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Abstract. Aging has become the paradigm to describe dynamical behavior of
glassy systems, and in particular spin glasses. Trap models have been introduced
as simple caricatures of effective dynamics of such systems. In this Letter we show
that in a wide class of mean field models and on a wide range of time scales, aging
occurs precisely as predicted by the REM-like trap model of Bouchaud and Dean.
This is the first rigorous result about aging in mean field models except for the
REM and the spherical model.
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A key concept that has emerged over the last 20 years in the study of dynamical
properties of complex systems, is that of “aging”. It is applied to systems whose
dynamics are dominated by slow transients towards equilibrium (see e.g. [1, 2, 3, 4]
for excellent reviews). This phenomena occurs in a huge variety of systems, such
as glasses, spin-glasses, bio-molecules, polymers, plastics, and has obvious practical
implications in real-world applications.

When discussing aging dynamics, it is all important to specify the precise time-
scales considered in relation to the volume. On the one hand, one may study the
non-activated regime, where the infinite volume limit at fixed time t is taken first,
and then one analyzes the ensuing dynamics as t tends to infinity. This non-activated
regime has been studied intensively for Langevin dynamics of various soft-spin versions
of mean field spin glasses [5, 6, 7, 8].

For longer time scales, that is times diverging with the volume of the system, a
full picture is largely missing. The slow dynamics of complex systems in such time
scales is often attributed to the presence of “thermally activated” barrier crossings in
the configuration space [9]. For instance, the standard picture of the spin glass phase
typically involves a highly complex landscape of the free energy function exhibiting
many nested valleys organized according to some hierarchical tree structure (see e.g.
[10, 11]). To such a picture corresponds the heuristic image of a stochastic dynamics
that, on time-scales that diverge with the size of the system, can be described as
performing a sequence of “jumps” between different valleys at random times those
rates are governed by the depths of the valleys and the heights of connecting passes or
saddle points. The extreme situation here corresponds to considering time scales just
before the equilibration time. While at these scales the relation to the equilibrium
Gibbs distribution is most immediate, in many glassy systems these time scales appear
to be beyond experimental or numerical reach.

In this letter we show that the mechanism for aging is universal for a class of
Glauber dynamics of p-spin Spin Glasses (with p ≥ 3), out of equilibrium, in a wide
range of time scales. These time scales are exponentially long but still much shorter
than the time scales needed to reach equilibrium. Thus this mechanism is essentially
a transient one, linked to the exploration of the energy landscape long before the
dynamics can feel the ground state. This mechanism has been first established for the
simple case of the REM, hence our title.

To capture the features of activated dynamics, early on people introduced effective
dynamics where the state space is reduced to the configuration with lowest energy
[12, 13]. Bouchaud and others [14, 15, 16, 17, 1] systemized this approach by
introducing the notion of “trap models”. These trap models are Markov jump
processes on a state space that simply enumerates the valleys of the free energy
landscape. While this picture is intuitively appealing, its derivation is based on
knowledge obtained in much simpler contexts, such as diffusions in finite dimensional
potential landscapes. Mathematically, trap models are continuous time Markov chains
whose state space is a (infinite or growing with some parameter) graph (e.g. Zd). To
the vertices (= traps) of this graph one associates independent random variables whose
common distribution is assumed to be heavy tailed, that is their mean is infinite. These
variables represent the mean waiting times of the Markov chain in the corresponding
trap.

Trap models involve the ad-hoc introduction of three major features that
ultimately need justification. This is the independence of the waiting times associated
to the traps, the heavy-tailed nature of their distribution, and finally the Markov
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property of the dynamics.
In a series of papers [18, 19, 20, 21] (see [22] for a comprehensive review) a

systematic investigation of a variety of trap models was initiated. In this process, it
emerged that the ”slow-down” of the dynamics appears to be universal for these trap
models (except in the exceptional dimension 1), and, more precisely, that it has a
scaling limit that can be described using stable Lévy processes. Equivalently it was
shown that the classical Dynkin-Lamperti picture for heavy-tailed renewal processes
is universally satisfied for these trap models (in dimension larger than 1).

In contrast, very little has been done concerning the derivation of trap-model
dynamics from stochastic dynamics of even moderately realistic spin-glasses, such as
the p-spin interaction SK models. The only case where this has been achieved so far is
the simplest of these models, the Random Energy Model (REM) of Derrida, and only
for a specific choice of the transition rates. In [23, 24, 25] this was done through a
very detailed analysis of the dynamics at time scales just before the equilibration time,
and at temperatures below the critical one. This result relied, in particular, on the
detailed understanding of the equilibrium distribution of this model. More recently,
in [20], the same model was analyzed at much shorter (but still exponentially large)
time scales. It emerged that the same aging mechanism is in place there and that
aging can also occur above the critical temperature.

All these works made crucial use of the independence of energies of different
spin configurations assumed in the definition of the REM. In the present letter we
present the first rigorous aging results in a model with correlated energies, the p-spin
interaction Sherrington-Kirkpatrick (SK) model of spin glasses with p ≥ 3. Quite
surprisingly, the results obtained point again to the validity of the REM-like trap
model as universal aging mechanism.

The p-spin SK model. We recall that the p-spin SK model is defined as follows. A
spin configuration σ is a vertex of the hypercube SN ≡ {−1, 1}N . The Hamiltonian
is given by

HN (σ) ≡ − 1
N (p−1)/2

N∑
i1,...,ip=1

Ji1...ipσi1 . . . σip , (1)

where Ji1...ip are independent Gaussian random variables with mean zero and variance
one. Alternatively, we can describe the Hamiltonian as a centered Gaussian process
indexed by SN with covariance

E[HN (σ)HN (τ)] = NRN (σ, τ)p, (2)

where RN (σ, τ) denotes the overlap, RN (σ, τ) ≡ N−1
∑N
i=1 σiτi. The (random) Gibbs

measure on SN is then given by µβ,N (σ) ≡ Z−1
β,Ne−βHN (σ). Note that in the limit

p ↑ ∞ one recovers the random energy model [26], where HN (σ) are i.i.d. Gaussian
random variables with variance N .

Dynamics. We consider a continuous time Markov dynamics σN (t) on SN whose
transition rates are

pN (σ, τ) = N−1eβHN (σ) (3)

if σ and τ are related by flipping a single spin, and are zero otherwise. It is easy to see
that this dynamics satisfies the detailed balance condition with respect to the Gibbs
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measure µβ,N . One also sees that it represents a nearest-neighbor random walk on
the hypercube with traps of random depths.

It is useful to construct this dynamics as a time change of a simple unbiased
discrete-time random walk, YN (k), k ∈ N, on SN started out of equilibrium‡ at some
fixed point of SN , say at {1, . . . , 1}: We define the clock-process by

SN (k) =
k−1∑
i=0

ei exp
{
− βHN

(
YN (i)

)}
, (4)

where (ei, i ∈ N) is a sequence of mean-one i.i.d. exponential random variables. Then
σN (t) can be written as

σN (t) = YN (S−1
N (t)). (5)

SN (k) is the time at which σN (t) makes the k-th jump.

The REM-like trap model. Let us briefly recall the known results in the dynamics
of the REM-like trap model. The idea suggested by the known behavior of the
equilibrium distribution is that this dynamics, for β > βc, will spend long periods
of time in states of exceptionally low energy and will move “quickly” from one of
these configurations to the next. Based on this intuition, Bouchaud et al. [14, 15]
(and earlier in a similar way de Dominicis [12] and Koper and Hilhorst [13]) proposed
the “REM-like” trap model: Consider a continuous time Markov process ZM whose
state space is the set KM ≡ {1, . . . ,M} of M points, representing the M “deepest”
traps. Each of the states is assigned a random variable εk (representing minus the
energy of the state k) which is taken to be exponentially distributed with rate one.
If the process is in state k, it waits an exponentially distributed time with mean
proportional to eβεk , and then jumps with equal probability in one of the other states
k′ ∈ KM .

The quantity that is used to characterize the “aging” phenomenon is the
probability Π̃M (t, s) that during a time-interval [t, t + s] the process does not jump.
Bouchaud and Dean [15] showed that, for β > 1,

lim
s,t↑∞

lim
M↑∞

Π̃M (t, s)
H1/β(s/t)

= 1, (6)

where the function Hα is defined by

Hα(w) ≡ sin(πα)
π

∫ ∞
w

dx
(1 + x)xα

. (7)

The dynamics of the REM-like trap model can be seen as a time change of
a simple random walk ỸM on the “complete graph” KM by the clock process,
S̃M (k) =

∑k−1
i=0 ei exp{βεYM (i)}. As explained in [20], the result (6) can be deduced

from the stronger claim
lim
n↑∞

lim
M↑∞

n−βS̃M (nt) = cV1/β(t), t ≥ 0, (8)

where Vα(t) is the α-stable subordinator (an α-stable subordinator is an increasing
Lévy process that satisfies the scaling relation Vα(st) = s1/αVα(t). It is uniquely
characterized by its Laplace transform which is given by E[e−λVα(t)] = exp(−tλα).
Stable Lévy processes with α < 1 are the natural scaling limits of sums of independent
random variables that do not have a finite expectation. For a recent pedagogical
exposition, see [28]).

‡ Note that this is different from the situation considered in [27] where the equilibrated dynamics
was studied numerically. This makes a comparison of these results with ours difficult.
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The REM. In [23, 24, 25] it was confirmed that the REM-like picture is correct, at
least for the dynamics defined in (3). This result was further extended to shorter time
scales in [20] where the point of view put forward in (8) was emphasized. Namely,
it was shown that the clock process converges again to the stable subordinator: For
every 0 < % < 1, if β% ≡ β/

√
% > βc ≡

√
2 ln 2, γ = β

√
2% ln 2,

lim
N↑∞

e−γNN
β%
2βc SN (t2N%) = cVβc/β%(t). (9)

This implies then a similar aging result as in (6), limN→∞Π(teγN , seγN ) =
Hβc/β%(s/t), as in the REM-like trap model for the probability ΠN (t, s) that σN (t)
does not jump between t and t+ s.

Note that this result has an interesting interpretation: at a time-scale eγNN−
β%
2βc

the process succeeds to make 2%N steps, that is it explores a subset of configuration
space that corresponds to a “little REM” in volume n = %N . At this time scale, the
process feels an effective inverse temperature β%. If the effective temperature is below
the critical one for the standard REM, the system shows aging, otherwise it does not.
It may seem somewhat counter-intuitive that the systems is effectively “warming up”
as time goes by.

Let us discuss the heuristics of this result. When the random walk has made 2%N

steps, with % < 1, it has only explored a small fraction of the total configuration space.
In particular, it has not had time to find the absolute minima of HN and hence is still
out of equilibrium. Moreover, the random walk will essentially not have visited any
configuration twice. Therefore, the minimum of HN along on those configurations that
were visited is the minimum of 2%N independent Gaussian random variables of mean
zero and variance N . It is well know (see e.g. [29]) that this is of the order −N

√
2% ln 2.

Then the mean waiting time in this extreme trap is of order exp(βN
√

2% ln 2) = eγN ,
up to a polynomial correction. Now the condition that β% > βc implies that this
time is of the same order as the total time the process has accumulated in all the
other sites along its way, and, more precisely, the process will have spent all but a
negligible fraction of its time in the “few” “deepest trap”. Standard results of extreme
value theory imply that the precise statistics of the times spent in the deepest traps
are asymptotically governed by a Poisson process, and that the sum of these random
times, after rescaling, converges to a stable subordinator, as claimed.

p-spin models. We will now present our new results for the p-spin SK model. The full
details of the proofs of these results are given in [30]. The first issue is the choice of
the correlation function. Since the valleys in the free-energy landscape contains more
than one configuration, the choice Π̃ from the REM is no longer appropriate. We set

Πε
N (t, s) = P{RN

(
σN
(
teγN

)
, σN

(
(t+ s)eγN

))
≥ 1− ε

}
, (10)

that is we ask for the probability that the distance between the process at times teγN

and (t + s)eγN is very small. Then, for p ≥ 3, a similar result as in the REM holds.
Namely, there is a p-dependent value %p, such that if % and β satisfy the conditions

β% ≡ β/
√
% >
√

2 ln 2 ≡ βc, and % < %p, (11)

then, for any ε ∈ (0, 1), t > 0, and s > 0,

lim
N↑∞

Πε
N (t, s) = Hβc/β%(s/t). (12)
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The basis of this result is again the statement analogous to (9) that shows that the
properly rescaled clock-process converges to a stable subordinator.

The function %p used in (11) to limit the considered time scales is increasing and
it satisfies

%3 ' 0.763 and lim
p↑∞

%p = 1, (13)

hence in the limit p ↑ ∞ we recover the result for the REM.
Note the rôle of the two restrictions on β and % in (11). The first one is again

the statement that the effective temperature at the time scale considered is below the
critical one. The second condition is related to the correlation of the energies. It
implies that the REM-like behavior holds only up to time scales where the explored
region is still so small that the process does not feel the correlations; essentially it
ensures that the process does not have enough time to get close enough to a point it
visited before so that it is able to feel the correlations.

The heuristic justification of the results in the p-spin model is rather similar to
that of the REM. The difference here is that the energies at the sites that the walk has
visited are correlated. Our assertion is that under the condition % < %p, this has only
a mild effect and does not change the overall picture. The reason for this relies on the
geometric properties of typical trajectories of the random walk on the hypercube, and
on the extreme value properties of correlated Gaussian processes. First, it has been
shown (see e.g. [31, 32, 33]) that if p is larger than 2 and if K% is a totally random
subset of the hypercube SN of cardinality 2%N , with % sufficiently small (depending on
p), then the extremal process of HN restricted to K% are the same as if HN (σ) were
independent random variables. Note that this is not true in the standard SK model
with p = 2 which is the reason our results can be expected only for p ≥ 3.

Now it is clear that the trajectories of the random walk cannot look exactly like a
totally random set, since after all the trajectory is connected, while in K% essentially
all points are isolated. However, a detailed analysis of the random walk reveals that
its trajectories look very much like a random set K% with linear pieces between them
joining the points up in a minimal way. Hence, the correlations have some impact only
very locally in time, implying in particular that deep traps will not be made of single
points but consist of a deep valley (along the trajectory) that has approximately the
same depth and whose shape and width we can describe quite precisely. Remarkably,
each valley is essentially of a size independent of N (that is the number of sites
contributing significantly to the residence time in the valley is essentially finite), and
different valleys are statistically independent.

The fact that traps are finite may appear quite surprising to those familiar with
the statics of p-spin models. From the results there (see [34, 31]), one knows that
the Gibbs measure concentrates on “lumps” whose radius is of order Nεp, with
εp > 0. The mystery is however solved easily: Around a local minimum σ0 with
HN (σ0) ∼ −γN/β, the process HN (σ) does grows essentially linearly with the distance
d(σ0, σ) from the minimum, E[HN (σ) −HN (σ0)] ∼ c(p, γ, β)d(σ0, σ). Therefore, the
Gibbs mass decreases exponentially with d(σ0, σ). For the support of the Gibbs
measure, one needs to take into account the entropy, that is that the volumes of
the balls of radius r increases like exp(N(ln 2 − I(1 − r/N))). For the dynamics, at
least at our time-scales, this is, however, irrelevant, since the simple random walk
leaves a local minimum essentially ballistically.
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Remark. We conclude the Letter with a remark on the rôle of the particular choice of
the transition probabilities (3) depending only on starting points. Clearly these favor
the proximity to Bouchaud’s model. For us, on a technical level, the independence of
the random walk trajectory of the random environment defined by the Hamiltonian is
crucial. Even in the case of the REM, we do not know at this point how to deal with
different, and more usual, dynamics such as Metropolis or heat bath. Note that in the
context of trap models, different kinds of dynamic rules have been studied already by
Koper and Hilhorst [13], but this is quite a different matter from Glauber dynamics
on the space of spin configurations. This problem remains one of the great challenges
in the field.
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