · · ·+ Γizi − Γi+1zi+1 − · · · − Γνzν . (2.8)

Using this notation we get

1−FN(u) =

∫
Rν

dz

(2π)ν/2
e−

1
2

Pν
i=1 z

2
i

{
1− exp

[
−

ν∑
i=1

g
(
ue−γNeβ

√
NGi(z)

) ]}
. (2.9)

We divide the domain of integration into several parts according to which of the
Gi(z) is maximal. Define Dk = {z ∈ Rν : Gk(z) ≥ Gi(z)∀i 6= k}. On Dk we use the
substitution

zi = bi + Γi(γN − lnu)/(β
√
N), if i ≤ k,

zi = bi − Γi(γN − lnu)/(β
√
N), if i > k.

(2.10)
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It will be useful to define
∑k

j=i+1 aj as
∑k

j=1 aj −
∑i

j=1 aj, which is meaningful also
for k < i+ 1. Using this definition

Gk(b)−Gi(b) = 2
k∑

j=i+1

Γνbj. (2.11)

Set θ = − ln(u)/(γN) and define

D′k =
{
b ∈ Rν :

k∑
j=i+1

bj +
γ
√
p

β
|k − i|(1 + θ) ≥ 0∀i 6= k

}
. (2.12)

After a straightforward computation we find that (2.9) equals (up to a multiplicative
correction converging to one as N →∞)

e−Nγ
2/2β2

uγ/β
2

ν∑
k=1

∫
D′k

db

(2π)ν/2
e−

1
2

Pν
i=1 b

2
i e−

γ
β

√
NGk(b)(1+θ)

×
{

1− exp
(
−

ν∑
i=1

g
(
eβ
√
NGk(b)−2β

√
p

Pk
j=i+1 bj−2pγ|k−i|(1+θ)

))}
.

(2.13)

To finish the proof we have to show that that asymptotically the only dependence
in (2.13) on u (or θ) is through the factor uγ/β

2
, and that the sum is of order νN−1/2.

We change variables once more to aj = bj/(1 + θ) in order to remove the dependence
of the integration domains D′k on u. Then the sum (without the prefactor) in (2.13)
can be expressed as

ν∑
k=1

∫
D′′k

(1 + θ)νda

(2π)ν/2
e−

1
2

(1+θ)2
Pν
i=1 a

2
i

[
e−

γ
β

√
NGk(a)(1+θ)2

×
{

1− exp
(
−

ν∑
i=1

g
(
e(β
√
NGk(a)−2β

√
p

Pk
j=i+1 aj−2pγ|k−i|)(1+θ)

))}]
,

(2.14)

where D′′k =
{
a ∈ Rν :

∑k
j=i+1 aj +

γ
√
p

β
|k − i| ≥ 0 ∀i 6= k

}
.

Let δ > 0 be such that (1 + δ)γ/β2 < 1, and let N > | lnu|/(γδ), so that |θ| ≤ δ.
We first examine the square bracket in the above expression for a fixed k. On D′′k

exp
{
−

ν∑
i=1

g
(
e(β
√
NGk(a)−2β

√
p

Pk
j=i+1 aj−2pγ|k−i|)(1+θ)

)}
≥ exp

{
−νg

(
eβ
√
NGk(a)(1+θ)

)}
.

(2.15)
Write Gk(a) as (recall (2.1))

Gk(a) =
ξ − ω lnN

(1 + θ)β
√
N
. (2.16)

The square bracket of (2.14) is then smaller than

e
− γ

β2 (ξ−ω lnN)(1+θ){
1− exp

(
− νg

(
eξ−ω lnN

))}
≤ N

γω(1+θ)

β2 e
− γξ
β2 (1+θ){

1− exp
(
− νg

(
eξ/ν

))}
.

(2.17)
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The function e
− γξ
β2 (1+θ){

1 − exp
(
− νg

(
eξ/ν

))}
is, for ξ ∈ R, uniformly bounded in

ν if (1 + θ)γ/β2 < 1. Namely, if ξ ≥ 0, then

e
− γξ
β2 (1+θ){

1− exp
(
− νg

(
eξ/ν

) )}
≤ e

− γξ
β2 (1+θ) ≤ 1. (2.18)

If ξ < 0, then, since g(x) ≤ x,{
1− exp

(
− νg

(
eξ/ν

))}
≤
{

1− exp
(
− eξ

)}
, (2.19)

which behaves like eξ, as ξ → −∞. This compensates the exponentially growing
prefactor if (1 + θ)γ/β2 < 1. Thus, under this condition, the bracket of (2.14)
increases at most polynomially with N . Therefore, there exists δ > 0 small, such
that the domain of integration in (2.14) may be restricted to ai’s satisfying

ν−1

ν∑
i=1

a2
i ∈ (1− δ, 1 + δ), |a1| ≤ N1/4,

ν∑
i=1

|ai| ≤ ν1+δ. (2.20)

The integral over the remaining ai’s decays at least as e−N
δ′

, for some δ′ > 0 (by
a simple large deviation argument). For all a satisfying (2.20), |Gk(a)| ≤ N1/4 +
N−1/2ν1+δ′ � N1/2 and thus, for any fixed u, uniformly in such a’s,we have

e−
γ
β

√
NGk(a)(1+θ)2

e−
γ
β

√
NGk(a)

N→∞−−−→ 1, and
e−

1
2

(1+θ)2
Pν
i=1 a

2
i

e−
1
2

Pν
i=1 a

2
i

N→∞−−−→ 1. (2.21)

Also, (1 + θ)ν
N→∞−−−→ 1. Hence, up to a small error, we can remove all but the last

occurrence of θ in (2.14).
Finally, taking xi = ai for i ≥ 2, x1 = N1/2Gk(a), and thus

a1 =
x1 −

√
p(x2 + · · ·+ xk − xk+1 − · · · − xν)

Γ1

√
N

, (2.22)

(2.14) is, up to a small error, equal to
ν∑
k=1

∫
D′′k

dx e−
1
2

Pν
i=2 x

2
i

Γ1N1/2(2π)ν/2
exp

(
− γ

β
x1 −

x2
1

2Γ2
1N

)
exp

(
− a2

1

2
+

x2
1

2Γ2
1N

)
×
{

1− exp
(
−

ν∑
i=1

g
(
e(1+θ)βx1e−(2β

√
p

Pk
j=i+1 xj−2pγ|k−i|)(1+θ)

))}
.

(2.23)

The last exponential term on the first line can be omitted. Indeed,

− a2
1

2
+

x2
1

2Γ2
1N

=
1

Γ2
1N

[
px1(x2 + · · · − xν)− 2p2(x2 + · · · − xν)2

] N→∞−−−→ 0 (2.24)

uniformly for all |x1| ≤ N (1+δ)/2 and |x2 + · · · − xν | ≤ ν(1+δ)/2 if δ > 0 is sufficiently

small. The integral over the remaining x is again at most e−N
δ′

, again by a large-
deviation argument.

Now we estimate the integral over x2, . . . , xν in (2.23). Namely,∫
D̄′′k

dxe−
1
2

Pν
i=2 x

2
i

(2π)(ν−1)/2

{
1− exp

(
−

ν∑
i=1

g
(
e(1+θ)βx1e−(2β

√
p

Pk
j=i+1 xj+2pγ|k−i|)(1+θ)

))}
,

(2.25)
where D̄′′k is the restriction of D′′k to the last ν−1 coordinates (which does not depend
on the value of the first one). Let V = (V2, . . . , Vν) be a sequence of i.i.d. standard
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normal random variables and let Rk
i =

∑k
j=i+1 Vj. Using this notation we rewrite

(2.25) as

E
[
1− exp

(
−

ν∑
i=1

g
(
e(1+θ)βx1e−(2β

√
pRki +2pγ|k−i|)(1+θ)

))
;V ∈ D̄′′k

]
. (2.26)

Restricting the summation to i = k, we get a lower bound

E
[
1− exp

(
− g

(
e(1+θ)βx1

) )
;V ∈ D̄′′k

]
∼ e(1+θ)βx1P[V ∈ D̄′′k ] as x1 → −∞. (2.27)

The probability P[V ∈ D̄′′k ] is bounded from below by the probability that a two-
sided random walk (R(i), i ∈ Z) with standard normal increments and R(0) = 0
satisfies R(i) ≥ −γ√p|i|/β for all i ∈ Z. This probability is positive and does not
depend on N . This implies that there exists c > 0, independent of k, N , and u, such
that, for all x1 < 0,

(2.25) ≥ ce(1+θ)βx1 . (2.28)

Using g(x) ≤ x and 1− e−x ≤ x we get an upper bound for (2.25), namely

(2.25) ≤ e(1+θ)βx1

ν∑
i=1

E
[
e−(2β

√
pRki +2pγ|k−i|)(1+θ);V ∈ D̄′′k

]
. (2.29)

Relaxing the condition V ∈ D̄′′k to Rk
i ≥ −

γ
√
p

β
|k−i| in the i-th term of the summation

and using the fact that Rk
i is a centered normal random variable with variance |k−i|,

we get, by a straightforward Gaussian computation, that

(2.25) ≤ e(1+θ)βx1

ν∑
i=1

C√
|k − i|

e−γ
2p|k−i|/(2β2) ≤ Ce(1+θ)βx1 , (2.30)

where C depends only on β, γ, and p.
The bounds (2.28) and (2.30) imply that (2.23) is bounded from above and from

below (with different constants) by

C ′νN−1/2

∫
R

dx1 exp
(
− γ

β
x1 −

x2
1

2Γ2
1N

)
(1 ∧ ce(1+θ)βx1) = C ′′νN−1/2. (2.31)

This proves that (2.23), and thus (2.14), are of the right order. Moreover, these
bounds imply that we can restrict the domain of integration over x1 in (2.23) to a
large compact interval [−C̄, C̄] without loosing precision.

Observe that (2.25) is an increasing function of min(k, ν − k). Therefore, there
exists a bounded function, c̄ : R → [0,∞), such that, as this minimum increases,
(2.25) converges to c̄(x1)(e(1+θ)βx1 ∧ 1). Using this fact and the bounds (2.28) and
(2.30), it is easy to see that there exists C > 0 such that (2.23) behaves as CνN−1/2(1+
o(1)), as N → ∞. Finally, observe that if x1 ∈ [−C̄, C̄] then the derivative of the
integrand in (2.25) with respect to θ is bounded uniformly in N and k. This can be
used to show that the constant C is independent of u. This completes the proof of
Proposition 2.1. �

We close this section with a short description of the shape of the valleys mentioned
in the introduction. First, it follows from (2.10) and the following computations that
the most important contribution to the Laplace transform comes from realizations
for which max{Ui : 1 ≤ i ≤ ν} ∼ γ

√
N/β with an error of order N−1/2. It is the

“geometrical” sequence in (2.30) which shows that only finitely many neighbors of
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the maximum actually contribute to the Laplace transform. The same can be seen,
at least heuristically, from a simple calculation

E
[
Uk+i

∣∣∣Uk =
γ

β

√
N
]

=
γ
√
N

β
− Cβ,γ,p

|i|√
N
. (2.32)

Which means that, disregarding the fluctuations, the energy decreases linearly with
the distance from the local maximum and thus the mean waiting times decrease
exponentially.

3. Comparison between the real and the block process

We now come to the main task, the comparison of the clock-process sums with
those in which the real Gaussian process is replaced by a simplified process. For a
given realization, YN , of the SRW, we set X0

N(i) = HN

(
YN(i)

)
(the dependence on

YN will be suppressed in the notation). Then X0
N(i) is a centered Gaussian process

indexed by N with covariance matrix

Λ0
ij = E[X0

N(i)X0
N(j)] = RN

(
YN(i), YN(j)

)p
. (3.1)

We further define the comparison process, X1
N(i), as a centered Gaussian process

with covariance matrix

Λ1
ij = E[X1

N(i)X1
N(j)] =

{
1− 2pN−1|i− j|, if bi/νc = bj/νc,
0, otherwise.

(3.2)

For h ∈ (0, 1) we define the interpolating process Xh
N(i) ≡

√
1− hX0

N(i)+
√
hX1

N(i).
Let ` ∈ N, 0 = t0 < · · · < t` = T , and u1, . . . , u` ∈ R+ be fixed. For any Gaussian

process X = (X(i), i ∈ N) we define a function, FN(X) = FN
(
X; {ti}, {ui}

)
, as

FN
(
X; {ti}, {ui}

)
≡ E

[
exp

(
−
∑̀
k=1

uk
eγN

tkr(N)−1∑
i=tk−1r(N)

eie
β
√
NX(i)

)∣∣∣X](X)

= exp
(
−
∑̀
k=1

tkr(N)−1∑
i=tk−1r(N)

g
( uk
eγN

eβ
√
NX(i)

))
,

(3.3)

where
r(N) =

⌈
N1/2eNγ

2/2β2⌉
(3.4)

Observe that E[F (X0; {ti}, {ui})|Y ] is a joint Laplace transform of the distribution
of the properly rescaled clock process at times ti. The following approximation is
the crucial step of the proof.

Proposition 3.1. If the assumptions of Theorem 1.1 are satisfied, then, for all
sequences {ti} and {ui},

lim
N→∞

E
[
FN
(
X0
N ; {ti}, {ui}

)∣∣Y]− E
[
FN
(
X1
N ; {ti}, {ui}

)]
= 0, Y-a.s. (3.5)

Proof. The well-known interpolation formula for functionals of two Gaussian pro-
cesses due (probably) to Slepian and Kahane (see e.g. [LT91]) reads in our context

E[FN(X0
N)− FN(X1

N)|Y ] =
1

2

∫ 1

0

dh

r(N)T∑
i,j=1
i 6=j

(Λ0
ij − Λ1

ij)E
[ ∂2FN(Xh

N)

∂X(i)∂X(j)

∣∣∣Y]. (3.6)
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We will show that the integral in (3.6) converges to 0.
Let k(i) be defined by tk(i)−1r(N) ≤ i < tk(i)r(N). The second derivative in (3.6)

is equal to

uk(i)uk(j)β
2N

e2γN
eβ
√
N(Xh

N (i)+Xh
N (j))g′

(uk(i)

eγN
eβ
√
NXh

N (i)
)
g′
(uk(j)

eγN
eβ
√
NXh

N (j)
)
FN(Xh

N)

≤
uk(i)uk(j)β

2N

e2γN
eβ
√
N(Xh

N (i)+Xh
N (j))

× exp
[
− 2g

(uk(i)

eγN
eβ
√
NXh

N (i)
)
− 2g

(uk(j)

eγN
eβ
√
NXh

N (j)
)]
,

(3.7)

where we used that g′(x) = (1 +x)−1 = exp(−g(x)) (recall (2.5)), and we omitted in
the summation of FN(Xh

N) all terms different from i and j. To estimate the expected
value of this expression we need the following technical lemma.

Lemma 3.2. Let c ∈ [−1, 1] and let U1, U2 be two standard normal variables with
covariance E[U1U2] = c, λ a small constant, 0 < λ < 1−γβ−2 (which will stay fixed),
and u, v > 0. Define ΞN(c) = ΞN(c, β, γ, u, v) and Ξ̄N(c) = Ξ̄N(c, β, γ, u, v, λ) by

ΞN(c) =
uvβ2N

e2γN
E
[

exp
{
β
√
N(U1 + U2)− 2g

(
ueβ

√
NU1−γN

)
− 2g

(
veβ
√
NU2−γN

)}]
(3.8)

and

Ξ̄N(c) =

{
C
{

(1− c)−1/2 ∧
√
N
}

exp
{
− γ2N

β2(1+c)

}
, if 1 ≥ c > γβ−2 + λ− 1,

CN exp
{
N(β2(1 + c)− 2γ)

}
, if c ≤ γβ−2 + λ− 1,

(3.9)
where C ≡ C(γ, β, u, v, λ) is a suitably chosen constant independent of N and c.
Then

ΞN(c) ≤ Ξ̄N(c). (3.10)

Proof. Set κ± =
√

2(1± c). Let Ū1, Ū2 be two independent standard normal vari-
ables. Then U1 and U2 can be written as

U1 =
1

2
(κ+Ū1 + κ−Ū2), U2 =

1

2
(κ+Ū1 − κ−Ū2). (3.11)

Hence, U1 + U2 = κ+Ū1. For x ≥ 0 and y ≥ 0 the function g satisfies g(x) + g(y) =
g(x+ y + xy) ≥ g(x+ y). Moreover, uex + ve−x ≥ min(u, v)e|x|. Hence,

g
(
ueβ

√
NU1−γN

)
+ g
(
veβ
√
NU2−γN

)
≥ g
(

min(u, v) exp
(κ+β

√
NŪ1

2
+
∣∣∣κ−β√NŪ2

2

∣∣∣− γN)). (3.12)

Setting min(u, v) = ū, we can bound ΞN(c) from above by

uvβ2N

e2γN

∫
R2

dy

2π
exp

{
− y2

1 + y2
2

2
+ β
√
Nκ+y1 − 2g

(
ūeκ+β

√
Ny1/2+κ−β

√
N |y2|/2−γN

)}
.

(3.13)

Substituting z1 = y1 − β
√
Nκ+ and z2 = y2 we get

uvβ2N

e2γN
eβ

2κ2
+N/2

∫
R2

dz

2π
exp

(
− z2

1 + z2
2

2

)
× exp

(
− 2g

(
ū exp

{√
N
[(β2κ2

+

2
− γ
)√

N +
βκ+

2
z1 +

βκ−
2
|z2|
]}))

.

(3.14)
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The function exp(−2g(ūe
√
Nx)) converges to the indicator function 1x<0, as N →∞.

The rôle of x will be played by the square bracket in the expression (3.14).
Consider now c ≤ γβ−2 +λ−1 (λ is defined in Lemma 3.2). For such c the relation

γ ≥ −λ′ + β2κ2
+/2, where λ′ is a positive λ dependent constant, holds. This means

that the square bracket in (3.14) remains negative for z close to zero and the integral
in (3.14) is bounded from above by 1. This yields the claim of the lemma for such c:

ΞN(c) ≤ uvβ2N

e2γN
eβ

2κ2
+N/2 = C(γ, β, u, v)N exp

{
N(β2(1+ c)−2γ)

}
= Ξ̄N(c). (3.15)

For all remaining c, it is when γ < −λ′ + β2κ2
+/2, we need another substitution,

namely

z1 =
1√
N

[
v1 −

κ−
κ+

|v2| −N
(
βκ+ −

2γ

βκ+

)]
,

z2 =
v2√
N
.

(3.16)

This substitution transforms the domain where the bracket of (3.14) is negative
into the half plane v1 < 0: The expression inside of the braces in (3.14) equals
βκ+v1/2. Substituting (3.16) into (z2

1 + z2
2)/2 produces an additional exponential

prefactor exp
(
− (β2κ2

+−2γ)2N

2β2κ2
+

)
. Another prefactor N−1 comes from the Jacobian.

The remaining terms can be bounded from above by∫
R2

dv

2π
exp

{
− v2

2

2N
+
(
βκ+ −

2γ

βκ+

)(
v1 −

κ−
κ+

|v2|
)
− 2g(ūeβκ+v1/2)

}
, (3.17)

which can be separated into a product of two integrals. The integral over v2 contains
two terms: one with v2

2 and second with |v2|. If we ignore the quadratic one (which
can be done only if κ− 6= 0, that is c 6= 1), then the integral over v2 can be bounded
from above by ((

βκ+ −
2γ

βκ+

)κ−
κ+

)−1

≤ C(λ)κ−1
− ≤ C(λ)(1− c)−1/2, (3.18)

where C(λ) is a constant depending only on λ. If the term with |v2| is ignored, then

the integration over v2 gives a factor C
√
N .

To bound the integral over v1 in (3.17) observe that the integrand behaves as
exp{−2v1γ/βκ+} as v1 → ∞, and as exp{(βκ+ − (2γ/βκ+))v1} as v1 → −∞.
Therefore, the integral over v1 is bounded uniformly by some λ-dependent constant
for all values of c ≥ −1 + (γ/β2) + λ. Putting everything together we get

ΞN(c) ≤ C
{

(1− c)−1/2 ∧
√
N
}uvβ2N

e2γN
eβ

2κ2
+N/2

1

N
exp

(
−

(β2κ2
+ − 2γ)2N

2β2κ2
+

)
= C(γ, β, u, v, λ)

{
(1− c)−1/2 ∧

√
N
}

exp
{
− γ2N

β2(1 + c)

}
= Ξ̄N(c).

(3.19)

This finishes the proof of Lemma 3.2. �

We can now return to the proof of Proposition 3.1, that is to formula (3.6). Let
Dij = dist(YN(i), YN(j)). Observe that Dij is always smaller than |i− j|. Hence, for
bi/νc = bj/νc

Λ0
ij =

(
1− 2N−1Dij

)p ≥ (1− 2N−1|i− j|
)p ≥ Λ1

ij. (3.20)
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Since Λ1
ij = 0 for (i, j) with bi/νc 6= bj/νc, Λ0

ij − Λ1
ij < 0 if and only if Λ0

ij < 0. The
absolute value of (3.6) is then bounded from above by

1

2

∫ 1

0

dh

r(N)T∑
i,j=1
i 6=j

(Λ0
ij − Λ1

ij)+E
[ ∂2FN(Xh

N)

∂X(i)∂X(j)

∣∣∣Y]+ (Λ0
ij)−E

[ ∂2FN(Xh
N)

∂X(i)∂X(j)

∣∣∣Y]. (3.21)

Given the sequence {ui} that was fixed at the beginning of this section, we define

Ξ̃N(c) = max{Ξ̄N(c, β, γ, ui, uj, λ) : 1 ≤ i, j ≤ `}. (3.22)

Clearly, Ξ̃N(c) can be written as in (3.9) with a new large constant C. Observe that
Ξ̃N(c) is an increasing function of c ∈ [−1, 1]. Lemma 3.2 and the computation just
preceding it then imply that (3.21) is bounded from above by

1

2

∫ 1

0

dh

r(N)T∑
i,j=1
i 6=j

(Λ0
ij − Λ1

ij)+Ξ̃N

(
(1− h)Λ0

ij + hΛ1
ij

)
+ (Λ0

ij)−Ξ̃N

(
(1− h)Λ0

ij

)
. (3.23)

We define, with a slight abuse of notation, Λ0
d = (1− 2dN−1)p. That is to say, Λ0

d is
the covariance of X0

N(i) and X0
N(j) if Dij = d. Using this notation, (3.23) is smaller

than

N∑
d=0

{
r(N)T∑
i,j=1

bi/νc6=bj/νc

1{Dij = d}(Λ0
d)+

∫ 1

0

Ξ̃N

(
(1− h)Λ0

d

)
dh

+

r(N)T∑
i,j=1,i 6=j
bi/νc=bj/νc

1{Dij = d}(Λ0
d − Λ1

ij)Ξ̃N

(
Λ0
d

)

+

r(N)T∑
i,j:|i−j|≥N/2

1{Dij = d}(Λ0
d)−Ξ̃N

(
0
)}
.

(3.24)

In the last two lines we used the fact that the integral over h is bounded by the
supremum of its integrand, and the fact that Ξ̃N is increasing. Finally, the definition
of Ξ̃N implies that, for c ≥ 0,∫ 1

0

Ξ̃N((1−h)c)dh ≤ C exp
{
− γ2N

β2(1 + c)

}∫ 1

0

{
(
1−(1−h)c

)−1/2∧
√
N} dh. (3.25)

The last integral is smaller than 2 for all c ∈ [−1, 1].
To control (3.24) we need to count the pairs (i, j) with Dij = d. The following

proposition, that is proved in the next section, provides sufficiently good estimates
for our purposes.

Proposition 3.3. Let γ and β satisfy the hypothesis of Theorem 1.1, let T > 0, and
let ν be as in (2.1). Then, for any η > 0, there exists a constant, C = C(β, γ, ν, η),
such that, Y-a.s., for all but finitely many values of N , for all d ∈ {0, . . . , N}

r(N)T∑
i,j=1

bi/νc6=bj/νc

1{Dij = d} ≤ C

[
T 2r(N)22−N

(
N

d

)
+ r(N)Tν−1eη‖d‖

]
, (3.26)
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where ‖d‖ = min(d,N − d). Moreover, we can choose ε < 1 such that, Y-a.s., for
all but finitely many values of N ,

r(N)T∑
i,j=1,i 6=j
bi/νc=bj/νc

1{Dij = d}(Λ0
d − Λ1

ij) ≤

{
Cνr(N)T{d ∨ 1}N−2, if d ≤ εNν−1,

Cr(N)Tν2N−1, if ν ≥ d ≥ εNν−1.

(3.27)

This proposition and the estimate (3.25) imply that the first line of (3.24) is smaller
than the sum of the following two terms:

C

N∑
d=0

T 2r(N)22−N
(
N

d

)
(Λ0

d)+ exp
{
− γ2N

β2(1 + Λ0
d)

}
(3.28)

and

C

N∑
d=0

r(N)Teη‖d‖

ν
(Λ0

d)+ exp
{
− γ2N

β2(1 + Λ0
d)

}
. (3.29)

By (3.27), the second line of (3.24) is bounded by

C

εN/ν∑
d=0

r(N)Tν{d ∨ 1}
N2

Ξ̃N(Λ0
d) + C

ν∑
d=εN/ν

r(N)Tν2

N
Ξ̃N(Λ0

d). (3.30)

The third line is non-zero only if p is odd. By (3.26) it is smaller than

N∑
d=N/2

C

[
T 2r(N)22−N

(
N

d

)
+ r(N)Tν−1eη‖d‖

](
1− 2d

N

)p
−

Ξ̃N(0). (3.31)

We estimate (3.28) first. Let I(u) be defined by

I(u) = u lnu+ (1− u) ln(1− u) + ln 2, (3.32)

and let

JN(u) = 2−N
(

N

bNuc

)√
πN

2
eNI(u). (3.33)

By Stirling’s formula we have that JN(u)
N→∞−−−→ (4u(1−u))−1, uniformly on compact

subsets of (0, 1). Moreover, JN(u) ≤ CN1/2 for all u ∈ [0, 1]. From the definitions of
r(N) and Ξ̃N , we find that

(3.28) ≤ C

N∑
d=0

T 2N1/2
(

1− 2d

N

)p
+

exp
{
NΥp,β,γ

( d
N

)}
JN

( d
N

)
, (3.34)

where

Υp,β,γ(u) =
γ2

β2
− I(u)− γ2

β2(1 + |1− 2u|p)
. (3.35)

Lemma 3.4. There exists a function, ζ(p), such that, for all p ≥ 2 and γ, β satis-
fying γ < ζ(p)β and γ < β2, there exist positive constants δ, δ′, and c such that

Υp,β,γ(u) ≤ −δ, for all u ∈ [0, 1] \ (1/2− δ′, 1/2 + δ′), (3.36)

and
Υp,β,γ(u) ≤ −c(u− 1/2)2, for all u ∈ (1/2− δ′, 1/2 + δ′). (3.37)
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Figure 1. Function Υp,γ,β for p = 2, 3, 4 and various values of γ/β.

Moreover, ζ(p) is increasing and satisfies (1.10), that is,

ζ(2) = 2−1/2, ζ(3) ' 1.0291, and lim
p→∞

ζ(p) =
√

2 ln 2. (3.38)

Proof. The function Υp,β,γ and its derivatives satisfy Υp,β,γ(1/2) = Υ′p,β,γ(1/2) = 0
and

Υ′′p,β,γ(1/2) =

{
4
(

2γ2

β2 − 1
)
, if p = 2,

−4 otherwise.
(3.39)

The second derivative is always negative for β, γ, p satisfying the assumptions of the
lemma. Therefore (3.37) holds.

For any δ′ > 0 and |u − 1/2| ≥ δ′, the function I(u) is strictly positive and the
function Φ(u) ≡ 1 − 1/(1 + |1 − 2u|p) is bounded. Therefore, if γ/β is sufficiently
small (how small defines the function ζ(p)), then Υp,β,γ(u) < −δ. This proves (3.36).
The monotonicity of ζ(p) follows from the monotonicity of Φ in p.

The function Υ2,β,γ(u) is increasing in γ2/β2 and I(u) ≥ (1− 2u)2/2. Thus, for all
γ < 2−1/2β,

Υ2,β,γ(u) <
1

2

(
1− 1

1 + (1− 2u)2

)
− 1

2
(1− 2u)2. (3.40)

The right-hand side of the last inequality is equal to 0 for u = 1/2 and its derivative,

2(1− 2u)
(

1− 1

(1 + (1− 2u)2)2

)
≷ 0, for all u ≶ 1/2, (3.41)

which implies that (3.36) is true for all γ < 2−1/2β, and so the first part of (3.38)
holds.

Obviously, Φ(0) = 1/2, Φ′(0) = −2p, I(0) = ln 2 and I ′(0) = −∞. Hence, for

γ/β =
√

2 ln 2, there exists u > 0 small enough such that Υp,β,γ(u) is positive. This

implies that ζ(p) <
√

2 ln 2. If u ∈ (0, 1/2) then limp→∞Φ(u) = 0. This yields the
third claim of (3.38). The value of ζ(3) was obtained numerically.

For illustration the graphs of the function Υp,β,γ is plotted in Figure 1 for p = 2, 3, 4,

β = 1, and γ = 0 (solid lines), γ =
√

1/2 (dashed lines), γ = 1 (dash-dotted lines)

and γ =
√

2 ln 2 (dotted lines). �

We can now finish the bound of (3.28), resp. of (3.34). Lemma 3.4 and the bounds
on the function JN yield that, for d/N /∈ (1/2− δ′, 1/2 + δ′), the summands decrease
exponentially in N . Therefore they can be neglected. The remaining part can be
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bounded by

C

(1/2+δ′)N∑
d=(1/2−δ′)N

T 2N1/2
(

1− 2d

N

)p
+

exp
{
− cN(d/N − 1/2)2

}
≤ CT 2N3/2

∫ δ′

−δ′
|x|pe−c′Nx2

dx

≤ CT 2N3/2N−(p+1)/2

∫ ∞
−∞
|u|pe−c′u2

du
N→∞−−−→ 0,

(3.42)

however only if p ≥ 3.
Similarly, for (3.29) we have

(3.29) ≤ C

N∑
d=0

TN1/2ν−1
(

1− 2d

N

)p
+

exp(NΥ̃(d/N)), (3.43)

where, setting ‖u‖ = min(u, 1− u),

Υ̃p,β,γ(u) =
γ2

2β2
− γ2

β2(1 + |1− 2u|p)
+ η‖u‖. (3.44)

It is easy to check that there are positive values of δ, δ′, and η, such that Υ̃p,β,γ(u) <
−δ, for all ‖u‖ ≥ δ′. Therefore all such d can be neglected. Around d = 0 the
function Υ̃p,β,γ(x) can be approximated by a linear function −cx, c > 0, and the
summation by an integration. As an upper bound we get

CTN3/2ν−1

∫ δ′

0

e−cNxdx ≤ CTN1/2ν−1 N→∞−−−→ 0. (3.45)

An analogous bound works for d close to N and p even.
For (3.30) we have

(3.30) ≤ CTν

N
eNΥ̃p,β,γ(0) + C

εN/ν∑
d=1

Tνd

N3/2

[
1−

(
1− 2d

N

)p]−1/2

eNΥ̃p,β,γ(d/N)

+ C
ν∑

d=εN/ν

Tν2

N1/2

[
1−

(
1− 2d

N

)p]−1/2

eNΥ̃p,β,γ(d/N).

(3.46)

The first term converges to zero. The linear approximation of Υ̃p,β,γ and of the
bracket in the second term yields an upper bound

CTN1/2ν

∫ ε

0

x1/2e−c
′Nxdx ≤ CTN−1ν

N→∞−−−→ 0. (3.47)

The third term is smaller than ν3e−c
′N/ν , which is also negligible.

Finally, since Ξ̃N(0) = Ce−Nγ
2/β2

, it is easy to see that the contribution of the
second term in the bracket of (3.31) tends to 0. The contribution of the first term is
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equal (up to a constant) to

N∑
d=N/2

(2d

N
− 1
)p
T 2N2−N

(
N

d

)

≤ CT 2
{ ∑
d≥N/2+N3/5

N2−N
(
N

d

)
+

2N3/5∑
i=1

(N + i

N
− 1
)p
N1/2e−i

2/2N
}
,

(3.48)

where we used that
(
N
d

)
≤ CN−1/22Ne−i

2/2N for d = (N + i)/2 and i � N2/3. The
first term in (3.48) tends to 0 by a standard moderate deviation argument. The
second one can be approximated by

CT 2N1−(p/2)

∫ ∞
0

xpe−x
2/2dx

N→∞−−−→ 0 (3.49)

for p ≥ 3. This completes the proof of Proposition 3.1. �

4. Random walk properties

In this section we prove Proposition 3.3. We write Px for the law of the simple
random walk YN conditioned to start in x. Let Q = {Qi, i ∈ N be a birth-and-death
process on {0, . . . , N} with transition probabilities pi,i−1 = 1 − pi,i+1 = i/N . We
use Pk and Ek to denote the law of (the expectation with respect to) Q conditioned
on Q0 = k. Under P0, Qi has the same law as dist(YN(0), YN(i)). We define the
first hitting time of k, Tk = min{i ≥ 1 : Qi = k}. It is a well-known fact that, for
k < l < m

Pl[Tm < Tk] =

∑l−1
i=k

(
N−1
i

)−1∑m−1
i=k

(
N−1
i

)−1 . (4.1)

Finally, let pk(d) = P0(Qk = d). We need the following lemma for estimating pk(d)
for large k.

Lemma 4.1. There exists K large enough such that, for all k ≥ KN2 lnN ≡ K(N)
and x, y ∈ SN , ∣∣∣∣Py[YN(k) = x ∪ YN(k + 1) = x]

2
− 2−N

∣∣∣∣ ≤ 2−8N , (4.2)

and thus ∣∣∣∣pk(d) + pk+1(d)

2
− 2−N

(
N

d

)∣∣∣∣ ≤ 2−4N . (4.3)

Proof. The beginning of the argument is the same as in [Mat87]. We construct
a coupling between YN (which by definition starts at site 1 = (1, . . . , 1) ∈ SN)
and another process Y ?

N . This process is a simple random walk on SN , with initial
distribution µ?N being uniform on those x ∈ SN with dist(x,1) even. The coupling
is the same as in [Mat87]. This coupling provides a certain random time, TN , which
can be used to bound the variational distance d∞ between µ? and the distribution
µkN of YN(k): for k even

d∞(µ?N , µ
k
N) ≡ max

A⊂SN
|µ?N(A)− µkN(A)| ≤ P[TN > k]. (4.4)

The law of TN is as follows. Let U = dist(Y ?
N(0),1). That is U is a binomial random

variable with parameters N and 1/2 conditioned on being even. Consider another
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simple random walk, ỸU , on SU , started from 1. The distribution of TN is then the
same as the distribution of the hitting time of the set {x ∈ SU : dist(1, x) = U/2}.
It is proved in [Mat87] that P(TN > N lnN)→ c < 1. It is then easy to see that,

P[TN ≥ K(N)] ≤ cKN/2 ≤ 2−8N , (4.5)

if K is large enough. Thus, for even k ≥ K(N), d∞(µ?N , µ
k
N) ≤ 2−8N , and thus

|µ?N(x) − µkN(x)| ≤ 2−8N , for all x ∈ SN . A similar claim for k odd is then not
difficult to prove. The second part of the lemma is a direct consequence of the first
part. �

Lemma 4.2. Let γ, β, ν satisfy the hypothesis of Proposition 3.3. Then, there exists
a constant, C = C(β, γ, ν), such that, Y-a.s., for all but finitely many values of N ,
for all d ∈ {0, . . . , N},

r(N)T∑
i,j=1,i 6=j
bi/νc=bj/νc

1{Dij = d} ≤ Cr(N)T1{d ≤ ν}. (4.6)

Proof. The lemma is trivially true for d > ν. For d ≤ ν, observe first that (4.6) is
bounded from above by an i.i.d. sum of m = dr(N)T/νe “block” random variables
which have the same distribution as

∑ν
i,j=1,i 6=j 1{Dij = d}. To control these block

variables we first compute

ρ(d) = E0

ν∑
i=1

1{Qi = d}. (4.7)

We have ρ(0) ≥ N−1 and ρ(d) ≥ P0[Td ≤ ν]. This probability is decreasing in d and

P0[Tν ≤ ν] =
N

N
· N − 1

N
. . .

N − ν + 1

N
≥ e−ν

2/N . (4.8)

Thus ρ(d) ≥ e−ν
2/N for all d ≤ ν. Using Tν ≤ ν, the decomposition on the first

visit of d, and the standard relation between the Green’s function and the escape
probability, we get

ρ(d) ≤ E0

[ Tν∑
i=1

1{Qi = d}
]

= 1 + Ed

[ Tν∑
i=1

1{Qi = d}
]

= 1 +
1

Pd[Tν < Td]
. (4.9)

However, using (4.1),

Pd[Tν < Td] =
N − d
N

Pd+1[Tν < Td] =
N − d
N

(
N−1
d

)−1∑ν−1
i=d

(
N−1
i

)−1 = 1−O(νN−1). (4.10)

Since ν � N , ρ(d) ≤ 2.
Consider now the one-block contribution to (4.6),

ν∑
i,j=1

1{Dij = d} ≡ ν2Z̃. (4.11)

Of course, Z̃ ∈ [0, 1] and, using the results of the previous paragraph,

e−ν
2/N(2ν)−2 ≤ E[Z̃] ≤ 4ν−1. (4.12)
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Denoting by Z̃k a sequence of i.i.d. copies of Z̃, we obtain from Hoeffding’s inequality
[Hoe63]:

P
[ m∑
i=1

Z̃k ≥ 2mE[Z̃k]
]
≤ exp{−2mE[Z̃k]

2} ≤ exp{−me−2ν2/N(2ν)−4}, (4.13)

where we used the lower bound from (4.12). Since ν2/N � N , by the Borel-Cantelli
lemma, the left-hand side of (4.6) is a.s. bounded by

ν22mE[Z̃] ≤ Cr(N)T, (4.14)

for all N large enough and d ≤ ν. This completes the proof of Lemma 4.2. �

Proof of Proposition 3.3. We prove (3.27) first. Observe that, for i, j in the same
block and d ≤ ν,

Λ0
d − Λ1

ij =
(

1− 2d

N

)p
−
(

1− 2p|i− j|
N

)
=

2p(|i− j| − d)

N
+O

( d2

N2

)
. (4.15)

The contribution of the error term is smaller than the right-hand side of (3.27), as
follows from Lemma 4.2.

To compute the contribution of the main term, let

ρ̃(d) = E0

[ ν∑
i=1

(i− d)1{Qi = d}
]

=
ν∑
i=1

(i− d)pi(d). (4.16)

We need upper and lower bounds on ρ̃(d) to proceed with a Hoeffding-type argument.
The lower bound is easy to obtain by considering one path with Qd+2 = d. It gives
ρ̃(d) ≥ N−1. The upper bound is slightly more complicated,

ρ̃(d) =

(ν−d)/2∑
k=1

2kpd+2k(d) ≤
(ν−d)/2∑
k=1

2k

(
d+ 2k

k

)(d+ k

N

)k
≤ C

(ν−d)/2∑
k=1

k
(d+ 2k)k

kke−k
√
k

(d+ k

N

)k
≤ C

(ν−d)/2∑
k=1

(2e)k(dk−1 + 2)k(νN−1)k ≤ C

(ν−d)/2∑
k=1

(
c(d+ 2)νN−1

)k
≤ C(d ∨ 1)νN−1

(4.17)

if d ≤ εN/ν for some small ε. Otherwise, trivially, ρ̃(d) ≤ ν2. The one-block
contribution of the first term of (4.15) to (3.27) is then given by

2p

N

ν∑
i,j=1

(|i− j| − d)1{Dij = d} ≡ 2p

N
ν3Z̃, (4.18)

with Z̃ ∈ [0, 1], E[Z̃] ≥ cN−1ν−3, and

E[Z̃] ≤

{
C{d ∨ 1}N−1ν−1, if d ≤ εN/ν,

1, if ν ≥ d ≥ εN/ν.
(4.19)

Then, as in the proof of Lemma 4.2, Hoeffding’s inequality and (4.19) imply that the
contribution of the first term of (4.15) to (3.27) is smaller than Cr(N)T{d∨1}νN−2

or Cr(N)Tν2N−1, respectively, which was to be shown.
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Finally, we prove (3.26). We restrict the summation to i < j, since the terms with
j > i give the same contribution. We first consider the contribution of pairs (i, j)
such that j − i ≥ K(N), so that in particular, bi/νc 6= bj/νc. With R = r(N)T ,
Lemma 4.1 yields

E
[ R∑
j−i≥K(N)

1{Dij = d}
]

=
R∑

j−i≥K(N)

pj−i(d) ≤ CR22−N
(
N

d

)
. (4.20)

Moreover,

Var

[ R∑
j−i≥K(N)

1{Dij = d}
]

=
R∑

j1−i1≥K(N)

R∑
j2−i2≥K(N)

P
[
Di1,j1 = Di2,j2 = d

]
− P

[
Di1,j1 = d

]
P
[
Di2,j2 = d

]
.

(4.21)

We can again suppose that i1 ≤ i2. The right-hand side of (4.21) is non-zero only
if i1 ≤ i2 ≤ j1 < j2 or i1 ≤ i2 < j2 ≤ j1. We will consider only the first case. The
second one can be treated analogously. In is not difficult to see, using Lemma 4.1,
that if i2 − i1 ≥ K(N) or j2 − j1 ≥ K(N) then the difference of probabilities in the
above summation is at most 2−4N . Therefore, the contribution of such (i1, i2, j1, j2)
to the variance is at most R42−4N .

If i2 − i1 < K(N) and j2 − j1 < K(N) then, using again Lemma 4.1,

P
[
Di1,j1 = Di2,j2 = d

]
≤ P

[
Di1,j1 = d

]
≤ C2−N

(
N

d

)
. (4.22)

We choose ε > 0. For ‖d‖ ≤ (1− ε)N/2 we have∑
j1−i1≥K(N)
i2−i1<K(N)

∑
j2−i2≥K(N)
j2−j1<K(N)

P
[
Di1,j1 = Di2,j2 = d

]

≤ CK(N)2R22−N
(
N

d

)
≤ CK(N)2R2e−NI((1−ε/2)/2) � N−3R2ν−2,

(4.23)

say. For ‖d‖ ≥ (1 − ε)N/2, that is |d − N/2| ≤ εN/2, we have, for ε small enough
(how small depend on γ and β), that 2−N

(
N
d

)
� N7R−2. Then,∑

j1−i1≥K(N)
i2−i1<K(N)

∑
j2−i2≥K(N)
j2−j1<K(N)

P
[
Di1,j1 = Di2,j2 = d

]

≤ CN4R22−N
(
N

d

)
� N−3R42−2N

(
N

d

)2

.

(4.24)

We have thus found that the expectation of the summation over j − i > K(N) is
smaller than the right-hand side of (3.26) and the variance of the same summation
is much smaller than N−3 times the right-hand side of (3.26) squared. A straight-
forward application of the Chebyshev inequality and the Borel-Cantelli Lemma then
gives the desired a.s. bound for pairs j − i ≥ K(N) and all d ∈ {0, . . . , N}.

Choose again ε > 0. For j−i < K(N), observe first that if ‖d‖ ≥ (lnN)1+ε � lnN
then the summation over such pairs (i, j) in (3.26) is always smaller than K(N)R�
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Rν−1eη‖d‖, for all η > 0. For the remaining d’s, that is ‖d‖ < (lnN)1+ε, let KN ≥ K
be the smallest constant such that KNN

2 lnN is a multiple of ν. Since ν � N2,
KN−K � 1. As the difference between K and KN is negligible, we will use the same
notation K(N) for KNN

2 lnN and we will simply suppose that K(N) is a multiple
of ν. The summation in (3.26) for j − i ≤ K(N) can be bounded from above by

r(N)T∑
0<j−i<K(N)
bi/νc6=bj/νc

1{Dij = d} ≤
K(N)−1∑
k=0

dR/K(N)e∑
`=0

K(N)∑
m=jk

1{DK(N)`+k,K(N)`+k+m = d}, (4.25)

where jk is the smallest integer such that b(K(N)`+ k)/νc 6= b(K(N)`+ k+ jk)/νc,
which does not depend on `. We define random variables, Z`(j, d), by

Z`(j, d) =
1

K(N)

K(N)∑
m=j

1{DK(N)`+k,K(N)`+k+m = d}. (4.26)

The sequence {Z`(j, d) : ` ≥ 0}, for fixed j and d, is a sequence of i.i.d. variables
with values in [0, 1].

Let EN = {d : ‖d‖ < (lnN)1+ε, d ≥ N/2}. For d ∈ EN , we have

P[Z`(k, d) > 0] ≤ P0[Td ≤ K(N)] ≤
(
N

d

)
Pzd [T1 < K(N)]

≤
(
N

d

)
eλKEzd

[
e−λT1/N2 lnN

]
,

(4.27)

where zd is any point on the hypercube with dist(1, zd) = d and, with a slight abuse
of notation, T1 is the hitting time of 1 by the simple random walk YN . According to
Lemma 3.4 of [ČG08],

Ezd

[
exp(−λT1m(N)−1)

]
≤ (2−Nm(N)λ−1 + ξN(d))(1 + o(1)), (4.28)

for N lnN � m(N) � 2N , with ξn(k) = 2−n n
2

(
n
k

)−1∑n−k
j=1

(
n
k+j

)
1
j
. Taking m(N) =

N2 lnN and d ∈ EN it is not difficult to check that, for ε small enough,

Ezd

[
e−λT1/N2 lnN

]
≤ 2−N(1−ε). (4.29)

Hence,

P
[ ⋃
d∈EN

{ K(N)−1∑
k=0

dR/K(N)e∑
`=0

Z`(jk, d) > 0
}]

≤ C

(
N

d(lnN)1+εe

)
R(lnN)1+ε2−N(1−ε) ≤ C2−ε

′N ,

(4.30)

for some ε′ small. Hence, d ∈ EN do not pose any problem, by the Borel-Cantelli
lemma again.

To treat d ≤ (lnN)1+ε � ν we will distinguish two cases: jk ≤ d+6 and jk > d+6.
For the first case, observe that, for any d < ν, there are at most (d + 6)K(N)/ν
values of k ∈ {0, . . . ,K(N) − 1} such that jk ≤ d + 6. Clearly, Z`(jk, d) ≤ Z`(0, d).
Moreover, by similar arguments as in Lemma 4.2, E[Z`(0, d)] ≥ 1/(NK(N)), and
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E[Z`(0, d)] ≤ C/K(N). Hence, by Hoeffding’s inequality, the probability

P
[
K(N)

dR/K(N)e∑
`=0

Z`(0, d) ≥ CR

K(N)

]
(4.31)

decreases, for C large, at least exponentially with N . Hence, for jk ≤ d+ 6, Y-a.s,

K(N)

dR/K(N)e∑
`=0

Z`(jk, d) ≤ K(N)

dR/K(N)e∑
`=0

Z`(0, d) ≤ CR

K(N)
. (4.32)

For j > d+ 6 and N large enough, Z`(j, d) ≤ Z`(d+ 6, d). We claim that

cN−6 ≤ K(N)E[Z`(d+ 6, d)]� ν−1 (4.33)

Indeed, the lower bound is trivially obtained by considering a path that returns 6
times to its starting point in the first 12 steps and then continues without backtrack-
ing to a distance d. To get the upper bound in (4.33), we first bound the probability
that the chain Q started at 0 hits d between times d+ 6 and K(N). This probability
is bounded by

P0[Td+6 6= d+ 6] + P0[Td+6 = d+ 6]Pd+6[Td < K(N)]. (4.34)

The first term is smaller than c(d+ 6)2N−1 � ν−1. For the second term, Pd+6[Td <
Td+6] ≤ CN−5(ln(N))5(1+ε) � N−4. Moreover, before time K(N), there are at most
K(N) trials to reach d, so Pd+6[Td < K(N)] ≤ K(N)N−4 � ν−1. So (4.34) � ν−1.
If Q hits d after d + 6 it spends there on average a time less than 2. This gives the
upper bound in (4.33).

From (4.33), it follows by another Hoeffding’s type argument that, for j > d+ 6,

P
[
K(N)

dR/K(N)e∑
`=0

Z`(j, d) ≥ R

νK(N)

]
(4.35)

decreases at least exponentially in N and thus the inequality question fails Y-a.s. for
all but finitely many values of N .

Putting together all arguments of the last three paragraphs and summing over k
we get, Y-a.s., for all but finitely many N ,

K(N)−1∑
k=0

dR/K(N)e∑
`=0

K(N)Z`(jk, d) ≤ dK(N)ν−1 CR

K(N)
+K(N)

R

νK(N)
≤ CRν−1eηd.

(4.36)
This completes the proof �

5. Convergence of clock process

We will prove the convergence of the rescaled clock process to the stable subor-
dinator on the space D([0, T ],R) equipped with the Skorokhod M1-topology. This
topology is not commonly used in the literature, therefore we shortly recall some of
its properties and compare it with the more standard Skorokhod J1-topology, which
we will need later, too. The reader is referred to [Whi02] for more details on both
topologies, and to [Bil68] for a thorough account on the J1-topology.
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5.1. Topologies on the Skorokhod space. Consider the space D = D([0, T ],R)
of càdlàg functions. The J1-topology is the topology given by the J1-metric dJ1 : for
f, g ∈ D, define

dJ1(f, g) = inf
λ∈Λ
{‖f ◦ λ− g‖∞ ∨ ‖λ− e‖∞}, (5.1)

where Λ is the set of strictly increasing functions mapping [0, T ] onto itself such that
both λ and its inverse are continuous, and e is the identity map on [0, T ].

Also the M1-topology is given by a metric. For f ∈ D let Γf be its completed
graph, namely

Γf = {(t, z) ∈ [0, T ]× R : z = αf(t−) + (1− α)f(t), α ∈ [0, 1]}. (5.2)

A parametric representation of the completed graph Γf (or of f) is a continuous
bijective mapping φ(s) = (φ1(s), φ2(s)), [0, 1] 7→ Γf , whose first coordinate φ1 is
increasing. If Π(f) is the set of all parametric representation of f , then the M1-
metric, dM1 , is defined by

dM1(f, g) = inf{‖φ1 − ψ1‖∞ ∨ ‖φ2 − ψ2‖∞ : φ ∈ Π(f), ψ ∈ Π(g)}. (5.3)

The space D equipped with both M1- and J1-topologies is Polish. The M1-topology
is weaker than the J1-topology: As an example, consider the sequence

fn = 1{[1− 1/n, 1)}+ 2 · 1{[1, T ]}, (5.4)

which converges to f = 2 · 1{[1, T ]} in the M1-topology but not in the J1-topology.
One often says that the M1-topology allows “intermediate jumps”.

We will need a criterion for tightness of probability measures on D. To this end
we define several moduli of continuity,

wf (δ) = sup
{

min
(
|f(t)− f(t1)|, |f(t2)− f(t)|

)
: t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ

}
,

w′f (δ) = sup
{

inf
α∈[0,1]

|f(t)− (αf(t1) + (1− α)f(t2))| : t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ
}
,

vf (t, δ) = sup
{
|f(t1)− f(t2)| : t1, t2 ∈ [0, T ] ∩ (t− δ, t+ δ)

}
.

(5.5)

The following result is a restatement of Theorem 12.12.3 of [Whi02] and Theorem 15.3
of [Bil68].

Lemma 5.1. The sequence of probability measures {Pn} on D([0, T ],R) is tight in
the J1-topology if

(i) For each positive ε there exists c such that

Pn[f : ‖f‖∞ > c] ≤ ε, n ≥ 1. (5.6)

(ii) For each ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an integer n0 such
that

Pn[f : wf (δ) ≥ η] ≤ ε, n ≥ n0, (5.7)

and

Pn[f : vf (0, δ) ≥ η] ≤ ε and Pn[f : vf (T, δ) ≥ η] ≤ ε, n ≥ n0. (5.8)

The same claim hold for the M1-topology with wf (δ) in (5.7) replaced by w′f (δ).
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5.2. Proof of Theorem 1.1. To prove the convergence of the rescaled clock pro-
cess S̄N(·) = e−γNSN(·r(N)) to the stable subordinator Vγ/β2 , we check first the
convergence of finite-dimensional marginals. Let ` ∈ N, 0 = t0 < · · · < t` = T and
u1, . . . , u` ∈ R+ be fixed. Then,

E
[

exp
{
−
∑̀
i=1

ui
(
S̄N(tk)− S̄N(tk−1)

)}∣∣∣Y]
= E

[
FN(X0

N ; {ti}, {ui})
∣∣Y] = E

[
FN(X1

N ; {ti}, {ui})
]

+ o(1),

(5.9)

as follows from Proposition 3.1.
The value of E

[
FN(X1

N ; {ti}, {ui})
]

is not difficult to calculate. Define jN(i) =
btir(N)/νc. Then

E
[
FN(X1

N ; {ti}, {ui})
]

= E
[

exp
(
−
∑̀
k=1

uk
eγN

tkr(N)−1∑
i=tk−1r(N)

eie
β
√
NX1

N (i)
)]

≥ E
[ ∏̀
k=1

jN (k)∏
j=jN (k−1)+1

exp
(
− uk
eγN

ν−1∑
i=0

ejν+ie
β
√
NX1

N (jν+i)
)] (5.10)

Since the process X1
N is a piecewise independent process, the product in (5.10) is a

product of independent random variables. The expectations of all of them can be
then bounded using Proposition 2.1. We get, for δ > 0 fixed and N large enough,

E
[
FN(X1

N ; {ti}, {ui})
]
≥
∏̀
k=1

jN (k)∏
j=jN (k−1)+1

FN(uk)

≥
∏̀
k=1

(
1− (1 + δ)νN−1/2e−Nγ

2/2β2

Ku
γ/β2

k

)jN (k)−jN (k−1)−1

≥
∏̀
k=1

exp
{
− (1 + 2δ)(tk − tk−1)Ku

γ/β2

k

}
,

(5.11)

which is (up to 1 + 2δ term) the Laplace transform of Vγ/β2(K·). A corresponding
upper bound can be constructed analogously.

To check the tightness for S̄N in D([0, T ],R) equipped with the Skorokhod M1-
topology we use Lemma 5.1. Since the processes S̄N are increasing, it is easy to see
that condition (i) is equivalent to the tightness of the distribution of S̄N(T ), which
can be checked easily from the convergence of the Laplace transform of the marginal
at time T (the limiting Laplace transform tends to 1 as u→ 0).

Since S̄N are increasing, the oscillation function w′
S̄N

(δ) is always equal to zero.

So checking (ii) boils down to controlling the boundary oscillations vS̄N (0, δ) and
vS̄N (T, δ). For the first quantity (using again the monotonicity of S̄N) this amounts
to check that P[S̄N(δ) ≥ η] < ε if δ is small enough and N large enough. Us-
ing the convergence of the marginal at time δ, it is sufficient to take δ such that
P[Vγ/β2(Kδ) ≥ η] ≤ ε/2, and to take N0 such that, for all N ≥ N0,∣∣P[S̄N(δ) ≥ η]− P[Vγ/β2(Kδ) ≥ η]

∣∣ ≤ ε/2. (5.12)

The reasoning for vS̄N (T, δ) is analogous. �
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5.3. Coarse-grained clock process. To prove our aging result, that is Theo-
rem 1.2, we need to modify the result of Theorem 1.1 slightly. Let S̃N be the
“coarse-grained” clock processes,

S̃N(t) =
1

eγN
SN(νbtr(N)ν−1c). (5.13)

For these processes we can strengthen the topology used in Theorem 1.1, that is we
can replace the M1- by the J1-topology.

Theorem 5.2. If the hypothesis of Theorem 1.1 is satisfied, then

S̃N(t)
N→∞−−−→ Vγ/β2(Kt) Y − a.s., (5.14)

weakly in the J1-topology on the space of càdlàg functions D([0, T ],R).

Unfortunately, we cannot prove the theorem with the estimates we have already
at our disposition. We should return and improve some of them. First we show that
traps with energies “much smaller” than γ

√
N/β almost do not contribute to the

clock process. Let Bm = γ
√
N/β −m/(β

√
N) and let

S̄mN (t) = e−γN
btr(N)c∑
i=0

ei exp
{
β
√
NX0

N(i)
}
1{X0

N(i) ≤ Bm}. (5.15)

Lemma 5.3. For every T and η, ε > 0 there exists m large enough such that

P[S̄mN (T ) ≥ η|Y ] ≤ ε, Y-a.s. (5.16)

Proof. To prove this lemma we should improve/modify slightly the calculations of
Sections 2 and 3. With the notation of Section 2 define

FmN = E
[

exp
{
− e−γN

ν∑
i=1

eie
β
√
NUi1{Ui ≤ Bm}

}]
. (5.17)

(comparing with (2.2) observe that we set u = 1). We will show that

lim
N→∞

N1/2ν−1eNγ
2/2β2

[1−FmN ] = Km, (5.18)

with Km → 0 as m → ∞. The proof of this claim is completely analogous to the
proof of Proposition 2.1. One should only modify the domains of integrations. More
precisely, the definition of Dk which appears after (2.9) should be replaced by Dm

k =

Dk∩{z : Gk(z) ≤ Bm}. Hence, D′k becomes D′mk = D′k∩{b : Gk(b) ≤ −m/(β/
√
N)},

which then restricts the domain of integration in (2.31) to (−∞,−m/β]. Hence, the
constant Km can be made arbitrarily small by choosing m large.

Moreover, as in Section 3, define

Fm
N (X) = exp

(
−

Tr(N)−1∑
i=0

g
(
e−γNeβ

√
NX(i)1{X(i) ≤ Bm}

))
. (5.19)

Then, as in Proposition 3.1, we will show

lim
N→∞

E
[
Fm
N (X0

N)
∣∣Y]− E

[
Fm
N (X1

N)
]

= 0, Y-a.s. (5.20)

We use again (3.6) to show this claim. Although the indicator function is not dif-
ferentiable, we will proceed as if it was, setting (1{x ≤ B})′ = −δ(x−M), where δ
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denotes the Dirac delta function. As usual, this can be justified e.g. by using smooth
approximations of the indicator function. The second derivative of Fm

N (X) equals

u2β2N

e2γN
eβ
√
N(X(i)+X(j))g′

(
ueβ

√
NX(i)−γN)g′(ueβ√NX(j)−γN)Fm

N (X)

×
(
1{X(i) ≤ Bm} −

δBm(X(i))

β
√
N

)(
1{X(j) ≤ Bm} −

δBm(X(j))

β
√
N

)
≤ u2β2Neβ

√
N(Xh

N (i)+Xh
N (j))−2γN exp

(
− 2g

(
ueβ

√
NXh

N (i)−γN)− 2g
(
ueβ

√
NXh

N (j)−γN))
×
(
1{X(i) ≤ Bm} −

δBm(X(i))

β
√
N

)(
1{X(j) ≤ Bm} −

δBm(X(j))

β
√
N

)
.

(5.21)

We should now bound the contributions of four terms. The one with the product of
two indicator functions is easy, because we can use directly the result of Lemma 3.2.
For remaining three terms, those with the product of one indicator and one delta
function, and the one with two delta function, the calculation should be repeated.
However, in the end we find that (5.21) is bounded by Ξ̄(Cov(X(i), X(j))) as before.
The presence of the delta functions actually simplifies the calculations slightly. The
proof then proceed as in Section 3.

We can now finish the proof of Lemma 5.3. By (5.17) and (5.20),

E
[

exp(−S̄mN (T ))
∣∣Y] = E

[
Fm
N (X0

N)
∣∣Y] = E

[
Fm
N (X1

N)
∣∣Y]+ o(1)

= (1−Kmf(N)−1e−Nγ
2/2β2

)Tr(N)/ν + o(1) = e−KmT + o(1).
(5.22)

Since Km → 0 as m→∞,

P[S̄mN (T ) ≥ η|Y ] ≤
1− E

[
exp(−S̄mN (T ))

∣∣Y]
1− e−η

(5.23)

can be made arbitrarily small by taking m large enough. �

We study now how the blocks where the process visits sites with energies larger
than Bm are distributed along the trajectory. To this end we set for any Gaussian
process X

smN(i;X) = 1{∃j : iν < j ≤ (i+ 1)ν,X(j) > Bm}. (5.24)

We define point process Hm
N (X) on [0, T ] by

Hm
N (X; dx) =

Tr(N)/ν∑
i=0

smN(i;X)δiν/r(N)(dx). (5.25)

Lemma 5.4. For every m ∈ R the point processes Hm
N (X0

N) converge to a homoge-
neous Poisson point process on [0, T ] with intensity ρm ∈ (0,∞), Y-a.s.

Proof. To show this lemma we use Proposition 16.17 of Kallenberg [Kal02]. Ac-
cording to it, to prove the convergence of Hm

N (X0
N) to a Poisson point process with

intensity ρm it is sufficient to check that, for any interval I ⊂ [0, T ],

lim
N→∞

P[Hm
N (X0

N ; I) = 0|Y ] = e−ρm|I| (5.26)

and
lim sup
N→∞

E[Hm
N (X0

N ; I)|Y ] ≤ ρm|I|, (5.27)

where |I| denotes the Lebesgue measure of I.
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The proof of the first claim is completely similar to the previous ones. We start
with a one-block estimate for (5.26):

lim
N→∞

N1/2ν−1eNγ
2/2β2 E[smN(0, U)] = ρm, (5.28)

Using the notation of Section 2, we get

E[smN(0, U)] =

∫
Am

dz

(2π)ν/2
e−

1
2

Pν
i=1 z

2
i , (5.29)

where Am = {z : ∃k ∈ {1, . . . , ν}Gk(z) > Bm}. Dividing the domain of integration
according to the maximal Gk(z), this is equal to

ν∑
k=1

∫
Dk

dz

(2π)ν/2
e−

1
2

Pν
i=1 z

2
i , (5.30)

where Dk = {z : Gk(z) > Bm, Gi(z) ≤ Gk(z)∀i 6= k}. Using the substitution
zi = bi ± ΓiBm on Dk (where + sign is used for i ≤ k and − sign for i > k) we get

e−Nγ
2/2β2

emγ/β
2

ν∑
k=1

∫
D′k

db

(2π)ν/2
e−

1
2

Pν
i=1 b

2
i e−BmGk(b), (5.31)

where D′k = {b : Gk(b) > 0,
∑k

j=i+1 bj + |k− i|ΓνBm ≥ 0∀i 6= k}. The same reasoning

as before then allows to show that the last expression behaves like ρmνN
−1/2e−γ

2N/2β2
,

as N →∞.
To compare the real process with the block-independent process, let

FN(I;X) = 1{max{X(i) : iν/r(N) ∈ I} ≤ Bm}. (5.32)

The difference between E[FN(I;X0
N)|Y ] and E[FN(I;X1

N)] is again given by the
Gaussian comparison formula (3.6). This time the second derivative equals

δ(X(i)−Bm)δ(X(j)−Bm)
∏
k 6=i,j

1{X(k) ≤ Bm} ≤ δ(X(i)−Bm)δ(X(j)−Bm). (5.33)

If the covariance of X(i) and X(j) is equal to c, then the expectation of the last
expression is given by the value of the joint density of X(i), X(j) at the point
(Bm, Bm), which is

(2π(1− c2))−1e−B
2
m/(1+c) ≤ C(1− c2)−1 exp

{
− γ2N

β2(1 + c)

}
. (5.34)

The exponential term is the same as in Ξ̄(c). The polynomial prefactor is however
different, it diverges faster as c→ 1. We should thus return to (3.24) with Ξ̃ replaced
by the right-hand side of (5.34). First∫ 1

0

(
1− (1− h)2c2

)−1
dh = c−1 arg tanh(c) ≈ −1

2
ln(1− c) (5.35)

as c→ 1, which is not bounded for all c as before. The estimates (3.28) and (3.29) are
influenced by this change. For (3.28) we can actually neglect this change, because the
main contribution to this term came from the neighborhood of d = N/2 (or c = 0)
and was exponentially small in the neighborhood of d = 1 (or c ∼ 1/N). In the
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treatment of (3.29), the change has a stronger effect and after some computations
(3.45) turns into

CtN3/2ν−1

∫ δ′

0

ln(c/x)e−cNxdx ≤ CtN1/2ν−1 lnN
N→∞−−−→ 0. (5.36)

Finally, the change of the polynomial prefactor of Ξ̄ implies a change in the control
of (3.30). The equation (3.46) becomes

(3.30) ≤ C

ν∑
d=0

tN−3/2d2[1− (1− 2dN−1)2p]−1 exp(NΥ̃p,β,γ(d/N)). (5.37)

and the linearization of Υ̃p,β,γ gives a new form of (3.47), namely

CtN3/2

∫ ε

0

xe−c
′Nxdx ≤ CtN−1/2 N→∞−−−→ 0. (5.38)

Therefore, using (5.28)

P[Hm
N (X0

N ; I) = 0|Y ] = E[FN(I;X0
N)|Y ] = E[FN(I;X1

N)] + o(1)

= (1− E[smN(0, U)])|I|r(N)/ν → e−ρm|I|.
(5.39)

This completes the proof of (5.26).
It is easy to check equation (5.27). By definition,

E[Hm
N (X0

N ; I)|Y ] =
∑

i:iν/R∈I

E[smN(i,X0
N)|Y ]. (5.40)

Since Λ0
ij ≥ Λ1

ij for i, j in the same block, E[smN(i,X0
N)|Y ] ≤ E[smN(i,X1

N)]. Therefore,

(5.40) ≤ |I|r(N)/νE[smN(0, U)] = ρm|I|. (5.41)

This completes the proof of Lemma 5.4. �

Proof of Theorem 5.2. Checking the convergence of finite-dimensional marginals as
well as condition (i) and the second part of (ii) of Lemma 5.1 is analogous to the
case of the original clock process S̄N . We should thus only prove the first part of
condition (ii). Namely, for any η and ε there exist δ such that

P[wS̄N (δ) ≥ η] ≤ ε, (5.42)

for all N large enough.
Let

wf ([τ, τ + δ]) = sup{min(|f(t2)− f(t)|, |f(t)− f(t1)|) : τ ≤ t1 ≤ t ≤ t2 ≤ τ + δ}.
(5.43)

Fix m such that P[S̄mN (T ) ≥ η/2] ≤ ε/2, which is possible according to Lemma 5.3.
If Hm

N (X0
n; [τ, τ + δ]) ≤ 1 then

wS̄N ([τ, τ + δ]) ≤ S̄mN (τ + δ)− S̄mN (τ) ≤ S̄mN (T ). (5.44)

Hence,

P[wS̄N ([τ, τ + δ]) ≥ η|iS̄mN (T ) ≤ η/2] ≤ P[Hm
N (X0

N ; [τ, τ + δ]) ≥ 2] ≤ Cρmδ
2. (5.45)

We can now show (5.42). The estimate

wS̃N (δ) ≤ max{wS̃N ([τ, τ + 2δ]) : 0 ≤ τ ≤ T, τ = kδ, k ∈ N} (5.46)
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yields

P[wS̃N (δ) ≥ η|Y ] ≤
Tδ−1∑
k=0

P[wS̃N ([kδ, (k + 2)δ]) ≥ ε|Y ]

≤ P[S̄mN (T ) ≥ η/2] +
Tδ−1∑
k=0

P[Hm
N (X0

N ; [kδ, (k + 2)δ]) ≥ 2]

≤ ε/2 + CTδ−1ρmδ
2 ≤ ε

(5.47)

if δ is chosen small enough. This completes the proof. �

Proof of Theorem 1.2. Let RN be the range of the coarse grained process S̃N . Ob-
viously, for any 1 > ε > 0,

AεN(t, s) ⊃ {RN ∩ (t, s) = ∅}, (5.48)

because if the above intersection is empty, then σN makes less than ν steps in the
time interval [teγN , seγN ], and thus the overlap of σN(teγN) and σN(seγN) is O(ν/N).

If RN ∩ (t, s) 6= ∅, than there exist u such that S̃N(u) ∈ (t, s). Moreover, it follows
from Theorem 5.2 that, for any δ, there exist η such than

P[S̃N(u+ η) ∈ (s, t)] ≥ 1− δ. (5.49)

This means that the process σN makes at least ηr(N) steps between times t and s
and thus the overlap between σN(teγN) and σN(seγN) is with high probability close
to 0.

Hence P[AεN(t, s)|Y ] is very well approximated by P[RN ∩ (t, s) = ∅|Y ]. Since the

stable subordinators do not hit points, that is P[∃u : Vγ/β2(u) = t] = 0, and S̃N
converge in J1-topology,

P[RN ∩ (t, s) = ∅|Y ]
N→∞−−−→ P[{Vγ/β2(u) : u ≥ 0} ∩ (s, t) = ∅]. (5.50)

The right-hand side of this equation is given, by the arc-sine law for stable subordi-
nators, by the formula (1.13). �
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