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Summary. We give a new proof of aging for a version of a Glauber dynamics in
the Random Energy Model. The proof uses ideas that were developed in [BBČ07]
for studying the dynamics of a p-spin Sherrington-Kirkpatrick spin glass.

1 Introduction

Aging was proved recently for a simple Glauber-type dynamics of p-spin spin
glasses, [BBČ07]. In order to overcome the difficulties stemming from the
correlations of the Hamiltonian of these spin glasses, several new ideas were
introduced. They allowed to show that the aging behaviour of the p-spin spin
glass is essentially the same as the one of the Random Energy Model (REM),
at least at some time scales.

In the present paper, we take a step back and apply these ideas to the
REM. A new proof of aging in the REM, even if it be shorter than the older
proofs, is, however, not the principal objective of this paper. Rather, it is
written as a different presentation of ideas of [BBČ07], uncluttered from rather
heavy computations that were necessary for the p-spin spin glass.

Let us start with a brief summary of the efforts that lead to [BBČ07].
Aging in spin glasses was for the first time observed experimentally in the
beginning of the 1980’s. In order to explain the observations, trap models
were introduced by Bouchaud [Bou92, BD95] in the physics literature. Trap
models are effective models which can be solved analytically using simple re-
newal arguments, and which nevertheless reproduce the characteristic power-
law behaviour observed experimentally. While trap models are heuristically
motivated to capture the behaviour of the dynamics of spin glass models,
there is no clear theoretical, let alone mathematical, derivation of them from
an underlying spin-glass dynamics.

The first steps to provide a such derivation were taken in [BBG03a,
BBG03b] for a version of a Glauber dynamics in the REM. Technically very
elaborate renewal arguments were used to prove aging and the relevance of
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the trap model ansatz in this case. The core of the argument is an analysis
of visits of the dynamics to a finite set of extremes of the Hamiltonian. In
order to allow the dynamics to discover these extremes, the time scales stud-
ied in these papers should be carefully fixed to be only slightly shorter than
the equilibration scale. In particular, it means that the considered time scales
should increase exponentially with the size of the system.

Another proof of aging in the REM, for a dynamics close to this of
[BBG03a], was given in [BČ08]. It was inspired by methods developed for
trap models on Zd [BČM06]. The main idea of the approach of [BČ08] is to
study the extremes of the Hamiltonian along the trajectory of the dynamics
instead of concentrating on visits of dynamics to the extremes of the Hamil-
tonian. Apart from having some slight technical advantages, the new point
of view gave more freedom in choosing the time scales. In [BČ08] time scales
much shorter than the equilibration scale, but still increasing exponentially
with the size of the system, were studied. The techniques can be however
easily extended to apply also to the scales considered in [BBG03a].

The main technical tool of [BČ08] is the so-called clock process, which is,
roughly speaking, a process that records the time needed for a given number
of jumps of the dynamics (see (4) for the exact definition). It was argued
that this process converges, after a proper rescaling, to a stable subordinator
in many situations. From the convergence to a subordinator, aging can be
deduced using the classical arc-sine law. Even if techniques and time scales
are different, the obtained aging results are essentially the same as those
predicted by the trap models.

Both above mentioned studies of the REM used substantially the fact
that the Hamiltonian is particularly simple: it is a collection of i.i.d. random
variables. This ceases to be true for ‘more realistic’ mean-field spin glasses,
like Sherrington-Kirkpatrick model or p-spin spin glass. For statics of the spin
glass the correlation between the energies impose that (at low temperature)
the main contribution to the Gibbs measure does not come from a finite
number of distant configurations as in the REM, but from a finite number of
distant ‘valleys’, which, however, contain many configurations.

Interestingly, in [BBČ07] it was showed that the global behaviour of the
clock process is not influenced by the correlations in the dynamics of p-spin
spin glass with p ≥ 3. The rescaled clock process hardly feels the correlations
and large valleys and it converges to a stable subordinator, confirming the
universality of this behaviour. However, this convergence can be proved only
at the expense of restricting the range of time scales to the lower part of the
range of [BČ08], remaining far from the equilibration time scale (see (14) for
details).

Even if the asymptotic behaviour of the clock process remains unchanged,
the non-i.i.d. character of the Hamiltonian disallows a direct application of
methods of [BČ08]. New techniques used in [BBČ07] are based on ideas from
extremal theory and exploit strongly the Gaussian character of the Hamilto-
nian. It should be remarked that this property of the Hamiltonian had been
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hardly used in the studies of the REM dynamics. E.g., the only Gaussian
ingredient in [BČ08] is the standard asymptotic expression for the tail prob-
ability. The results of the [BČ08] can thus be extended to a much larger class
of distributions of the Hamiltonian.

In this paper, we take full advantage of the Gaussian distribution of the
Hamiltonian and we use the methods of [BBČ07] to provide new and relatively
short proof of aging in the REM on time scales that are much shorter than
the equilibration scale. Aside from this proof, we use the occasion to explicitly
write out the modifications which are necessary to obtain a result on the
longest possible time scales of [BBG03b].

To close the introduction, let us remark that the time scales of this paper
(and also of [BBG03a, BČ08]) are ‘much longer’ than those used in the studies
of the Langevin dynamics of soft-spin models [CK93, BG97, BDG06], where
one considers the infinite volume limit at fixed time t, and then analyzes
the ensuing dynamics as t tends to infinity. In this paper, the time depends
exponentially on the size of the system and both tend to infinity together.

2 Model and results

We will study the same dynamics of the REM as in [BČ08]. It is defined as
follows. Let SN ≡ {−1, 1}N be a N -dimensional hypercube equipped with a
distance

dist(σ, τ) =
1
2

N∑
i=1

|σi − τi|, σ, τ ∈ SN . (1)

The Hamiltonian of the REM is defined as
√
NHN , where HN : SN → R is a

centred i.i.d. Gaussian process on SN with variance E[HN (σ)2] = 1. We will
use H to denote the σ-algebra generated by {HN (σ), σ ∈ SN , N ∈ N}. The
corresponding Gibbs measure is given by

µβ,N (σ) ≡ Z−1
β,Ne

β
√
NHN (σ). (2)

We consider a nearest-neighbour continuous-time Markov dynamics σN =
(σN (t), t ≥ 0) on SN which is given by its transition rates

wN (σ, τ) =

{
N−1e−β

√
NHN (σ), if dist(σ, τ) = 1,

0, otherwise.
(3)

Obviously, σN is reversible with respect to the Gibbs measure µβ,N .
It is an important property, that this dynamics can be constructed as a

time change of a simple random walk on SN : Let (YN (k), k ∈ N) be the simple
discrete-time random walk (SRW) on SN started at some fixed point of SN ,
say at 1 = {1, . . . , 1}. For β > 0 and k ∈ N we define the clock-process by
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SN (k) =
k−1∑
i=0

ei exp
{
β
√
NHN

(
YN (i)

)}
, (4)

where (ei, i ∈ N) is a sequence of mean-one i.i.d. exponential random variables.
The process σN can be then written as

σN (t) ≡ YN (S−1
N (t)). (5)

We consider all random processes to be defined on an abstract probability
space (Ω,F ,P). We denote by Y the σ-algebra generated by {YN (k), k ∈
N, N ∈ N}. The σ-algebra generated by {ei, i ∈ N} will be denoted by E . Note
that the three σ-algebras H, Y, and E are all independent under P.

For γ > 0 we define

rN = rN (γ) = eNγ
2/2β2

,

tN = tN (γ) = N−
1
2α eγN ,

(6)

and the rescaled clock process S̄γN by

S̄γN (s) = t−1
N SN

(⌊
srN

⌋)
, s ≥ 0. (7)

The function rN is the number-of-jumps scale: We observe σN after making
O(rN ) jumps. The function tN , the time scale, then gives the time that σN
typically needs to make this number of steps. We view S̄γN as an element of
the space D of càdlàg functions from [0,∞) to R equipped with the standard
Skorokhod J1-topology.

Let Vα(t) be the α-stable subordinator with the Laplace transform given
by

E[e−λVα(t)] = exp(−tλα). (8)

We will use βc =
√

2 log 2 to denote the critical temperature of the REM.
The main result of this paper is the following theorem that provides the

asymptotic behaviour of the clock.

Theorem 1. For any fixed γ such that

0 < γ < min
(
β2, βcβ

)
, (9)

under the conditional distribution P[·|Y], Y-a.s., the law of the stochastic pro-
cess S̄γN converges to the law of α-stable subordinator Vα(K·), where α ≡ γ/β2,
and K is a constant which will be computed explicitly in Lemma 1.

This theorem is very close to the results of [BČ08]. However, there is one
important difference. In [BČ08], the convergence to the subordinator is proved
under the law P[·|H], H-a.s. The slightly non-physical conditioning on Y that
appears in our theorem, and of course also in [BBČ07] whose methods we
use, is the price to pay for having at hand Gaussian tools. As we have already
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remarked, the Gaussian character of the Hamiltonian was almost not exploited
in the previous studies of the REM. Hence, the conditioning on H did not pose
any problem. This conditioning, that is fixing the Gaussian disorder, is ruled
out if we want to employ more advanced Gaussian techniques now.

It is an interesting open question, if it is possible to deduce the results of
[BČ08] from Theorem 1 without using too much the properties of the REM.
This could allow to prove the convergence under P[·|H] also for the p-spin spin
glass.

The next theorem will be used to prove aging on the longest possible time
scales, that means on time scales of [BBG03b].

Theorem 2. Let β > βc and γ = ββc. Then for all n ≥ 1 finite, for all
0 ≤ s1 < · · · < sn and A1, . . . , An ∈ B(R)

lim
ξ→0

lim
N→∞

P
[ n⋂
i=1

ξ−1/αS̄γN (ξsi) ∈ Ai
∣∣∣Y] = P

[ n⋂
i=1

Vα(Ksi) ∈ Ai
]

(10)

in probability.

As a consequence of Theorems 1 and 2 we get the following aging result

Theorem 3. (a) Under the hypotheses of Theorem 1, for all θ > 1, Y-a.s.,

lim
N→∞

P[σN (tN ) = σN (θtN )|Y] = Aslα(θ), (11)

where Aslα(θ) = sin(απ)
π

∫ 1/θ

0
uα−1(1− u)−αdu,

(b) Under the hypotheses of Theorem 2, for all θ > 1, in probability,

lim
ξ→0

lim
N→∞

P[σN (ξtN ) = σN (ξθtN )|Y] = Aslα(θ). (12)

Claim (b) of the last theorem relates to the aging result obtained in
[BBG03b] just as claim (a) relates to [BČ08]: the role of σ-algebras H and Y
is inverted.

Finally, let us compare our result with the result of [BBČ07] for the p-spin
spin glass. The definition of the dynamics considered there is the same as in
this paper. The only change is, of course, the Hamiltonian, which is given by
a centred Gaussian process on SN with covariance

Cov(HN (σ), HN (τ)) =
( 1
N

N∑
i=1

σiτi

)p
. (13)

With two replacements, Theorem 1 holds in this case: First, condition (9)
should be replaced by p ≥ 3 and

γ < min
(
β2, ζ(p)β

)
, (14)
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where ζ(p) is an increasing function strictly smaller than βc which converges
to βc as p → ∞. Second, the space D should be equipped with a weaker
topology.

Condition (14) implies that the longest time scales we are able to treat
in the p-spin model are shorter than for the REM. We do not know what
happens in the p-spin model on longer scales. As p→∞ (14) approaches (9),
which is not surprising, since the REM can be considered as p-spin model
with p =∞.

Let us close this section by a rough description of the techniques which
are used to prove Theorem 1. The behaviour of the rescaled clock process
S̄γN is determined by the energies of spin configurations that are visited
during the first O(rN ) steps. The energies of visited configurations form
a Gaussian process X0

N (k) ≡ HN (YN (k)) which has random covariance
Cov(X0

N (k), X0
N (j)) = 1{YN (k) = YN (j)}. We are interested mainly in the

visited configurations whose energy is very large, because these configurations
contribute a lot to the clock process. We want thus to know how extremes of
a Gaussian process X0

N with random correlation structure behave.
The standard method how to study such extremes is to replace the com-

plicated Gaussian process with a simpler process, the behaviour of whose ex-
tremes can be determined more easily and whose correlation structure locally
approximates well the correlation structure of the original process. A study of
the behaviour of extremes of the original process then breaks into two parts.
First, the behaviour of extremes of the simple process should be determined.
Second, it should be proved that the approximation by the simple process is
reasonable.

In the case of the REM, that is of Gaussian process X0
N , the approximat-

ing process will be particularly simple. We define (X1(k), k ∈ N, N ∈ N) as
an i.i.d. sequence of standard Gaussian random variables. It is clearly a nat-
ural choice, since the simple random walk on the hypercube has a very small
probability to return to an already visited configuration. More precisely, for
any j fixed, P[∃k : rN > k > j, YN (k) = YN (j)] ∼ 1/N (at least if γ ≤ ββc).

In the first step of the proof we will thus analyse extremes of an i.i.d. se-
quence, which is, of course, quite simple. This is done in Section 3 using a
method that allows control the clock process immediately. The second step
of the proof, that is the verification if the approximation is justified, is done
in Section 5. In Section 4 we collect several estimates on the simple random
walk on the hypercube. Finally, all theorems are proved in Section 6.

3 Sum of i.i.d. exponentials

As explained in the last section, we will compare the clock process with the
sum of i.i.d. random variables with the same distribution, that is with the
sum
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S̃γN (s) = t−1
N

bsrNc∑
i=0

eβ
√
NX1

N (i), (15)

Sums of this type were exhaustively studied in [BBM05]. The results of this
paper imply directly that S̃γN converges to an γ/β2 stable subordinator. For
the sake of completeness we will provide here a simple proof of this claim. We
start by an easy lemma.

Lemma 1. For all β, γ satisfying hypotheses of Theorems 1 or 2 there exists
K = Kβ,γ > 0 such that, for rN and tN as in (6) and u > 0,

lim
N→∞

rN

(
1− E

[
exp

{
− u

tN
eie

β
√
NX1

N (i)
}])

= Kuα. (16)

This lemma should be viewed as a ‘large deviation’ statement, since values
of X1

N (i) that give the largest contribution to the Laplace transform in (16)
differ significantly from the typical ones. From large deviation point of view,
the proof below is simply a tilting of the Gaussian distribution. This tilting
makes the most contributing values typical.

Proof. Recall that α = γ/β2. To save the notation we set Xi = X1
N (i) and

define g(x) = ln(1 + x). Performing the expectation over ei we get

1−E
[

exp
{
− uei
tN

eβ
√
NXi

}]
=
∫ ∞
−∞

dx√
2π
e−

x2
2

(
1− exp

{
− g
( u
tN
eβ
√
Nx
)})

.

(17)
We now tilt the measure. Setting x = (βz + log tN − log u)/(β

√
N) we find

that (17) equals

uαr−1
N

∫ ∞
−∞

dz√
2π
e−z

2/2N e−γz/βeβz

1 + eβz
ezfN (β,γ,u) (1 + o(1)). (18)

where fN (β, γ, u) = (β logN)/(2γN) + log u/(βN) → 0 as N → ∞. The
integrand converges to e(1−α)βz(1 + eβz)−1 which decays exponentially as z
tends both to ∞ and −∞, since β/γ2 < 1. An application of the dominated
convergence theorem then yields the convergence of the integral to a positive
constant K independent of u. ut

By consequence, we get the analogue of Theorem 1 for the process X1
N :

Proposition 1. For all β, γ satisfying hypotheses of Theorems 1 or 2, the se-
quence of processes S̃γN (s) converges to the stable subordinator Vα(Ks) weakly
in the Skorokhod J1-topology.

Proof. To check the convergence of finite-dimensional marginals from Lemma 1
is trivial. E.g.

E[e−uS̃
γ
N (s)] = E

[
exp

{
− u

tN
eie

β
√
NXi

}]bsrNc N→∞−−−−→ e−sKu
α

, (19)
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which is the Laplace transform of Vα(Ks). The proof of the tightness is an
easy modification of the tightness proof for Theorem 1. We omit it therefore
here. ut

By simply changing the domains of integration in the last proof, the next
lemma can be verified. We will need it later to check the tightness of S̄γN .

Lemma 2. Let BεN be such that

t−1
N eβ

√
NBεN = ε (20)

and let

fN (ε) = rN

(
1− E

[
exp

{
− t−1

N eie
β
√
NX1

N (i)
}
1{X1

N (i) ≤ BεN}
])
. (21)

Then limε→0 lim supN→∞ fN (ε) = 0.

4 Random walk properties

To compare the clock processes S̃γN and S̄γN we need to know to what extent
the covariances of X1 and X0 differ. Since the non-zero covariances of X0 rise
from self-intersections of the simple random walk YN we should control their
number.

Lemma 3. Under the assumptions of Theorem 1 there exists C = C(β, γ)
such that Y-a.s. for all but finitely many N ,

srN∑
i 6=j=1

1{YN (i) = YN (j)} ≤ CN−1srN . (22)

Proof. Note that the assumption (9) implies that rN � 2N . Let pNk (x, y) =
P[YN (k) = y|YN (0) = x]. To bound the sum (22) for i, j that are far from
each other we use the fact that the random walk on the hypercube reaches
the equilibrium very quickly. The next lemma can be proved by using the
coupling argument of [Mat87]. Detailed proof is given in [BBČ07] and we will
not repeat it here.

Lemma 4. There exists K large enough such that for all k ≥ KN2 logN =:
K(N) and x, y ∈ SN∣∣∣∣pNk (x, y) + pNk+1(x, y)

2
− 2−N

∣∣∣∣ ≤ 2−8N . (23)

Let AN = {(i, j) : 0 ≤ i, j ≤ srN , |i − j| > K(N)}. From Lemma 4 it
follows that
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E
[ ∑

(i,j)∈AN

1{YN (i) = YN (j)}
]
≤ C(srN )22−N . (24)

Hence,

P
[ ∑

(i,j)∈AN

1{YN (i) = YN (j)} ≥ CN−1srN

]
≤ CNsrN2−N . (25)

The Borel-Cantelli lemma then implies an a.s. bound for the sum over AN .
To bound the contribution of pairs i, j with |i−j| ≤ K(N) we need another

lemma.

Lemma 5. There exist c2 > c1 > 0 such that, for all N ,

c1
N
≤ E

[ K(N)∑
i=1

1{YN (i) = YN (0)}
]
≤ c2
N
. (26)

Proof. There are many ways how to prove this lemma. Let us sketch one of
them. Let, for A ⊂ SN , τA = min{k ≥ 1 : YN (k) ∈ A}, and let B4 = {z :
d(z,1) = 4}. Using the fact that d(1, YN (k)) is the Ehrenfest’s-Urn Markov
chain, one can check that c′/N ≤ P[τ1 < τB4 |YN (0) = 1] ≤ c/N . A similar
argument gives also P[τ1 < τB4 |YN (0) ∈ B4] < c/N−4. Therefore to get from
B4 to 1 we need in average N4 tries, but we have at most K(N) = KN2 logN
of them. Hence, the probability of returning to 1 before K(N) is smaller than
c/N , which yields the claim of the lemma. ut

Let Zi = K(N)−1
∑i+K(N)
j=i+1 1{YN (j) = YN (i)}. Then Zi ∈ [0, 1], and by

the last lemma c1(NK(N))−1 ≤ E[Zi] ≤ c2(NK(N))−1. Obviously,

srN∑
i,j=1

|i−j|≤K(N)

1{YN (i) = YN (j)} ≤ 2K(N)
K(N)∑
k=1

m∑
j=1

ZjK(N)+i, (27)

where m = dsrN/K(N)e. The inner sum in the last expression is an i.i.d. sum.
Hoeffding’s inequality [Hoe63] applied to the sequence {Zi} gives for any u >
0,

P
[ m∑
j=1

ZjK(N)+i −mE[Zi] ≥ um
]
≤ exp{−2mu2}. (28)

Setting u = E[Zi] and observing that the right-hand side of the last expression
is summable even after a multiplication by K(N), the Borel-Cantelli lemma
and (27) imply that Y-a.s., for all but finitely many N ,

srN∑
i,j=1

|i−j|≤K(N)

1{YN (i) = YN (j)} ≤ CN−1srN . (29)

This completes the proof of Lemma 3. ut
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Lemma 6. Let s > 0 and let for any ω ≥ 1

Iω = Iω(N, s) = {σ ∈ SN : ∃i1 < · · · < iω ≤ rNs, YN (i1) = · · · = YN (iω) = σ}
(30)

be the set of configurations visited at least ω-times. Then,
(a) there exists C > 0 such that Y-a.s., for all but finitely many N , for all

ω ∈ {2, . . . , N}
|Iω| ≤ Cω(N1−ωrNs ∨ 1). (31)

(b) Y-a.s., for all but finitely many N ,

|IN | = 0. (32)

Proof. The proof is very similar to the previous one: Lemma 4 can be used to
show that number of elements of Iω with max{ik− ik−1 : 2 ≤ k ≤ ω} ≥ K(N)
is much smaller than the right-hand side of (31). Defining Z̃i = 1{YN (i) ∈
Iω, i1 = i, iω − i1 ≤ ωK(N)} and observing similarly as in Lemma 5 that
E[Z̃i] ∼ cN1−ω, the claim (a) can be proved by another application of Hoeffd-
ing’s inequality.

Claim (b) follows from P[∃i ≤ rNs : YN (i) ∈ IN ] ≤ CNsN−N+1rN and
the Borel-Cantelli lemma. ut

To prove Theorem 2, we need the following modification of Lemma 3.

Lemma 7. Let γ = ββc, that is rN = 2N . Then there exists a constant C
such that for all ξ < 1

P
[ ξrN∑
i 6=j=1

1{YN (i) = YN (j)} ≥ ξrN
]
≤ Cξ,

P[|Iω| ≥ rNξω/2] ≤ Cξω/2.

(33)

Proof. Following the same reasoning as in the proof of Lemma 3 one can show
that E

[∑ξrN
i 6=j=1 1{YN (i) = YN (j)}

]
≤ Cξ2rN . The first claim then follows

from the Markov inequality. The second claim can be obtained from E[|Iω|] ≤
C(ξrN )ω2−N(ω−1) ≤ rNξω. ut

5 Comparison of two processes

We can now compare the clock process S̄γN with the i.i.d. sum S̃γN . We use Λ0

and Λ1 to denote the covariance matrices of X0 and X1.

Λ0
ij = 1{YN (i) = YN (j)}, Λ1

ij = δij . (34)

For h ∈ [0, 1] we define the interpolating process Xh
N (i) ≡

√
1− hX0

N (i) +√
hX1

N (i).
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Let ` ∈ N, 0 = s0 < · · · < s` = T and u1, . . . , u` > 0 be fixed. For any
Gaussian process X we define

FN
(
X; {si}, {ui}

)
≡ E

[
exp

(
−
∑̀
k=1

uk
tN

skrN−1∑
i=sk−1rN

eie
β
√
NX(i)

)∣∣∣X](X)

= exp
(
−
∑̀
k=1

skrN−1∑
i=sk−1rN

g
(uk
tN
eβ
√
NX(i)

))
.

(35)

Note that E[F (X0; {si}, {ui})|Y] is a joint Laplace transform of the distribu-
tions of the properly rescaled clock process at times si. The following propo-
sition thus compares Laplace transforms of S̃γN and S̄γN .

Proposition 2. (a) If the assumptions of Theorem 1 are satisfied, then for
all sequences {si} and {ui},

lim
N→∞

E
[
FN
(
X0
N ; {si}, {ui}

)∣∣Y]− E
[
FN
(
X1
N ; {si}, {ui}

)]
= 0, Y-a.s.

(36)
(b) If the assumptions of Theorem 2 hold, then, in probability,

lim
ξ→0

lim
N→∞

E
[
FN
(
X0
N ; {ξsi}, {ξ−

1
αui}

)∣∣Y]− E
[
FN
(
X1
N ; {ξsi}, {ξ−

1
αui}

)]
= 0.

(37)

Proof. We use the well-known interpolation formula for functionals of two
Gaussian processes due (probably) to Slepian and Kahane (see e.g. [LT91])

E[FN (X1
N )−FN (X0

N )|Y] =
1
2

∫ 1

0

dh
TrN∑
i,j=1
i 6=j

(Λ1
ij−Λ0

ij)E
[ ∂2FN (Xh

N )
∂X(i)∂X(j)

∣∣∣Y]. (38)

We will show that the integral in (38) converges to 0. To save on notation
we assume that ` = 1 and write u = u1, s = s1. Generalisation to larger `
is straightforward. The second derivative in (38) is 0 if at least one of i, j is
larger than srN . For i, j < srN the second derivative equals

u2β2NFN (Xh
N )

t2N

∏
◦=i,j

eβ
√
NXhN (◦)g′

( u
tN
eβ
√
NXhN (◦)

)
≤ u2β2N

t2N

∏
◦=i,j

eβ
√
NXhN (◦) exp

[
− 2g

( u
tN
eβ
√
NXhN (◦)

)]
,

(39)

where we used the fact that g′(x) = (ln(1 + x))′ = (1 + x)−1 = exp(−g(x)),
and omitted in the summation of FN (Xh

N ) all terms different from i and j. To
estimate the expected value of this expression we need the following technical
lemma.
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Lemma 8. Let c ∈ [0, 1) and let U1, U2 be two standard normal variables
with the covariance E[U1U2] = c. For u > 0 define ΞN (c) = ΞN (c, β, γ, u) and
Ξ̄N (c) = Ξ̄N (c, β, γ, u) by

ΞN (c) =
u2β2N

t2N

∏
◦=1,2

E
[

exp
{
β
√
NU◦ − 2g

(
ut−1
N eβ

√
NU◦

)}]
(40)

and

Ξ̄N (c) = C(1− c)−1/2(1 ∧ u2)N1/(1+c) exp
{
− γ2N

β2(1 + c)

}
, (41)

where C = C(γ, β) is a suitably chosen large constant. Then

ΞN (c) ≤ Ξ̄N (c). (42)

Proof. Define κ± =
√

2(1± c). Since c < 1 both κ+ and κ− are positive. Let
Ū1, Ū2 be two independent standard normal variables. Then U1 and U2 can
be written as

U1 =
1
2

(κ+Ū1 + κ−Ū2), U2 =
1
2

(κ+Ū1 − κ−Ū2). (43)

Hence, U1 + U2 = κ+Ū1. Using g(x) + g(y) = g(x + y + xy) ≥ g(x + y) if
xy ≥ 0, and ex + e−x ≥ e|x| we get

∑
◦=1,2

g
(
ut−1
N eβ

√
NU◦

)
≥ g
(
ut−1
N exp

(κ+β
√
NŪ1

2
+
∣∣∣κ−β√NŪ2

2

∣∣∣)). (44)

Hence, ΞN (c) is bounded from above by

u2β2N

t2N

∫
R2

dy
2π

× exp
{
− y2

1 + y2
2

2
+ β
√
Nκ+y1 − 2g

(
ut−1
N eκ+β

√
Ny1/2+κ−β

√
N |y2|/2

)}
.

(45)

Substituting z1 = y1 − β
√
Nκ+ and z2 = y2 we get

u2β2N

t2N
eβ

2κ2
+N/2

∫
R2

dz
2π

exp
(
− z2

1 + z2
2

2

)
× exp

(
− 2g

(
u exp

{√
N
[(β2κ2

+

2
− γ̄N

)√
N +

βκ+

2
z1 +

βκ−
2
|z2|
]}))

,

(46)

where γ̄N ≡ N−1 log tN = γ − logN/(2αN). Observe that exp(−2g(ue
√
Nx))

converges to the indicator function 1x<0, as N → ∞. The role of x will
be played by the square bracket in the expression (46). Since κ+ >

√
2 and

γ/β2 < 1, this bracket is positive for ‘typical’ z1, z2 not far from 0. This means
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that the largest contribution to (46) comes again from non-typical values of
z1, z2. We need another tilting:

z1 =
1√
N

[
v1 −

κ−
κ+
|v2| −N

(
βκ+ −

2γ̄N
βκ+

)]
, z2 =

v2√
N
. (47)

This substitution transforms the domain where the square bracket of (46) is
negative into the half plane v1 < 0: The expression inside of the braces in (46)
equals βκ+v1/2. Substituting (47) into (z2

1 + z2
2)/2 produces an additional

prefactor N−1/αN1/(1+c) exp
(
− (β2κ2

+−2γ)2N

2β2κ2
+

)
. Another prefactor N−1 comes

from the Jacobian. The remaining terms can be bounded from above by

C

∫
R

exp
{
− v2

2

2N
−
(
βκ− −

2γ̄Nκ−
βκ2

+

)
|v2|
}

dv2

×
∫

R
exp

{(
βκ+ −

2γ̄N
βκ+

)
v1 − 2g(ueβκ+v1/2)

}
dv1.

(48)

Ignoring the quadratic term and using the facts that the parenthesis on the
first line is always positive and γN → γ we can bound the first integral for N
large by

C
(
βκ− −

2γκ−
βκ2

+

)−1

≤ Cκ−1
− ≤ C(1− c)−1/2. (49)

To bound the second integral observe that the integrand behaves as
exp{−2v1γ̄N/βκ+} as v1 → ∞, and as exp{(βκ+ − (2γ̄N/βκ+))v1} as
v1 → −∞. Therefore, the second integral is bounded uniformly for all val-
ues of c. Moreover, as u increases, the second integral is O(u−2).

Putting everything together we get

ΞN (c) ≤ C(1− c)− 1
2
u2β2N

t2N
(1 ∧ u−2)eβ

2κ2
+N/2N

1
1+c−

1
α−1e

−
(β2κ2

+−2γ)2N

2β2κ2
+

= C(γ, β)(1− c)−1/2N1/(1+c)(1 ∧ u2) exp
{
− γ2N

β2(1 + c)

}
= Ξ̄N (c).

(50)

This finishes the proof of Lemma 8. ut

We can now finish the proof of Proposition 2. First, note that for all K > 0

lim
N→∞

eKN/2
∫ 1

0

(1− h)−1/2N1/(1+h)e−KN/(1+h)dh = CK > 0. (51)

Lemmas 3 and 8 imply that the absolute value of (38) can be bounded from
above, Y-a.s. for N large enough, by

CN−1rN

∫ 1

0

(1− h)−1/2N1/(1+h) exp
{
− γ2N

β2(1 + h)

}
dh (52)
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which converges to 0 as N →∞ using (51). This finishes the proof of Propo-
sition 2(a).

In the case (b) we can use Lemmas 7 and 8 to show that, out of a set with
probability smaller than Cξ, (38) is bounded from above by

CξrN

∫ 1

0

(1− h)−1/2N1/(1+h) exp
{
− γ2N

β2(1 + h)

}
dh, (53)

which again converges to 0 after taking N →∞ and then ξ → 0. ut

6 Proofs of the main results

Proof (of Theorem 1). Propositions 1 and 2(a) yield

E
[

exp
{
− uS̄γN (s)

}∣∣YN ] = E
[
FN (X0

N ; s, u)
∣∣YN ]

= E
[
FN (X1

N ; s, u)
]

+ o(1) = E[e−uVα(Ks)] + o(1).
(54)

This implies the convergence of fixed time distributions of S̄γN to those of
Vα(K·). Analogous computation gives the convergence of more-dimensional
marginals.

We still need to check tightness in the J1-topology of the sequence S̄γN .
For increasing processes it amounts to check (see e.g. [EK86] Theorem 7.2 on
page 128) that Y-a.s.

∀η > 0, T > 0 ∃K such that P[S̄N (T ) ≥ K|Y] ≤ η ∀N. (55)

and
∀η > 0, T > 0 ∃δ such that P[wTδ (S̄N ) ≥ η|Y] ≤ η ∀N, (56)

where the modulus of continuity wTδ (f) is defined by

wTδ (f) = inf
{ti}

max
i

sup
{
|f(s)− f(t)| : s, t ∈ [ti−1, ti)

}
, (57)

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn−1 <
T ≤ tn with min1≤i≤n(ti − ti−1) > δ and n ≥ 1.

The condition (55) follows directly from the tightness of the fixed-time
marginals, which is a consequence of the continuity of the limiting Laplace
transform e−TKu

α

at u = 0.
To prove (56) more work is necessary. First, we show that traps with

energies ‘much smaller’ than γ
√
N/β contribute hardly to the clock process.

Recall the definition (20) of BεN and define

S̄γN (s, ε) = t−1
N

bsrNc∑
i=0

ei exp
{
β
√
NHN (YN (i))

}
1{HN (YN (i)) ≤ BεN}. (58)
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Lemma 9. For every T and η > 0 there exists ε such that Y-a.s., for all but
finitely many N

P[S̄γN (T, ε) ≥ η|Y] ≤ η. (59)

Proof. Using definition (30) of Iω it is possible to rewrite S̄γN (T, ε) as

t−1
N

∞∑
ω=1

∑
σ∈Iω\Iω+1

ω∑
i=1

e′σ,ie
β
√
NHN (σ)1{HN (σ) ≤ BεN} ≡

∞∑
ω=1

ω∑
i=1

qεN (ω, i),

(60)
where e′σ,i are i.i.d. mean-one exponentials. By Lemma 6(b) we can restrict
the sum to ω ≤ N . For these ω we have, using the notation of Lemma 2,

P
[
qεN (ω, i) ≥ η

ω2ω
]
≤ 1− E[e−q

ε
N (ω)]

1− e−η/(2ωω)
≤

1− (1− r−1
N fN (ε))|Iω|

1− e−η/(2ωω)
. (61)

For ω = 1 this is bounded by CfN (ε) which can be made smaller than η/2 by
choosing ε small enough. Moreover, using Lemma 6, Y-a.s,

N∑
ω=2

ω∑
i=1

P
[
qεN (ω, i) ≥ η

ω2ω
]
≤

N∑
ω=2

CfN (ε)r−1
N (N−ω+1rN ∨ 1)ω22ω. (62)

which is smaller than η/2 for N large enough. ut

Lemma 10. For any fixed ε > 0, Y-a.s,

lim
N→∞

P[max{HN (σ) : σ ∈ I2} ≥ BεN |Y] = 0. (63)

Proof. By Lemma 6, Y-a.s., |I2| ≤ TN−1rN . Since the energies are i.i.d., the
lemma follows by elementary arguments. ut

We can now check (56). Fix η > 0 and T > 0. By Lemma 9 we can
choose ε small such that P[S̄γN (T, ε) ≥ η/2] ≤ η/3. Lemma 10 implies that
P[max{HN (σ) : σ ∈ I2} ≥ BεN |Y] ≤ η/3. for all N large enough. Thus out
of a set of probability smaller than 2η/3, the contribution to the clock of the
configurations with energies smaller than BεN and of the configurations visited
more than ones is bounded by η/2. Out of this set the modulus of continuity
wTδ (S̄γN ) can be larger than η only if

∃i, j : |i− j| ≤ δrN , YN (i), YN (j) /∈ I2 and min
k∈{i,j}

ek
tN
eβ
√
NHN (YN (k)) ≥ η

2
.

(64)
However, the random variables {HN (σ), σ ∈ I1 \ I2} are i.i.d. An elementary
calculation then shows that the probability of event in (64) can be made
smaller than η/3 by choosing δ small. This finishes the proof of the tightness
and thus of Theorem 1. ut

Proof (of Theorem 2). The theorem follows from Propositions 1 and 2(b) by
a reasoning analogous to (54). ut.
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Proof (of Theorem 3). The proof of (a) is standard. It is sufficient to observe
that P[σN (tN ) = σN (θtN )|Y] is very well approximated by P[{S̄γN (t) : t ≥ 0}∩
[1, θ] = ∅|Y]. The last probability converges, Y-a.s, as N → ∞, to P[{Vα(t) :
t ≥ 0} ∩ [1, θ] = ∅] by the weak convergence of S̄γN in the J1-topology.

To imply claim (b) Theorem 2 is not sufficient. We need in addition the
following estimate.

Lemma 11. Let γ = ββc, that is rN = 2N , and let ŜξN (t) = ξ−1/αS̄γN (ξt).
Then, for any T > 0 and η > 0 there exists δ > 0 such that

lim sup
ξ→0

lim sup
N→∞

P[P[wTδ (ŜξN ) ≥ η|Y] ≤ η] = 0. (65)

Proof. We first set (see (58)), ŜξN (t, ε) = ξ−1/αS̄γN (ξt, ξ1/αε). We claim that,
similarly as in Lemma 9, if ε is small enough, then

P[ŜξN (T, ε) ≥ η|Y] ≤ η (66)

holds with probability converging to 1 as N → ∞ and ξ → 0. The proof of
this claim is analogous to the proof of Lemma 9; Lemma 7 is used instead of
Lemmas 3 and 6.

Moreover, similarly to Lemma 10, P[max{HN (σ) : σ ∈ I2} ≥ Bξ
1/αε
N |Y]

converges to 0 in probability as N →∞ and ξ → 0, by Lemma 7 again. The
proof then follows the same line as the proof of the tightness in Theorem 1.
ut

We now finish the proof of Theorem 3(b). As before, P[σN (ξtN ) =
σN (ξθtN )|Y] is well approximated by

P[{ŜN (t) : t ≥ 0} ∩ [1, θ] = ∅|Y]. (67)

The last probability can be bounded from above by

P
[ K⋃
i=0

{
ŜN (iδ) ≤ 1 ∩ ŜN ((i+ 1)δ) ≥ θ

}
∪ {ŜN (Kδ) ≤ 1}

∣∣∣Y]. (68)

The last quantity converges in probability, by Theorem 2, to

P
[ K⋃
i=0

{
Vα(Kiδ) ≤ 1 ∩ Vα(K(i+ 1)δ) ≥ θ

}
∪ {ŜN (KKδ) ≤ 1}

]
, (69)

which can be made arbitrarily close to Aslα(θ) by choosing δ small and K
large. A lower bound on (67) can be obtained by considering the event

bTδ−1c⋃
i=0

{
ŜN (iδ) ≤ 1− η ∩ ŜN ((i+ 1)δ) ≥ θ + η

}
∩ {wTδ (ŜN ) ≤ η}. (70)

By Lemma 11, with probability converging to 1 as N → ∞ and ξ → 0, the
conditional probability of the event on the right of the last expression is very
close to 1, and the conditional probability of of the union over i converges to
a number that can be made arbitrarily close to Aslα(θ) again. ut
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