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We introduce a general model of trapping for random walks on
graphs. We give the possible scaling limits of these Randomly Trapped
Random Walks on Z. These scaling limits include the well known
Fractional Kinetics process, the Fontes-Isopi-Newman singular dif-
fusion as well as a new broad class we call Spatially Subordinated
Brownian Motions. We give sufficient conditions for convergence and
illustrate these on two important examples.

1. Introduction. We present here a general class of trapping mecha-
nisms for random walks. This class includes the usual ‘effective’ models of
trapping, from the Continuous Time Random Walks (CTRW) (see [24]), to
the Bouchaud Trap Models (BTM) (see [9, 10, 11, 12] and [4]). It is in fact
much wider. This higher level of generality is needed for the study of random
walks on classical random structures, where the trapping is not introduced
ab initio as in the CTRW or the BTM, but is created by the complexity
of the underlying geometry. We introduce the class of models for general
graphs, but restrict the study, in this paper, to the case of the line Z. We
obtain a rather complete understanding of the asymptotic behavior of these
trapped walks on Z. We give first a description of all possible scaling limits,
and then proceed to give wide sufficient conditions for convergence to each
of the possible scaling limits. We illustrate this by two simple examples, one
effective and the other geometric, where we exhibit a rich transition picture
between those different asymptotic regimes.
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The behavior of these models in higher dimension or other graphs is open.
It seems clear that, when the underlying graph is transient, the asymptotic
behavior should be much simpler. One might even risk the conjecture that,
when the underlying graph is transient, the Brownian and the Fractional
Kinetics scaling limits obtained both for the CTRW or the BTM, should be
prevalent in general.

Consider a graph G = (V, E), where V' denotes the set of vertices, and FE
the set of edges. A general ‘trapping landscape’ on the graph G will be given
by a collection 7 = (7 )4y of probability measures on (0, c0). Consider now
the continuous-time random process X := (X;);>0 defined on V' as follows:
X, stays at a vertex say x € V, for a random duration sampled from the
distribution m, and then moves on to one of the neighbors of z, chosen
uniformly at random. If the process X visits x again at a later time, the
random duration of this next visit at = is sampled again and independently,
from the distribution 7. We will call the process X the trapped random
walk (TRW) defined by the trapping landscape m = (73 )zcv -

This structure contains the important and very well-studied class of con-
tinuous time random walks (CTRW) as the simple particular case where
the trapping landscape is constant, i.e. 7, is independent of x € V. So, in
particular the possible scaling limits, on the graph Z¢, include the Brownian
Motion (BM) and the Fractional Kinetics (FK) models (see [23]).

We will study in fact a much richer class of models, by considering the
case of random trapping landscapes, i.e. the situation where the landscape
(72)zev is given as an i.i.d. sample of a distribution on the space of proba-
bility measures on (0, 00). The random collection (7;)zey is now a random
environment. We have thus one extra layer of randomness and call the ran-
dom process X defined as above, for every fixed (or quenched) realization
of environment, a Randomly Trapped Random Walk (RTRW).

This richer class contains the Bouchaud Trap Model. This is the case
where the probability measures 7, are chosen as exponential distributions
with mean 7(z), and the 7(x)’s are chosen as i.i.d. random variables in
(0,00). The scaling limits of this model in dimension 2 and above include
the Brownian Motion and the Fractional Kinetics models (see [7, 5, 25, 6]),
and in dimension one, the Fontes-Isopi-Newman (or FIN) singular diffusion
(see [14, 17] and also [13]).

The new class of RTRW’s also contains completely new examples which
have motivated this general study. These examples are of random walks in
random media, where the trapping mechanism is not imposed a priori, but is
a consequence of the geometric characteristics of the medium. For instance
one of our main motivations is given by the random walk on an incipient
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critical Galton Watson tree (introduced by Kesten in [22], see also [2]). This
incipient critical tree can be seen as made of a one-dimensional backbone,
and of very long dead-ends (in fact finite critical trees) attached to this
backbone. The trapping landscape is here of geometric origin: the projection
of the random walk along the backbone is trapped by the very long sojourns
in the dead-ends. We are also interested in the similar problem of the random
walk on the invasion percolation cluster on a regular tree (see [1]). These
two examples will not be treated here, but in a forthcoming work.

In this paper, we build the foundation by studying the general question of
understanding the scaling limits of our general class of RTRW’s in dimension
one. We call this general class of limit processes Randomly Trapped Brow-
nian Motions (RTBM’s). These processes are all obtained through random
time-changes of Brownian Motion. The needed class of time changes is rich
and complex. The class of RIT'BM’s contains naturally the scaling limits of
the examples mentioned above, i.e. the Brownian Motion, the FK dynamics,
and the FIN-diffusion. But it also contains very interesting new processes,
which we call Spatially Subordinated Brownian Motions (SSBM). The class
of geometric models mentioned above (the random walk on the incipient
critical tree and the invasion percolation cluster) have scaling limits that
belong to these new classes of models, hence the necessity of the general
study done here.

In order to begin the discussion about the asymptotic behavior of the
process X that we have defined above, we remark that its structure is a priori
quite simple. It is given by a random time-change of the standard discrete-
time random walk, say Y = (Y,)n>0, on the graph G. Indeed, we first define
S(n), the ‘clock process’, i.e. the sum of the random trapping durations along
the first n steps of the random walk (Y},)n>0. More precisely, consider an
random array of independent positive numbers (s’;) k>1,0cv Where for every
fixed vertex € V the numbers (s);>1 are an i.i.d. sample with common
distribution 7. Also define L(x,n) to be the local time of the random walk
Y, i.e. the number of visits of the site x before (and including) time n.

(1.1) L(z,n) =Y Liy—a)-
k=0
The clock process is simply defined as
n—1 vk L(z,n—1)
(1.2) HOEDPEACESY sk,
k=0 zeG k=1

Then, clearly the process X is the time change of the simple random walk
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Y by this random additive functional, i.e.
(1.3) X;=Y, ifSh)<t<Snh+1).

It is thus perfectly natural, at least when G = Z, to expect that the
possible scaling limits will be random time-changes of Brownian Motion.
But it might not be obvious that the asymptotic behavior of the time-change
can be as rich as we find it to be. In the case of the FK processes, it is clear
that this time change is a stable subordinator, and is independent of the
underlying Brownian Motion. In the case of the FIN diffusion, this time-
change is not independent of the underlying Brownian Motion and is very
singular since it retains the randomness of the spatial information contained
in the traps.

In the general situation, the time-change will be even more complex. We
show in our first result (Theorem 2.7), that the asymptotic behavior is in
general a mixture of an FK type situation, and of the new class of processes,
the Spatially Subordinated Brownian Motions (SSBM). These processes are
again defined by a time change of Brownian Motion, where the time change
retains some of the randomness of the spatial information about deep traps,
in a much more intricate fashion than in the FIN case.

In order to illustrate this new class of processes, we also show in this
article that very simple models give rise to them, much simpler indeed that
the two geometric models mentioned above. We start with the simplest of
such models, which we call the model with ‘transparent traps’: Consider the
Bouchaud trap model with the following twist: at site x € Z the process X
can, with positive probability, ignore the trap. This model exhibits different
regimes where the scaling limits can be very different. They include the
Brownian Motion, the FK dynamics, the FIN diffusion and in a critical
regime a new example of our wide class of SSBM’s. This model is interesting
since, although very simple, it contains this rich array of limiting behaviors
and this new transition. In fact it contains, in a very simple way, the main
mechanism: the possibility to ignore somewhat the deep traps.

As a next step, and building on this intuition, we give finally a complete
study of a simple geometric example, much closer to the cases of the random
walk on the incipient critical tree and invasion percolation cluster. We study
the random walk on comb models. This model is also rich. If one add a drift
towards the teeth of the comb, then various regimes mentioned above are
also present in this model.

2. Statement of results. In this section we provide precise statements
of our results. We begin by describing the processes that will later appear
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as possible scaling limits of RTTRW’s on Z. We will define first the Frac-
tional Kinetics processes, then introduce our new class of Spatially Subor-
dinated Brownian Motions, and then specialize this definition to introduce
the Fontes-Isopi-Newman (or FIN) diffusion.

DEFINITION 2.1 (Fractional Kinetics). Let (B:)i>0 be a standard one-
dimensional Brownian Motion and let (V,*);>0 be an a-stable subordinator
(for some a € (0,1)) independent of B. Let ¢f :=inf{s > 0: V.* > t}. The
Fractional Kinetics process of index «, Z%, is defined as

Zta = ng

Next we define Spatially Subordinated Brownian Motions (SSBM’s). Let
§* be the set of Laplace exponents of subordinators (i.e. of non-decreasing
Lévy processes), that is the set of continuous functions f : Ry — R4 that
can be expressed as

(2.1) FA) = fan(A) :=adx —i—/ (1-— e_’\t)H(dt)

Ry
for a d > 0 and a measure II satisfying f(om)(l A HII(dt) < co. We endow
§* with topology of pointwise convergence and the corresponding Borel o-
algebra.

Let F be a o-finite measure on §* and let (z;, fi)ien be a Poisson point
process on R x §* with intensity dz ® F. Let (S)t>0, i € N, be a family
of processes, such that, conditioned on a realization of (z;, fi)ien, (S)ien is
distributed as an independent sequence of subordinators, where the Laplace
exponent of S’ is given by f;. We will assume that the measure F satisfies
the following assumption:

(2.2) Z Si < oo almost surely.
i:x;€[0,1]

Let B be a one-dimensional standard Brownian Motion started at the
origin, independent of the (S%);cn, and £(z,t) be its local time. Define

(2.3) 0= Sia.)
1€EN
and 1, ;= inf{s > 0: ¢s > t}.
DEFINITION 2.2 (Spatially Subordinated Brownian Motion). The pro-

cess BY defined as
B}SF = Blbt

is called an F-Spatially Subordinated Brownian Motion.
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REMARK 2.3. The assumption (2.2) ensures that ¢, is finite for all t > 0
and hence the F-SSBM is well defined.

The FIN diffusion is a particular case of a SSBM. It is in fact a Marko-
vian SSBM, which has been introduced as the scaling limit of the BTM on
Z in [14], see also [3]. For every v > 0, consider the atomic measure oy,
concentrated on the linear function f,(\) = vA. For v € (0,1), consider the
measure F on §* defined by

(2.4) IF”:/ Yo T do.
0

DEFINITION 2.4 (Fontes-Isopi-Newman diffusion). For v € (0,1), the
F7-SSBM is the FIN-diffusion of index v (FIN,) .

To see that this definition agrees with the usual one, it is sufficient to
observe that the Lévy process S; corresponding to the Laplace exponent f,
satisfies S; = tv and thus ¢; can be written as ), v;¢(x;,t) for a Poisson
process (z;,v;) on R x (0, 00) with intensity dzyv~1"7dv.

Finally, we will define processes which are constructed as mixtures of the
SSBM’s and the FK-processes. Let F be a o-finite measure on §* satisfy-
ing (2.2) and (x4, fi)i>0, (S")sen be as in Definition 2.2. Let (V7);>¢ be an
v-stable subordinator (for some v € (0,1)) independent of the processes
(S%)ien, and B be a Brownian Motion independent of the (S%);cy and V7.
Let ¢(x,t) be the local time of B. Define

(25) ¢t = Z Sé(z“t) + ‘/ZY

1€EN
and ¢, ;= inf{s > 0: ¢s > t}.

DEFINITION 2.5 (FK-SSBM mixture). The process (By, )+>0 is called an
FK-SSBM mixture.

REMARK 2.6. Note that the SSBM and the FK-processes are both par-
ticular cases of FK-SSBM mixtures. The SSBM is obtained by taking V¥ = 0
(i.e. the ‘trivial’ y-stable subordinator), and the FK process is recovered by
taking F to be a zero measure.
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2.1. Classification Theorem. The first result we present is a classification
theorem which characterizes the set of limiting processes of RTRW’s with
an i.i.d. trapping landscape.

Consider P € M;(M;((0,00))) (that is P is a probability measure on
the space of probability measures on (0,00)). Let 7w be the correspond-
ing i.i.d. trapping landscape, that is an i.i.d. sequence m® = (7).ez, 7> €
M;((0,00)) with marginal P defined on a probability space (2, F,P). Given
a realisation of m, let (s%);ezi>1 be an independent collection of random
variables such that si has distribution 7, and let X be the RTRW whose
random trapping landscape is 7, defined as in (1.1)—(1.3). We write P™ for
the law of X given 7r. The distribution of X is then the semi-direct product
P x P™.

THEOREM 2.7. Assume that there is a non-decreasing function p such
that the processes

(26) Xf = 8Xp(5)—1ta t> 0,

converge as € — 0 in (P x P™)-distribution on the space D(R;) of cadlag
functions endowed with Skorokhod topology to a process U satisfying the
non-triviality assumption

(2.7) limsup |Uy| = oo, almost surely.
t—00

Then one of the two following possibilities occurs:

(i) p(e) = €2L(e) for a function L slowly varying at 0. Then there erists
¢ > 0 such that Uy = (B.-14)t>0 where B is a standard Brownian
Motion.

(i1) p(e) = e*L(e) for a > 2 and a function L slowly varying at 0. Then
U is a FK-SSBM mizture (By, )i>0. Moreover, index y of the y-stable
subordinator associated to By, equals 2/« and the intensity measure F
satisfies the scaling relation

(2.8) aF(A) =F(ch A), for every A € B(§*),a > 0,
where o : §* — §* is defined by
(2.9) oq (f)(A) = af(a™*A).

REMARK 2.8. The map o maps the Laplace exponent of a Lévy process
V to the Laplace exponent of the Lévy process a=*V (a-).



8 BEN AROUS, CABEZAS, CERNY, ROYFMAN

2.2. Conwvergence Theorems. We now present sufficient conditions for the
convergence to the processes described above. Let X be, as above, a RTRW
with i.i.d. trapping landscape whose marginal is P € My (M;((0,00))).

2.2.1. Convergence to Brownian Motion. We start by presenting general
criteria for the convergence to the Brownian Motion. For any probability
measure v € M;((0,00)) we define m(v) to be its mean,

(2.10) m(v) = /Bh xv(dx).
THEOREM 2.9. Assume that
(2.11) M := /m(ﬂ)P(dﬂ) € (0,00).

Then, P-a.s., as € — 0, the rescaled RTRW (X j-1.-24)t>0 converges to a
standard Brownian Motion, in P™-distribution on the space D(R).

REMARK 2.10. Observe that Theorem 2.9 is a quenched result: the con-
vergence holds for P-a.e. realization of the trapping landscape .

2.2.2. Convergence to the Fractional Kinetics process. We now deal with
the convergence to the FK process. Let, as usual, X be a RTRW with
i.i.d. trapping landscape 7 whose marginal is P. We write

(2.12) (A = / e A (dt)

0
for the Laplace transform of a probability measure over (0,00), and set
(2.13) I'(e) := E[1 — 7o(e)].

It is easy to see that I is strictly increasing on R, taking values in [0, I'jpax)
for some 0 < I'max < 1. Therefore, the inverse I'"! is well defined on this
interval. For € small enough, we can thus introduce the inverse time scale
qrk by

(2.14) grc(e) =T~ (e%).
THEOREM 2.11. Assume that

(2.15) qark(e) = €”L(e)
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for some a > 2 and a slowly varying function L. In addition assume that

(2.16) lim e 2E[ (1 — #o(grk()))’] = 0.
e—0
Then, as € — 0, the rescaled RTRW (eXg, (s)-1¢)t>0 converges in PT-
distribution on D(Ry) to the FK process with parameter v = 2/, in P-
probability.
In addition, if €3 in (2.16) is replaced by e~*=°, § > 0, then the conver-
gence in P™-distribution holds P-a.s.

REMARK 2.12. Due to (2.14), (2.15) is equivalent to
(2.17) [(e) = e¥L(e) = £7L(e),
for some slowly varying function L.

2.2.3. Convergence to Spatially Subordinated Brownian Motions. Here
we present sufficient conditions for the convergence to the SSBM processes
introduced in Definition 2.2. We assume that X is a RTRW with an i.i.d. ran-
dom trapping landscape w = (7 ),z with marginal P € M;(M;((0,0))).

We recall that m(v) denotes the mean of the probability distribution v,
see (2.10). Our first assumption is that the distribution of m(my) has heavy
tails.

AssuMPTION (HT). There exists v € (0,1) and a non-vanishing slowly
varying function at infinity L : Ry — R, such that

(2.18) Plm € M;i((0,00)) : m(m) > u] = u " L(u).

REMARK 2.13. We define V € D(R) by

Ez'LiJl m(m;), x>1,
(2.19) v, =40, e [00),
Yo ) 41 (), x < 0.

Under Assumption (HT), there exists a function d(e) satisfying d(e) =
e 1/7L(e) for a function L slowly varying at 0, such that (d(e)™'V.-1,)zer
converges in distribution on D(R) to a (two-sided) ~-stable subordinator
with Lévy measure Yo~ '~7 dv. In addition we may assume that d is strictly
decreasing and continuous.
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Next, we prepare the statement of the second assumption. For each a €
Ry, let 7 be a random measure having the law of 7y conditioned on m(my) =
a. Let

(2.20) q(e) == ed(e)7t,

where d is as in Remark 2.13.
For € > 0, define ¥, : M;((0,00)) — C(R4) by

(2.21) T ()(N) := e (1 —D(g(e)N), v € Mi((0,00)), A > 0.

Observe that W.(v) is the Laplace exponent of a pure jump Lévy process
whose jumps have intensity e~! and the size of jumps divided by ¢(g) has
distribution v. In particular, ¥.(v) € §* for every v € M;((0,00)). Our
second assumption is

AssumPTION (L). There exists Fy € M;(F*) such that
(2.22) law of W, (7)) =2 .
In addition, [ is non-trivial, that is
(2.23) F1 # &g
where 0 is the identically zero function.

REMARK 2.14. Observe that ¥, (7%®) is a Laplace exponent of a subor-
dinator S such that E[S;] = e~ 1d(e)q(e) = 1. The measure Fy thus gives the
full mass to the set § C §* of functions f : R, — R that can be written as
f) = dr+c [(1—e M)II(dt) for d+c < 1 and II satisfying fR+ tII(dt) = 1.
In particular, f(A) < A

THEOREM 2.15. Assume that (HT) and (L) hold. Then, as ¢ — 0,
(eXy(e)-1¢)t=0 converges on D(Ry) in P x P™-distribution to a SSBM pro-
cess (B} )i>o introduced in Definition 2.2. The intensity measure F which
determines the law of the limiting process is given by

(2.24) F(df) := / Yo TR, (df) dw,
0

where (recall (2.9) for the notation)

(2.25) F,:=F;0 Uijl/’y.
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REMARK 2.16. Observe that the scaling relation (2.8) is satisfied for
. o 1 . 1+1/y _1+1/y _  _1+41/y
Fin (2.24) and o = 1 + 7. Indeed, since 04" "0, =0, ', for any
A€ B(F),

F(olt/74) = /wv_l_VFv(a;H/VA)dv

av?Y

(2.26) = /’yv_l_vFl(aHl/VA)dv
= a/’yulA’Fl(U}LH/VA)du =alF(A).

2.2.4. Convergence to the FIN diffusion. Next we present a theorem
which gives sufficient conditions for convergence to the FIN diffusion. Re-
call that m(v) denotes the expectation v € M;((0,00)), and define ma(v) =
fR+ t2 v(dt) to be its second moment. As before we let 7@ stand for a ran-
dom measure having the distribution of 7 given m(mp) = a. Define random
variable ma(a) := mo(7?).

THEOREM 2.17. Assume that (HT) holds and let d(¢) be as in Re-

e—0

mark 2.13. In addition, let ed(¢) ?ma(d(e)) — 0 in distribution. Then,
e X, )i>0 converges to the FIN., diffusion in the sense of Theorem 2.15.
q(e)t)t=z Y

We conclude the introduction with a description of the organization of
the paper. In Section 3 we will define two examples of RI'RW’s for which
we will prove convergence results. First we will define the transparent traps
model and we will state the theorem which describes its phase diagram (see
Theorem 3.2). Then we will define the comb model and we will present
Theorem 3.5 which deals with its possible scaling limits.

Sections 4 and 5 contain the main definitions which will be used through
the paper. In Section 4 we give the precise definitions of Trapped Random
Walks and Trapped Brownian motions. In Section 5 we give the definitions
and examples of Randomly Trapped Random Walks and Randomly Trapped
Brownian Motions. In Section 6 we prove a general result from which one
can deduce convergence of trapped processes from the convergence of their
respective trap measures.

The bulk of the paper is Section 7 where we deal with limits of RTRW’s. In
Subsection 7.1 we prove the classification of the all possible limits of RTRW'’s
with i.i.d. trapping landscape stated in Theorem 2.7. In Subsection 7.2 we
prove Theorem 2.9 which deals with the convergence to the Brownian Mo-
tion. The convergence to the FK process stated in Theorem 2.11 will be
proved in Subsection 7.3. In Subsection 7.4 we will prove the convergence to
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the SSBM stated in Theorem 2.15. In Subsection 7.5 we prove Theorem 2.17
which states the convergence to the FIN diffusion.

Finally, Section 8 deals with the proof of the theorems for the trans-
parent traps model and the comb model. In Subsection 8.1 we will prove
Theorem 3.2 and in Subsection 8.2 we will prove Theorem 3.5.

The appendix collects, for reader’s convenience, several known results
from the random measure theory that are used through the paper.

3. Examples. In this section we define two examples of RTRW’s. We
also present the theorems which describe their phase-diagrams.

3.1. Transparent traps model. The simplest model which we will treat is
the Trap model with transparent traps. Let a, 8 > 0, and let (7;).cz be a
i.i.d. sequence of positive random variables which satisfy
(3.1) lim u®P (9 > u) = ¢ € (0,00),

U—00
and P(r, > 1) = 1. For each x € Z, consider the random probability distri-
bution 7 := (1 — T;ﬁ)(sl + T;ﬁéTI.

DEFINITION 3.1 (Trap model with transparent traps). Let X be the
RTRW with random trapping landscape (7;)zcz. Then X is the called the
trap model with transparent traps.

The reason for his name is the following. When X reaches z € 7Z it is
trapped there for time 7, with probability 7, h , otherwise it does not ‘see’
the trap and just stays at x for a unit of time. The phase-diagram of the
transparent traps model is given by the following theorem.

THEOREM 3.2. The trap model with transparent traps has the following
scaling behavior:

(i) If « + 8 > 1, then for m := E(m(m)) < oo, the process €X,,.—2;
converges to a standard Brownian Motion in the sense of Theorem 2.9.
(i) If a + B < 1 and a > B, then for v = a/(1 — ) and q(e) = '11/7,
the process X (-1, converges to FIN, in the sense of Theorem 2.15.
(iii) If a+B < 1 and o < B, then for k = a+f3 and q(e) = /%, the process
eXy(e)-14 converges to a Fractional Kinetics process with parameter k.
in the sense of Theorem 2.11.
(i) If a4+ B < 1 and o« = B, then for q(e) = el/® the process eXqe)-1t
converges, in the sense of Theorem 2.15, to a SSBM process, which
will be referred as a “Poissonian” SSBM.
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BM
FK,

FIN,

T

‘Poissonian’ SSBM

Fic 1. Phase diagram for the transparent traps model

REMARK 3.3. In the case a+ 3 = 1 which is not covered by the theorem,
the scaling limit is a Brownian Motion, but a logarithmic correction should
be added to the scaling. We do not consider this case here, for the sake of
brevity.

3.2. Comb model. The comb model is a ‘geometric’ RTRW on a graph
that looks like a comb with randomly long teeth. More precisely, consider
an i.i.d. family N,, z € Z, satisfying

(3.2) P(Nyg=n)=Z 'n"172, n>1

for some o > 0 and a normalizing constant Z = Z(«). Let G be the graph
with vertices {(z,0),(z,1),...,(2,N,)} and with nearest-neighbor edges,
and let Geomp be the tree-like graph composed by a backbone Z with leaves
(G.):ez; (2,0) € G, is identified with z € Z on the backbone. By project-
ing the simple random walk on Ggomp, to the backbone we obtain a RTRW
denoted Xcomb,

We will see later that the behavior of X™ is not very rich. When o > 1
the teeth are ‘short’ and the mean time spent on them has a finite expecta-
tion, thus X°™b is diffusive and Brownian Motion is its scaling limit. On the
other hand, when o < 1, then the teeth may be ‘long’, and the expectation
of the mean trapping time is infinite. However, as it is rather unlikely for the
random walk on Geomp to reach the tip of long teeth, it takes many visits to
a tooth to discover that it is long. This indicates that in this case the FK
process is the limit.
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To obtain a richer behavior, we need to increase the chance that the
random walk on Gomp, hits the tips of the teeth. Therefore we add a small
drift pointing to the tips, as follows. Let Y°°™P be a random walk on Geomp
which on the backbone behaves like the simple random walk on Geomp,

(33) B = 2 £ 1|V = o) = B = (2, DY = 2] = 4,

and, when on the tooth G, it performs a random walk with a drift g(NV,) >
0 pointing away from the backbone, reflecting at the tip: for any z and
0<n<N,,

(3.4)  PY©mP(k4+1) = (z,n+ 1)|Y"P(k) = (2,
(3.5)  PY"P(k 4 1) = (z,n — 1)|[Y"P (k) = (2,
(3.6)  PY©mP(k+1) = (2,N, — 1)|Y°" (k) = (2, N.)] = 1.

We will choose g as
(3.7) g(N) = min(3N" log(N), 1)

for some B > 0. The case 8 = 0 corresponds to the comb model without
drift.

DEFINITION 3.4 (Comb model). We define X°™P as then the projection
of Y°mb to the backbone. More precisely XfomP = 7 iff Yﬁj’mb € G,.

The next theorem describes the asymptotic behavior of Xomb,

THEOREM 3.5. The comb model has the following scaling behavior:

(i) Ifa« > 1 and 1428 < a, then for some m € (0,00), the process 5Xfrf8”12t
converges to a standard Brownian Motion in the sense of Theorem 2.9.
(i) If a > 1 and 1 + 28 > «, then for v = a/(1 + 23) there exists a
reqularly varying function q(g) of index 1+ 1/, such that the process

5X§E’S]P1t converges to FIN, in the sense of Theorem 2.15.

(i1i) If « < 1, then for k = %, there exists a reqularly varying function
omb

q(e) of index 2/k such that the process eX (0, converges to a Frac-
tional Kinetics process with parameter x in the sense of Theorem 2.11.

REMARK 3.6. We expect that on the line a = 1 + 2 the scaling limit
is Brownian Motion. We have not studied the behavior on the line o« = 1.
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a=1+28

FK, FIN,

BM

Fic 2. Phase diagram for the comb model.

4. Trapped Random walks and Trapped Brownian Motions.

4.1. Trapped Random Walk. In this section we give the definitions of
several classes of processes which we will use through the paper.

4.1.1. Time changed random walk. We first consider ‘deterministic’ time
change. Let Z = (Zi)r>0 be a simple symmetric discrete-time random walk
on Z, Zy = 0, and let (s)zezien (with N = {1,2,...}) be a family of
positive numbers. We define time changed random walk as the continuous-
time Z-valued process following the same trajectory as Z, characterized by
stating that the duration of the i-th visit of X to x € Z is s..

Alternatively, the time changed random walk can be defined using the
following procedure, which will be more suitable for generalization into a
continuous setting. Consider an atomic measure on H := RxRy = Rx|0, 00)

given by

(4.1) o= Z 3;5(90,1)
Tr€Z,ieEN

Let

Lt)
(42) L(I’,t) ::Zl{zi:\_ﬂ}’ t>0,reR
=1
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be the local time of Z. For a Borel-measurable function f : R — R, define
the set Uy C H of points under the graph of f by

(4.3) Up:={(z,y) eH:y < f(x)}.
Let ¢[u, Z] : Ry — R4 be the function
(44) (ﬁ[/% Z]t = M(UL(-,t))v t>0,

and let ¢[u, Z] be its right-continuous generalized inverse
(4.5) Ylu, Z]p = inf{s > 0: @[u, Z]s > t},  t>0.

DEFINITION 4.1. The p-time changed random walk (Z[u]t)+>0 is the
process given by

(46) Z[N]t = Zw[u’z]t, t> 0.

REMARK 4.2. (a) If pu(H) < oo, Z[u] is not defined for times ¢ > u(H)
and might not be defined for ¢t = p(H).

(b) It is easy to see that the functions ¢[u,Z] and [u, Z] are non-
decreasing and right-continuous. Hence, Z[u] has right-continuous trajec-
tories.

4.1.2. Trapped random walk. We want of course consider random time
changes. One natural way how to introduce randomness is to require that the
duration of every visit to € Z is distributed according to some probability
distribution 7, which may depend on x, assuming also that the durations of
the visits are independent, and independent of the direction of the jumps of
the random walk Z. We will call such random time change trapped random
walk with (deterministic) trapping landscape m = (73)zez.

More precisely, extending Definition 4.1, we may define the trapped ran-
dom walk as follows:

DEFINITION 4.3 (Trapped random walk). Let m = (7;)zez be a sequence
of probability measures on (0, 00), (s%);en ez an independent family of ran-
dom variables such for every x € Z, (s} );en is an i.i.d. sequence distributed
according to m,. Let p be a random measure on H defined as in (4.1), and
let Z be a simple symmetric random walk independent of (Si)xez,ieN- The
p-time changed random walk Z[u] is then called trapped random walk
(TRW) with trap measure p and trapping landscape 7.

We present three examples of TRWs.
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EXAMPLE 4.4 (Montrol-Weiss continuous-time random walk). Let 7, =
mo for all z € Z, and assume that 7 satisfies the tail condition

(4.7) lim wYmo([u,0)) = ¢

uU—00
for some v € (0,1) and ¢ € (0,00). In this case the durations of visits
(s8)ienzez form an i.i.d. family with marginal 7o, and the trapped random

walk Z[u] is a one-dimensional continuous-time random walk & la Montroll-
Weiss (see [24]).

EXAMPLE 4.5 (Geometric TRW). Let (Gz)zez be a family of rooted
finite graphs, and let G be the graph obtained by attaching the graphs G,
to vertices of Z. More precisely, denote by V(G,) the set of vertices of G,
and assume that (V(Gy))zez are pairwise disjoint. Then G is the graph
whose set of vertices is V(G) 1= UgezV(G:), and its set of edges E(G) is
determined by: (y, z) € E(G) iff one of the following conditions hold

e There exists x € Z such that y,z € V(G,) and y and z are neighbors
in Gy .

e There exists z € Z such that y is the root of G, and z is the root of
Gyy1.

e There exists x € Z such that y is the root of G, and z is the root of
Gy_1.

Hence, G is a graph consisting of a copy of Z (called the backbone) from
which emerge branches G,z € Z. We will naturally identify the backbone
with Z.

Let Y := (Y)r>0 be a discrete time, symmetric random walk on G' with
Yy = 0. We can project Y to the backbone to obtain a continuous time Z-
valued process W := (W})>0 given by Wy =z € Z iff Yi € Gz We call W
Geometric trapped random walk. Its waiting times are of course related to
the distribution of the return time to the root for the simple random walks
on the finite graphs G,.

ExXAMPLE 4.6 (Markovian random walk on Z). The trapped random
walk is in general not Markovian. However, when for a family of positive
numbers (my)zecz, T, is the exponential distribution with mean m,,, then the
trapped random walk Z[u] with trapping landscape (7),cz is Markovian.

The total jump rate at x is m; L.

4.2. Trapped Brownian Motion. We now define continuous counterparts
of the previously defined processes.
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4.2.1. Time changed Brownian Motion.

DEFINITION 4.7 (p-time changed Brownian Motion). Let p be a deter-
ministic measure on H, and B be a standard one-dimensional Brownian
Motion. Denote by ¢(z,t) a bi-continuous version of the local time of B, and
define

Blu, Bl == p(Ug(. 1)),
Y[, Bly == 1inf{s > 0: ¢[u, B]s > t}.

The p-time changed Brownian Motion (B[u]t):>0 is the process given
by

(4.8)

(49) B[,U,]t = Bw[ll,B]t’ t > 0.

REMARK 4.8. It is easy to see that the functions ¢[u, B], and ¥[u, B]
are non-decreasing and right-continuous. Hence, B[u| has right-continuous
trajectories.

4.2.2. Trapped Brownian Motion. Before defining the class of Trapped
Brownian Motions, we recall the definition of random measure with inde-
pendent increments (see §10 of [20]).

DEFINITION 4.9. A random measure p on H is called a measure with
independent increments iff for every two disjoint sets A, B € B(H), the
random variables p(A) and u(B) are independent.

For any random measure p and A € B(R) we define the p-trapping process
(1(A))e>0 by

(4.10) (A == u(A x [0,1]).

Note that, if 4 is a measure with independent increments and A, B are
disjoint Borel subsets of R, then u(A) and pu(B) are independent processes.

DEFINITION 4.10 (Lévy trap measure). A random measure p on H is
called Lévy trap measure when ;1 (A) is a Lévy process for every bounded

A € B(R).

DEFINITION 4.11 (Trapped Brownian Motion). Let u be a random mea-
sure on H and B be a standard one-dimensional Brownian Motion. Suppose
that (i) p is independent from B, (ii) p is a measure with independent
increments, (iii) p is a Lévy trap measure. Then B[u| is called Trapped
Brownian Motion (TBM) with trap measure .
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The class of TBMs includes the following processes:

EXAMPLE 4.12 (Speed-measure changed Brownian Motion). Fix p €
M(R) (cf. the appendix for the notation) and let Leby be the Lebesgue
measure on (R;, B(R;)). Define p := p® Leb,. Then p is a (deterministic)
Lévy trap measure. Furthermore, as p is deterministic, it is also a measure
with independent increments.

The TBM By is simply a time change of Brownian Motion with speed
measure p. Indeed, this time change B? is usually defined as

(4.11) (BY)t>0 := (By,1))to0-

for ¢,(s) :== [z l(x,s)p(dx) and ¢, (t) := inf{s > 0: ¢,(s) > t}. By Fubini’s
theorem, it is easy to see that

{(z,s)
@12) ds) = [ [ duplde) = (p® Leb)(U.) = lp © Leb Bl
This implies that B” equals B[u].

EXAMPLE 4.13 (Fractional Kinetics process). Let P = (x4, ¥, 2i)ien be
a Poisson point process on H x (0, 00) with intensity measure

(4.13) 0=~z dx dydz, v € (0,1).

Define the random measure ppk on H as

(4.14) HFK = M%K = Z Zid(xivyi)'

It is easy to see that for every compact K C H, upk (K) has a y-stable dis-
tribution with the scaling parameter proportional to the Lebesgue measure
of K. Further, as P is a Poisson point process, we have that upk(K7) and
prk (K2) are independent when K, Ks are disjoint. Thus ppk is a measure
with independent increments, and ppgk (A) is a stable Lévy process for each
bounded A € B(R), and thus urk is a Lévy trap measure.

The TBM Blu] corresponding to this measure is the FK process intro-
duced in Definition 2.1. To see this, it is enough to show that the process
(¢, Blt)ier,, is a y-stable subordinator that is independent of B.

This can be proved as follows. Fix a realization of the Brownian Motion B.
Then its local time is also fixed. As Leb(Uy. ;) =t and Uy 4), (Ug(..)\Us(..s))
are disjoint sets for every s < t, we have that ¢[u, B]; has «-stable distri-
bution with the scaling parameter proportional to ¢, and ¢[u, By — ¢, Bls
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is independent of ¢[u, B]s. Hence, for every realization of B, ¢[u, B] is a -
stable subordinator, and thus ¢[u, B] is a v-stable subordinator independent
of B.

The last important example goes in the direction of the SSBM.

EXAMPLE 4.14. Let k € NU {oco} and ((S})i>0)i<k be a family of inde-
pendent subordinators. Let (z;);<x be real numbers. Denoting by dS? the
Lebesgue-Stieltjes measure corresponding to S°, it is immediate that

(4.15) plde @ dy) =Y _ 6., (dz) @ dS'(y)

i<k
is a Lévy trap measure with independent increments. The TBM Blu] is a
process which is always located at some x;.

5. Randomly Trapped Random Walk and Randomly Trapped
Brownian Motion. The classes of trapped random walks and trapped
Brownian Motions are too small to include some processes that we want
to consider, in particular Bouchaud’s trap model, the FIN diffusion and
the projections of the random walk on IIC, IPC. More precisely, quenched
distributions of these models (given corresponding random environments)
are trapped random walks. If we want to consider averaged distributions,
we need to introduce larger classes, Randomly Trapped Random Walks and
Randomly Trapped Brownian Motion. Their corresponding random measures
will be constructed as mixtures of the respective trap measures.

The mixture of random measures is defined as follows. Let (2, F,P) be
a probability space, and let for every w € €2, u, be a random measure on
H defined on some other probability space (Q,]} , I~P) The random measure
(1 Q x Q — M(H) given by

(5.1) plw,0)(A) = po(@)(4), A c B(H).

is called mixture of u, with respect to IP. For reader’s convenience, Proposi-
tion A.1 ensuring the existence of the mixtures is included in the appendix.

5.1. Randomly Trapped Random Walk.

DEFINITION 5.1 (Randomly Trapped Random Walk). Let (2, F,P) be
a probability space and (p,)wen a family of trap measures on a probability
space (Q,]}, ]f”) indexed by w € Q. Let p be the mixture of (p,)weq with
respect to P, and Z a simple random walk independent of p. Then the u-
time changed random walk Z[u| is called Randomly Trapped Random
Walk (RTRW) with trap measure .
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DEFINITION 5.2 (Random trapping landscape). Let Z[u] be a RTRW
where g is the mixture of (uy)weq w.r.t. P. Let m = (my)pez + Q —
M1 ((0,00))% be defined by stating that, for each w € €, w(w) is the trapping
landscape of Z[u,,]. 7(w) is called the random trapping landscape of u.

Let P = Pox~! be the distribution of @ on M;((0,00))%. If P is a
product measure, that is P = @), ., P* for some P, € M;(M:((0,00))),
x € Z, then the coordinates of the random trapping landscape (7;).cz are
independent. In this case we say that the random trapping landscape 7 is
independent. If P = @, P for some P € M;(M;((0,00))), then the
(72)zez are ii.d., and we say the random trapping landscape 7 is i.i.d.

As usual we give some examples of RTRWs.

EXAMPLE 5.3 (Bouchaud Trap Model). The symmetric one-dimensional
Bouchaud trap model (BTM) is a symmetric continuous time random
walk X on Z with random jump rates. More precisely, to each vertex x € Z
we assign a positive number 7, where (7,).cz is an i.i.d. sequence of positive
random variables defined on a probability space (€2, F,P) such that
(5.2) lim w"P[r, > u] = c, v € (0,1),c € (0,00).

U—00
Each visit of X to z € Z lasts an exponentially distributed time with
mean 7.

It can be seen easily that the BTM is a RTRW. Its random trapping

landscape is given by

(5.3) (W) = (Vr(w))zezs

where v, is the exponential distribution with mean a. As 7, are i.i.d., the
random trapping landscape 7 is i.i.d.

EXAMPLE 5.4 (Trap model with transparent traps). The trap model
with transparent traps defined in Section 3.1 is a particular case of RTRW.
In Section 8.1 we will study the scaling limits of this process.

The following three examples of RTRW are of geometric nature. The first
(and the easiest) one is studied in this paper, the behavior of the next two
examples will be considered a follow up paper.

EXAMPLE 5.5 (Comb model). The Comb model defined in Section 3.2
is a RTRW. Its scaling limits are given in Theorem 3.5 which we prove in
Section 8.2.
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EXAMPLE 5.6 (Incipient critical Galton-Watson tree). Let T" be a rooted,
regular tree of forward degree g > 1. Let us perform critical percolation on T’
and denote by C, the percolation cluster of the root conditioned on reaching
level n, that is conditioned on having a vertex whose graph-distance from
the root is n. By letting n — oo the trees C, converge to the Incipient
infinite cluster (IIC) (for details of this construction see [22]). The IIC is
an infinite random tree and it can be shown that it has a single path to
infinity, that is, there is a single unbounded nearest neighbor path started
at the root. Such path is called the backbone. The backbone is obviously
isomorphic (as a graph) to N, hence the IIC can be seen as N adorned with
dangling branches. We denote L, the branch emerging from the k-th vertex
of the backbone. Let (Ykﬂc)keN be a simple random walk on the IIC starting
from the root. Let W€ be the projection of Y€ to the backbone. More
precisely, let (WtHC)tEO be a continuous-time random walk taking values in
N defined by stating that W© = k if and only if YLItIJC € L. Then WC
is a RTRW (disregarding for the moment the fact that it takes values on N
instead of Z). In this case the branches (Ly)ren play the role of traps.

EXAMPLE 5.7 (Invasion Percolation Cluster). One can also consider, in-
stead of the Incipient infinite cluster, the Invasion percolation cluster (IPC)
on a regular tree . The construction of the IPC is as follows: Recall that
T denotes a rooted, regular tree of forward degree g > 1. Let (wy)zer be
an i.i.d. sequence of random variables uniformly distributed over (0, 1). Set
79 := {root of T} and

(5.4) "t .=1"U {z:d(z,I") = 1 and w, = min{w, : d(Z",2) = 1}},

where d is the graph distance in 7. That is, Z"*! is obtained from Z" by
adding the vertex on the outer boundary of Z, with the smallest ‘weight’.
The Invasion percolation cluster on 7T is defined as U,enZ". The IPC
will be denoted as Z°°. It can be shown (see [1]) that, as the IPC, the IIC
possesses a single path to infinity. We can define a RTRW WP in the same
way we have defined W€,

5.2. Randomly Trapped Brownian Motion. Finally, we define the ran-
domly trapped Brownian Motion analogously to RTRW.

DEFINITION 5.8 (Randomly trapped Brownian Motion). Let a random
measure 4 be the mixture of (u,)ucq with respect to P, where for each
w € Q, U, is a trap measure of a TBM. Furthermore, let us suppose that u
is independent of the Brownian motion B. Then Blu] is called randomly
trapped Brownian motion (RTBM) with trap measure u.
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ExaMPLE 5.9 (FIN diffusion). Let P = (x;,v;)ieny be a Poisson point
process on R x (0, c0) with intensity measure ydzv='"7dv, v € (0, 1), defined
on a probability space (€2, F,P). For each w € Q, let 1y, == > oy 0py(w) @
v;(w) Leby. By Proposition A.1, the mixture of (py,)weq w.r.t. P exists and
thus there exists the mixture ppin of (fy)weq w.r.t. P.

Recalling Example 4.12, it is easy to see that B[u,| is a time change
of B with speed measure p(dr) = ), v;(w)dy, () (dr). Comparing this with
Definition 2.4, we see that the RTBM corresponding to upin, Blurin], is a
FIN diffusion.

EXAMPLE 5.10 (Spatially Subordinated Brownian Motion). Recall from
(2.1) that §* is the set of Laplace exponents of subordinators. Let F be a
o-finite measure on §* satisfying the assumption appearing in (2.2) and let
(xi, fi)i>0 be a Poisson point process on R x §* defined on a probability
space (2, F,P) with intensity dv ® F. Let (S})i>0, i > 0, be a family of
independent subordinators, Laplace exponent of S? being f;, defined on a
probability space (Q, F, ]f”)

For a given realization of (z;, fi)i>0, we set similarly as in Example 4.14,

(5.5) Ban, g (dz @ dy) =Y 64, (de) ® dS*(y),

i>0

Hence, the measure p(,, r,) is a Lévy trap measure with independent incre-
ments on (Q, F,P).

Using Proposition A.1, we can show that the mixture of (11(z, (w), f;(w)))wen
w.r.t. P,

(5.6) 1SsBM (W, @) = Lz 0), () (@)

is a random measure. The corresponding RTBM is the F-Spatially Subordi-
nated Brownian Motion introduced in Definition 2.2.

6. Convergence of processes. We study now the convergence of var-
ious classes of processes introduced in the previous section.

6.1. Convergence of time changed random walks. We start by presenting
the basic convergence theorems for p-time changed random walks and p-time
changed Brownian Motions. These theorems allow to deduce the convergence
of processes (TRWs, TBMs, RTRWs, RTBMs) from the convergence of their
associated random measures. This, in turn, makes possible to use the well
developed theory of convergence of random measures, see e.g. [18].
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First we need few additional definitions. We say that a random measure
1 is dispersed if

(6.1) p({(z,y) eH:y= f(x)}) =0 almost surely, for all f € Ch(R,R;)

(here Cj stands for the space of continuous functions with compact support).
We say that a random measure p is infinite if u(H) = oo, almost surely.
We say that p is dense if its support is H, almost surely.

We write D(Ry), D(R) for the sets of real-valued cadlag functions on
R4, or R, respectively. We endow these sets either with the standard Sko-
rokhod Ji-topology, or with the so called Mj-topology, and write D(R, Jp),
D(Ry, M;) when we want to stress the topology used. Also D(Ry,U) will
denote D(R ) endowed with the uniform topology. For definitions and prop-
erties of these topologies see [27], Chapters 12 and 13.

Let ;1 be a random measure and € > 0. We define the scaled random
measure S, (u) by

(6.2) Ge(p)(A) == p(e1A), for each A € B(H).

Our first theorem states that the convergence of p-time changed random
walks can be deduced from the convergence of associated measures. As it
does not complicate the proof, we allow u being random.

THEOREM 6.1 (convergence of time changed random walks). Let u°,
e > 0, be a family of infinite random measures supported on Z x N, and
let Z be a simple random walk independent of them. Assume that there
exists a non-decreasing function q : Ry — Ry with lim._0q(e) = 0, such
that, as € — 0, q()S(u®) converges vaguely in distribution to a dispersed,
infinite, dense random measure . Then the corresponding time changed
random walks Z[uf] converge after rescaling to the time changed Brownian
Motion Blpu],

(6.3) (eZ11) o) 10)e20 = (Blule)eo.

in distribution on D(Ry,Jy). Here B is a Brownian Motion independent
of .

The next theorem, which we will not need later in the paper, gives a sim-
ilar criteria for convergence of time changed Brownian Motions. We present
it as it has intrinsic interest and because its proof is a simplified version of
the proof of Theorem 6.1.
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THEOREM 6.2. Let u°, € > 0, be a family of infinite random measures
on H, and let B be a Brownian Motion independent of them. Assume that,
as € — 0, u° converges vaguely in distribution to a dispersed, infinite, dense
random measure . Then the corresponding time changed Brownian Motions
B[uf] converge to Blul,

e—0

(6.4) (Blf]e)e=0 —= (Blult)o,

in distribution on D(R4, Jy).

PROOF OF THEOREM 6.2. As uf converges vaguely in distribution to u,
in virtue of the Skorokhod representation theorem, there exist random mea-
sures (Ji¥)e>o and fi on H defined on a common probability space (Q, F, ]f”),
such that p° is distributed as u®, i is distributed as p and p° converges
vaguely to i1 as e — 0, P-a.s. Without loss of generality, we can suppose that
on the space (Q, F,P) there is defined a one-dimensional standard Brownian
Motion (Bi)>o independent of (fi°).>0 and fi.

First, we show that ¢[i¢, B] — ¢[i, B] in D(Ry, M), P-a.s. as ¢ — 0:
Using that p is a dispersed random measure,

where JA denotes the boundary of A in H. Since Uy ;) is a bounded set,
this implies that for all 0 <t € Q

_ _ 0 _ _ ~
(6.6) O, Bly = i (Uy.p)) = i(Uy(.z)) = ¢[fi, By, P-as.
Since, by [27, Theorem 12.5.1 and 13.6.3], on the set of monotonous functions
the convergence on D(R4, M) is equivalent to pointwise convergence on a
dense subset including 0 and since ¢[i®, B] and ¢|ji, B] are non-decreasing
in t, we know that

(6.7) ¢lp®, Bl — o[, B

in D(R4, My), P-a.s., as claimed.

Since the random measures i° and [ are infinite, the functions ¢[u®, B]
and ¢[f, B] are unbounded. As, by hypothesis, i is dense, then the function
o[, B] will be strictly increasing. Hence, [27, Corollary 13.6.4] allows us to
deduce uniform convergence of ¥, B] to 9|, B] from (6.7).

Using the continuity of the Brownian paths and [27, Theorem 13.2.2], we
get that B[uf]; — Bla]; in the Ji-topology. i° and fi are distributed as
the u® and p respectively, the convergence in distribution of B[uf] to Blu]
follows. O
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PROOF OF THEOREM 6.1. As q(e)&.(u®) converges vaguely in distribu-
tion to u, we can, in virtue of the Skorokhod representation theorem, con-
struct random measures (ii°)c~o and g defined on a common probability
space (Q F,P), such that i€ is distributed as ¢()S.(uf), fi is distributed as
1, and i converges vaguely to i1 as € — 0, P-a.s. Without loss of generality,
we can suppose that on the space (Q ]-" IP’) there is defined a one-dimensional
standard Brownian Motion (B;);>0 independent of (fi€):~0 and fi.

Set Bf := ¢~ 1 B.2,. For each £ > 0, we define a sequence of stopping times

(07)72y by 0§ :=0,

(6.8) op=inf{t>of_:Bf €Z\ {Biz_l}}.

Then, the process (Z})ien defined by Zj := Bfrz is a simple symmetric ran-

dom walk on Z. We define the local time of Z¢ as L®(z, s) := ZZLiJo L ze=|a)}-
Define

(6.9) 0 = q(e) ' S1 (1) (Upe(.9)), s>0,e>0.

Note that q(e) 16,1 (i) is distributed as u. Hence, (¢5):>0 is distributed

as (1 (Upr(.p)))e=0 = (8[u]t)e>0- Hence, denoting 45 := inf{s > 0 : ¢ > t},

we see that for each € > 0, the process (Zfz—)?)tzo is distributed as (Z[uf]¢)¢>0-
The proof of Theorem 6.1 relies on the following two lemmas.

LEMMA 6.3. For each t > 0, there exists a random compact set Ky such
that | J.osupp L¥ (e, e72t) is contained in K.

PRrROOF. By the strong Markov property for the Brownian Motion B, for
each € > 0, (0f — 0},_;)k>0 is an iid. sequence with E[o] — O'ftl] = 1.
Thus, by the strong law of large numbers for triangular arrays, P-almost
surely, there exists a (random) constant C' such that EQUE_Q i < C for all

€ > 0. Thus, for each £ > 0, the support of LF(¢~!-,£72t) is contained in the
support of (-, C'). Therefore, it is sufficient to choose Ky = supp({(-,C)). O

e—0

LEMMA 6.4. (q(e)¢°_2,)iz0 — ([, Bl)iz0 P-a.s. on (D(Ry), My).
PRrOOF. It is easy to see that

(610) Q(e)qgig—Q = 6.1 (ﬁs)(ULE(-,E—Qt)) = ﬂE(UsLE(E—l-,s_Qt))

e—0

By [8, Chapter IV; Theorem 2.1], for each t > 0, P-a.s., e L (e 'z, e 2t) =
{(z,t) uniformly in x. Thus for any n > 0 there exists ¢, such that, if ¢ < ¢,
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we will have that eL(¢~1-,e7%t) < £(-,t) + 7. Note that £(-,t) 4+ n is not
compactly supported. Let h, : H — R be a continuous function which for
every t > 0 coincides with £(-,t) + 7 on K, hy(-,t) < n outside K;, and
hy(-,t) is supported on [inf K; — n,sup K; + 7). Using Lemma 6.3 we find
that eL(e1-,e72t) < hy(-,t). Thus

(6'11) /ZE(UsLE(s*l-,s*Qt)) < /]E(Uhn(~,t))'

As [i is a dispersed random measure, for fixed ¢, @(OUy, (1)) = #(OUy(. ) =
0, P-a.s. For any 6 > 0 and all ¢ small enough (depending on §), as i
converges vaguely to i,

(6.12) = (Un, (1) < iU,y () +0/2.

For each 0 > 0 there exists n > 0 such that (Uy, (1)) < m(Uy.p)) + /2.
Combining this with (6.10)—(6.12), we find that

(6.13) limsup q(e) ¢y, —» = limsup i (U, (1. .~25)) < @i, By

e—=0 e—0
A lower bound can be obtained in a similar way. Hence, after taking union
over 0 <t eqQ,

(6.14) Bllim q(e)-, = olj1 Bl W0 <t € Q] = 1
Since ¢f and ¢[fi, B] are non-decreasing in ¢, (q(£)¢f_s,)i>0 converges to
(¢[f1, Blt)t>0, P-a.s. on (D(R, ), M), finishing the proof of the lemma. [

Theorem 6.1 then follows from Lemma 6.4 by repeating the arguments of
the last paragraph in the proof of Theorem 6.2. O

6.2. Convergence of trapped processes. The class of time changed random
walks is very large, and the associated convergence criteria rather general.
Applying these criteria, however, requires to check the convergence of the
underlying random measures, which might be complicated in many situa-
tions.

As we have seen, the underlying random measures of trapped processes
(TRW, TBM) satisfy additional assumptions. This will make checking their
convergence easier than in the general case.

PROPOSITION 6.5. (i) Let pu°, u be Lévy trap measures with independent
increments (i.e. they are trap measures of some TBM‘s). Then uf converges
vaguely in distribution to u, iff p*(I x [0,1]) converges in distribution to
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p(Ix[0,1]) for every compact interval I = |a, b] such that p({a, b} xR1) =0,
P-a.s.

(i) The same holds true if u* = &.(v°) for a family of trap measures v°
of some TRWs.

Proor. We will use the well known criteria for the convergence of random
measures recalled in Proposition A.2 in the appendix. When p is a Lévy trap
measure with independent increments, the distribution of u([a,b] x [c,d]),
a,b € R, ¢,d € Ry, is determined by the distribution of u([a,b] x [0,1]),
since by definition p([a, b]) is a Lévy process. In particular, the assumptions
of the proposition imply the convergence in distribution of u(A) to u(A)
for every A € A where A is the set of all rectangles I x [¢,d] with I as in
the statement of the proposition and d > ¢ > 0.

As p(I) is a Lévy process, we have A C 7, (see (A.5) for the notation).
Moreover, it is easy to see that A is a DC semiring. The fact that u° are mea-
sures with independent increments combined with the well known criteria for
vague convergence in distributions of random measures, see Proposition A.2
in the appendix, then implies claim (i).

The proof of claim (ii) is analogous. It suffices to observe that the distri-
bution of v¢ is determined by distributions of u¢([a,b] x [0,1]), a,b € R, as
well. O

We apply this proposition in few examples.

EXAMPLE 6.6 (Stone’s theorem). Let p. € M(R), € > 0, be a family of
measures on R. Assume that, as € — 0, p. converges vaguely to a measure
p € M(R) whose support is R. Set p. = p. ® Leby, p = p ® Leby. We
have seen in Example 4.12 that p. and p are Lévy trap measures with
independent increments, and that Bu.] and B[u| are a time changes of
Brownian motion with speed measure p. and p, respectively. Let a,b be
such that p({a,b}) = 0 and thus p({a,b} x Ry) = 0. By vague convergence
of pe to p, pe(la,b] x [0,1]) — p([a,d] x [0, 1]). Also u is a dispersed, infinite
and dense random measure (because the support of p is R) Therefore, by
Proposition 6.5, pz converges vaguely to u, and thus, by Theorem 6.2, B[]
converges in distribution to Blu] in D(R4, Jp).

This result is well known and was originally obtained by Stone [26]. His
result states that convergence of speed measures implies convergence of the
corresponding time-changed Brownian Motions. Thus, Theorem 6.2 can be
viewed a generalization of Stone’s result.

EXAMPLE 6.7. Let u, Z[u] be as in Example 4.4 (a continuous-time
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random walk & la Montroll-Weiss). Then, using Theorem 6.1 and Proposi-
tion 6.5, we can prove that (eZ[u].—2/+,)¢>0 converges in distribution to the
FK process. (This result was previously obtained in [23].)

Indeed, let K, be a positive stable law of index ~. It is easy to see that
is a trap measure corresponding to a TRW. Example 4.13 implies that FK
process is a trapped Brownian motion whose corresponding trap measure
prk is Lévy. Moreover, from the fact that ppk is defined via Poisson point
process whose intensity has no atoms, we see that for every a € R, upk(a x
R,) =0, P-as.

To apply Proposition 6.5 we should check that £%/7&.(u)([a,b] x [0,1])
converges in distribution to (b — a)"/7 K. However,

be~l g1

(6.15) 216 () (0,6 x 0,1) == 37 Yl

z=ae— ! j=1

where, by their definition in Example 4.4, the (Sé‘):cez,jeN are i.i.d. random
variables variables in the domain of attraction of the y-stable law. The clas-
sical result on convergence of i.i.d. random variables (see e.g. [16]) yields
that (6.15) converges in distribution to (b —a)'/7K.. On the other hand, it
is easy to see that upk is an infinite, dispersed and dense random measure.
The convergence of processes then follows from Theorem 6.1.

We finish this section with a lemma that shows that the trap measures of
TBM’s are always dispersed, which simplifies checking the assumptions of
Theorem 6.1

LEMMA 6.8. Let u be a Lévy trap measure with independent increments
defined on a probability space (0, F,P) and f € Co(R,R;). Then, P-a.s.

(6.16) p({(z,y) e H:y = f(x)}) =0,
that is p is a dispersed trap measure.

PROOF. Let I = [(i —1)27™,i27"), and set m™" = inf{f(z) : z € I},
M™ = sup{f(x): x € I"'}. Let B™" be the boxes

(6.17) B = I % [m™, M™Y.
Then for all n, we have

(6.18) {(zy) eH:y = f(x)} C UBT“’,
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and Bnth2i-lypntl.2i ¢ B which implies that p(U; B™) is nonincreasing
in n.

The uniform continuity of f implies that for each § > 0, there exists ng,
such that for each n > ns and i € Z, M™ — m™* < §. Since u(B™) is
distributed as pu(I™% x [0, M™" — m™]), u(B™") is stochastically dominated
by p(I™t x [0,4]). If I Nsupp f = 0, then M™* = m™* = 0. Hence, writing
J for the 1-neighborhood of supp f, in the stochastic domination sense,

(6.19) M(UBM) < p(J % [0,0)),

)

6—0 n—00

Since u(J x [0,6]) — 0, P-a.s., we see that u(U;B™") =" 0 in distri-
bution. Together with the monotonicity of u(U; B™"), this implies that the
convergence holds P-a.s. The lemma follows using (6.18). O

7. Convergence of RTRW to RTBM. In this section we give the
proofs of the convergence theorems stated in Section 2. First we prove The-
orem 2.7, which gives a complete characterization of the set of processes that
appear as the scaling limit of such RTRWs. We then provide the proofs of
Theorems 2.9, 2.11, 2.15 and 2.17. We recall that these theorems formulate
criteria implying the convergence of RTRWs to several limiting processes.
Remark, however, that our goal is not to characterize completely their do-
mains of attraction. Instead of this we try to state natural criteria which
can be easily checked in applications.

7.1. Set of limiting processes. This section contains the proof of Theo-
rem 2.7. We need a simple lemma first.

LEMMA 7.1. Let X be a RTRW with i.i.d. trapping landscape 7™ and
random trap measure p. Assume that for some non-decreasing function p(g)
satisfying lime_, p(e) = 0, the processes X := eX,(e)-1. converge in distri-
bution on D(Ry, J1) to some process U satisfying the non-triviality assump-
tion limsup,_, o |U¢| = 00 a.s. Then the family of measures p° := p(e)S. ()
1s relatively compact for the vague convergence in distribution.

PRrROOF. By [20, Lemma 16.15], a sequence p° of random measures on H
is relatively compact for the vague convergence in distribution iff for every
compact A C H the family of random variables (u°(A))s>0 is tight in the
usual sense.

Assume now, by contradiction, that (u°) is not relatively compact. Then
there exists A C H compact and § > 0 such that
(7.1) limsup P[u“(A) > K] > 6 for all K > 0.

e—0
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Let Z be a simple random walk on Z independent of y such that X = Z[u],

and let L(-, ) be its local time. Since, uniformly in e € (0,1), eUp. .2y LN

H, it is possible to choose t and M large such that

(7.2) hminﬂP[A C Uepoe2py, sup [eZ(s)] < M} >1/2.
e—0 ’

s<e—?t

Since the simple random walk Z and p are independent, this implies, using
the identity p(£)¢[ﬂ7 Z]t£*2 = NE(UaL(~,a*2t))7

(7.3) limsupP[p(s)gZ)[u, 2]z > K, sup |eZ(s)| < M} > ¢/2.
e—0 s<e—2t

and thus

(7.4) limsupIP’[z/J[u, Z)gp(e)-1 <te 2, sup |eZ(s)| < M} >¢e/2.
e—0 s<e—2t

As X€ — 5Zw[# )yt and K is arbitrary
) p(e

(7.5) limsupIP’[ sup |[X(s)| < M| > ¢/2,
e—0 s<00
which contradicts the non-triviality assumption on the limit U. O

PROOF OF THEOREM 2.7. Let p be the random trap measure of the
RTRW X, and pf = p(e)S.(u). In view of Lemma 7.1 and the assump-
tions of the theorem, the family (u) is relatively compact. Therefore, there
is a sequence ¢ tending to 0 as kK — oo such that u®* converges vaguely in
distribution.

To show the theorem we should thus first characterize all possible limit
points of random trap measures of RT'RW’s with i.i.d. trapping landscape.

LEMMA 7.2.  Assume that pu° converges as € — 0 vaguely in distribution
to a non-trivial random measure v. Then one of the two following possibili-
ties occurs:

(i) p(e) = €2L(¢) for a function L slowly varying at 0, and v = cLeby,
c € (0,00).

(ii) p(e) = e“L(e) for a > 2 and a function L slowly varying at 0, and v
can be written as

2
(7.6) V= CIMF/I? + [1SSBM:
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where ¢ € [0,00), u%/; s the random measure corresponding to the
FK process defined in Example 4.13, and NISFSBM is the random measure

of SSBM process given in Example 5.10, u%/Ka and MESBM are mutually
independent. Moreover, the intensity measure F determining the law
of 1&gy satisfies the scaling relation (2.8).

In the both cases the limit measure v is dense, infinite and dispersed.

We first use this lemma to finish the proof of Theorem 2.7. By Lemmas 7.1
and 7.2, we can find a sequence ¢ tending to 0 as k — oo such that u® — v
vaguely in distribution and v is as in (i) or (ii) of Lemma 7.2, and v is
dense, dispersed and infinite. Therefore, by Theorem 6.1, the family X*¢ of
processes converges in distribution on D(R,, J;) along the subsequence ¢y,
to a RTBM X[v]. As we assume that the limit lim._,o X¢ = U exists, we see
that U = X|pu].

The theorem then follows from the fact, that if (i) of Lemma 7.2 occurs,
then U = X|[v] is a multiple of Brownian motion and thus (i) of the theorem
occurs. On the other hand, if (ii) of Lemma 7.2 occurs, then U = X[v] is a
FK-SSBM mixture with the claimed properties. O

It remains to show Lemma 7.2.

PROOF OF LEMMA 7.2. The proof that p(¢) must be a regularly vary-
ing function is standard: For a > 0, A € B(H) bounded, observe that
Gea(p)(aA) = &-(11)(A). Therefore,

v(A) = lim p(e)S:(1)(A)

. pE)
(7.7) = il_rf(l) p(az) p(ag)Bac(p)(ad)

- . ple)
= vlod) iy £

As both v(A) and v(aA) are nontrivial random variables, this implies that

the limit lim._,g pp(gfg) = ¢}, exists and is non-trivial. The theory of regularly

varying functions then yields

(7.8) ple) =€ Le)

for > 0 and a slowly varying function L. Inserting (7.8) into (7.7) also
implies the scaling invariance of v,

(7.9) a®v(A) faw v(aA), A e B(H),a > 0.
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We now need to show that v is as in (i) or (ii). To this end we use the
theory of ‘random measures with symmetries’ developed by Kallenberg in
[19, 21]. We recall from [21, Chapter 9.1] that random measure £ on H is
said separately exchangeable iff for any measure preserving transformations
fi of R and fy of Ry

(7.10) co(fief) e

Moreover by [21, Proposition 9.1], to check separate exchangeability it is
sufficient to restrict f1, fo to transpositions of dyadic intervals in R or R,
respectively.

We claim that the limiting measure v is separately exchangeable. Indeed,
restricting € to the sequence €, = 27", taking I1,Io C R and Jy,Jo C R4
disjoint dyadic intervals of the same length and defining f1, f2 to be transpo-
sition of I, I, respectively Ji, Jo, it is easy to see, using the i.i.d. property
of the trapping landscape 7 and independence of s'’s, that for all n large
enough.

(7.11) p(En)Se (1) 0 (f1 ® f2) 12 p(en) S, ()

Taking the limit n — oo on both sides proves the separate exchangeability
of v.

The set of all separately exchangeable measures on H is known and given
in [21, Theorem 9.23] which we recall ([21] treats exchangeable measures on
the quadrant R x R4, the statement and proof however adapt easily to H).

THEOREM 7.3. A random measure & on H is separately exchangeable iff
almost surely

= ﬂmemew+Zﬁmw@m@

7‘]
(7.12) +Zg a, 0i, Xi) 3 (7i, i) +Zh a,0;)(6-, ® Leb, )

—i—Zg e 0',X]k le y +Zh' , 0' Leb®(5774),

for some measurable functions f > 0 on ]Ri, 9,9 >00nR3, and h,h',1 >0
on R , an array of i.i.d. uniform random variables (¢ j)i jen, some indepen-
dent umt rate Poisson processes (7j,6;);, (O'gj,X;j)j, 1 €N, on H, (T],Qg)],
(0ijsXij)js @ € N on R2, and (pj,p;,nj)j on H x Ry, and an independent
pair of random variables o,y > 0.
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Ignoring for the moment the issue of convergence of the above sum, let
us describe in words various terms in (7.12) to make a link to our result.
For this discussion, we ignore the random variable o and omit it from the
notation (later we will justify this step).

The term >, ()0, , has the same law as the random measure
> i Zk0z,. y, for a Poisson point process (z, Y, 2;) on H x Ry with intensity

dx dy11;(dz) where the measure II; is given by
(7.13) I(A) = Leb, (I"'(4)), A€BRy).

Recalling Example 4.13, this term resembles to the random measure driving
the FK process, the z-component of the intensity measure being more general
here.

Similarly, the terms 3, ; 9(0s, §ir)0(7i, oir) + 32, 1(0:) (7, @ Leby.) can be
interpreted as the random measure ,ugSBM defined in Example 5.10: 7;’s cor-
respond to x;’s, and f; = fh(Gi)ﬂg(oi,.) (recall (2.1), (7.13) for the notation).
The intensity measure F used in the definition of SSBM is thus determined
by functions A and g.

The terms with ¢’, b’ can be interpreted analogously, with the role of -,
and y-axis interchanged. Term ~ Leby will correspond to Brownian Motion
component of v (recall Example 4.12). Finally, the term containing f can
be viewed as a family of atoms placed on the grid (7;); x (7});; we will not
need it later.

We now explain why the limiting measure v appearing in Theorem 2.7
is less general than (7.12). The first reason comes from the fact that the
trapping landscape is i.i.d. This implies that v is not only exchangeable in
the z-direction, but also that for every disjoint sets A1, As C R the processes
v(Ay), v(Ag) are independent. As the consequence of this property, we see
that o and v must be a.s. constant (or f, h, k', g,¢’,1 independent of o). We
can thus omit « from the notation.

Further, this independence implies that A’ = ¢’ = f = 0. Indeed, assume
that it is not the case. Then it is easy to see that, for A, As disjoint, the
processes (A1), v(As) have a non-zero probability to have a jump at the
same time. On the other hand, for every w fixed, v(A;)(w) and v(As)(w)
are Lévy processes (they are limits of i.i.d. sums), and therefore, for every
w, If”-a.s, they do not jump at the same time, contradicting the assumption.

The previous reasoning implies that v = v1 +v9 +v3+1v4 where vy, ...,y
are the Brownian, FK, FIN and ‘pure SSBM’ component, respectively (by
pure SSBM we understand SSBM with F supported on Laplace exponents
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with d = 0, see (2.1), cf. also Definition 2.4)

v1 = v Lebp, vs3 =Y h(0;)(6;, @ Leby),

7.14
(1) va = 1K), 40 v =Y 9(0i,&x)5(7i, 0ik).
p

ik

Observe that the functions [, g, and h are not determined uniquely by the
law of v. In particular for any measure preserving transformation f of R,
I and [ o f~! give rise to the same law of v, and similarly for h and g(0,-).
Hence we may assume that [, h are non-increasing, and ¢ is non-increasing
in the second coordinate.

The final restriction on v comes from its scaling invariance (7.9) and the
local finiteness. To finish the proof, we should thus explore scaling properties
of various components of v.

The Brownian component vq is trivial. It is scale-invariant with o = 2.
To find the conditions under which the FK component s is scale-invariant,
we set A = [0, z] x [0,y] and compute the Laplace transform of v5A. To this
end we use the formula

(7.15) E[e™/] = exp {—A1- e_f)},

which holds for any Poisson point process m on a measurable space E with
intensity measure A € M(E) and f : E — R measurable. Using this formula
with 7 = (p;, p;, i) and f(p, p',n) = La(p, p')Al(n) we obtain that

(7.16) Ele~*24) = exp{ —xy /00(1 - e_M("))dn}.
0

The scaling invariance (7.9) then yields

(7.17) a2/ (1 — e NMyay = / (1 — e~ 2"y, VA, a >0,
0 0

implying (together with the fact that  is non-increasing) that I(n) = ¢n~/2,

for a ¢ > 0, @ > 0. By [21, Theorem 9.25], v is locally finite iff fooo(l A
l(n))dn < oo, yielding a > 2. Finally, using the observation from the discus-
sion around (7.13), we see that vy = cu%é? .

The component v3 can be treated analogously. Using formula (7.16) with

T = (7;,0;) and f = Ayh(0)1j9 4 (7), we obtain

(7.18) E[e~ 4] = exp{ - :r/oo(l — e_/\yh(”))dv}.
0
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The scaling invariance and the fact that h is non-increasing then yields
h(0) = cf'=%, for ¢ > 0, a > 1. Using [21, Theorem 9.25] again, v3 is locally
finite iff [;(1 A h(6))df < oo, implying o > 2.

The component vy is slightly more difficult as we need to deal with many
Poisson point processes. Using formula (7.16) for the processes (o;;); and
(xij)i we get

(7.19) B 4400, ()] = exp { = 3 Vg | (1 ey}
i
Applying (7.16) again, this time for processes (7;), (;), then yields
(7.20) E[e~ 4] = exp{ — :U/OO (1- e*yfooo(lfe_kg(em)dx)dﬂ}.
0
Hence, by scaling invariance and trivial substitutions, g should satisfy
/Oo (1 e fooo(l—e_k"’(e’”)dx)dg
0

(7.21) - B
— / (1 — e Jo Qe 0/ g
0

for every a,y, A > 0.
By [21, Theorem 9.25] once more, vy is locally finite iff

(7.22) / {1 /(1 A g0 ))dx }db < oc.
We use this condition to show that for v4 the scaling exponent must satisfy

a > 2. As a > 1 is obvious, we should only exclude « € [1,2]. By (7.21) and
the fact that Laplace transform determines measures on Ry,

Leb. {0 : /(1 — e 90 dy > u}

(7.23)
= Leb {9 : /(1 — 7 "90/ax/a)y gy > u}
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For some ¢ > 1, c ' (1 Ax) <1 —e % < 1A x, therefore for v € (0,1)

K (u) := Leb {0 : /(1 Ag(0,x))dx > u}
> Leb {0 : /(1 — e 90Xy > u}

= Leb {60 :/ 1— e @ “90/ax/a)ygy >y
o 40 [ Jix = u)

> aLeb {0 : /(ao‘ A g(0,x))dx > ca® tu}

> VO Thy, (9 / (1A g(8,x)dx > c}

— u K (o),
where for the last inequality we set a > 1 so that a® 'u = 1. Using (7.24),
it can be checked easily that the integral over 6 in (7.22) is not finite when
a € [1,2], implying a > 2.

To complete the proof of Theorem 2.7, it remains to show the scaling
relation (2.8). This is easy to be done using the correspondence of v3 + vy
and NISFSBM- Indeed, let MISFSBM7 W(z;,f,) e as in Example 5.10. By scaling
considerations,

law

(7.25) 0 "Gt lh(zy,fi) = Maifaog i)
from which (2.8) follows immediately.

The fact that v is dispersed follows from Lemma 6.8, as in the both cases,
(1) and (ii), v is a trap measure of RTBM. Density of v can be easily deduced
from its scaling invariance and infinitness of v is obvious. O

7.2. Convergence to the Brownian Motion. Here we present the proof of
the convergence to Brownian Motion stated in Theorem 2.9. For reading the
proof it is useful to recall the notation introduced when defining RTRW in
Section 5.1.

PrOOF OF THEOREM 2.9. Let p be the random trap measure of the
RTRW X under consideration. We recall that s’ stands for the duration
of the i-th visit of X = Z[u] to z € Z.

We use the multidimensional individual ergodic theorem, which we recall
for the sake of completeness in the appendix, Theorem A.3. We apply it
for X = R%Z*% Q the distribution of (s%),,cz under P ® P, and G the
cylinder field (here we extend s, to negative i’s in the natural way). We define
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(0i5)ijez R%XZ — R%XZ via 0y ((s%)z,iez) = (siﬁg)z’iez. It is clear from
the construction that @ is stationary under ¢, ;. As the trapping landscape
and (st);, z € Z, are i.i.d., Q is ergodic with respect to every 0z; with  # 0.
Hence, the invariant field is trivial. The multidimensional ergodic theorem
then implies that for any two intervals I,J C R

1 i M—oo = i1
(7.26)  — SN s S IJERE) L = [I)1J|M,  Q-as.

zZel i:%GJ

Therefore, 2GS (u)(I x J) — |I||J|M, and thus e2&.(u) converges to M x
Lebp, P x P-a.s. This together with Theorem 6.1 completes the proof. [J

7.3. Convergence to the FK process. Here we present the proof of Theo-
rem 2.11. As usual, p will stand for the random trap measure of the RTRW
under consideration.

Proor oF THEOREM 2.11. To show the convergence in P™-distribution,
in P-probability, we will show the equivalent statement, see [20, Lemma 4.2]:

For every sequence ¢, there exists a subsequence ¢,, such that
(7.27) as k — oo, (EXqFK(snk)*lt)tEO converges to the FK process with
parameter v = 2/, in P™-distribution, P-a.s.

We thus fix a sequence €, — 0 and check (7.27) for a subsequence &, =:
€, satisfying

(7.28) STEPE[(1 - #(grk(Er)’] < oo
k=1

By Theorem 6.1, it is sufficient to show that uz, = grk(£x)Ss, (1) converges
vaguely in distribution to gy, P-a.s., where pify is the driving measure of
the FK process introduced in Example 4.13, and p is the trap measure of the
RTRW X. For every given w € , u = p(w, @) is the trap measure of a TRW.
We also know that iy, is Lévy and has independent increments. Therefore
we can apply Proposition A.2, and only check that for every rectangle A =
[#1, 2] X [y1,y2] with rational coordinates, P-a.s, pz, (A4) LimiN pii (A) (it
is easy to see that such rectangles form a DC semiring and are in 7;;}()
ppk (A) has a ~-stable distribution with scaling parameter proportional to
Lebg(A) and thus its Laplace exponent is (x2 —x1)(y2 —y1)A?. The Laplace
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transform of p.(A) given w (and thus given the trapping landscape (7).cz)
is easy to compute. By the independence of s.’s,

x2€_1

(7.29) Ele MW= [ #e(harx(e)” 2.

r=x1e!

Hence, taking the — log to obtain the Laplace exponent, we shall show that
P-a.s, for every 1 < x2, y1,%2 € Q, 0 < A € Q,

~—1
T2E),
(7.30) & a—y1) > (—logm(Agrk(Er))) % (g2 —y1) (w2 —21) N,
~—1
T=T1Ey,

As Q is countable, it is sufficient to show this for fixed x’s, y’s and A. This will
follow by a standard law-of-large-numbers argument as 7,’s are i.i.d. under
P. To simplify the notation we set x1 = 0, zo = 1; y’s can be omitted
trivially.

We first consider A < 1 and truncate. Using the monotonicity of 7, A < 1,
and the Chebyshev inequality

(7.31)  P[ sup (1—#(qrx(Aex))) > & < E°E[(1 — 7 (ark (Er)))%)-
0<z<e, !

(7.28) then implies that the above supremum is smaller than & for all k
large enough, P-a.s. Hence, for all k large

1

&> (—log 7. (Agrk (5)))
(7.32) 7=

=& (—log ((1 - &)V #.(Ark(Er)))-

=0
For any d > 0 there is ¢ small so that
(733)  (1—2)<—-logz<(1—2)+(3+0)(1—2)° z€(l-gl]
The expectation of the right-hand side of (7.32) is bounded from above by

5];2]}3[@; A (1 — ﬁz()\qFK(ék)))] + CglzzE[(ék A (1 — ﬁz(AqFK(ENk))))z]

(7.34) < & %E[1 — . (Agrk (k)] + 0(1),
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as k — oo, by (2.16). The lower bound for the expectation is then

& 2E[ex A (1 — 72 (Agrk (8k)))]

(7.35) > & °E[1 — 7. (Agrk (5x))] + &, Pl (Agrk (8x)) < 1 — &)

The second term is again o(1) as k — oo by a similar estimate as in (7.31).
Moreover,

L(AgrK (€k)) k—oo
I'(grx (€k))

by the fact that I' is regularly varying. Therefore the expectation of the
right-hand side of (7.32) equals A7.

To compute the variance of the right-hand side of (7.32), we observe that
the second moment of one term is, for k£ large, bounded by

(7.36) & K[l — 7. (Aqrx (83))] = A7,

(7.37) 2E[(& A (1 — 7 (Agrk (8x))))?] < 2E[(1 — 7. (qrk(ER)))7] = 0(&),

as k — 0o, by (2.16). Since the first moment of one term is O(£3), by the
previous computation, we see that the variance of the right-hand side of
(7.32) is bounded by

(7.38) CEPE[(1 — 7. (grk(80))) 7]

which is summable over k, by (7.28). This implies the strong law of large
numbers for (7.32) and thus (7.30) for A < 1. For A > 1 (7.30) follows from
the analyticity of Laplace transform. This proves (7.30) and thus the first
claim of the theorem.

To prove the second claim of the theorem, it is sufficient to repeat the
previous argument with £, = k~1+3. From the assumption of the theorem
then follows that e+ °E[(1 — ﬁ(qFK(E)))Q] = 0(1), and thus

(7.39) &CE[(1 - ﬁ(qFK(ék)))2] = 0(&17%) = (K112,

and hence (7.28) holds. Therefore P-a.s. holds along &x. To pass from the
convergence along £ to the convergence as € — 0, it is sufficient to observe

that, since é,:j_l — E,;l LimiccN 0, for any rectangle A and € small enough there
is k such that &.(p)(A) = Sz, (1) (A4). O

7.4. Convergence to the SSBM process. Next we prove Theorem 2.15.
Again, p stands for the random trap measure of the RTRW X under con-
sideration.
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PROOF OF THEOREM 2.15. The proof is based on the following lemma.

LEMMA 7.4. There exists a probability space (), F, ]f’i) and a family of
trap measures (i5;)e> wEQ on another probability space (Q,F,P) mdexed by
@ € Q, such that, when ji¥, € > 0, denotes the mizture of i, w.r.t. P, the

following conditions holds:

(a) For every @ € Q and € > 0, [i§, is a trap measure of a TRW, and ﬂg
is a trap measure of a TBM.

(b) For every e > 0, ¢ is distributed as .

(c) i° is distributed as pggpy- )

(d) q(£)&:(1i5) converges vaguely in P-distribution to i as e — 0, for
P-a.e. .

We ﬁrst finish the proof of Theorem 2.15 using the previous lemma. As,
by (a), ,uw is a Lévy trap measure for every @, it is dlspersed trap measure for
every w, by Lemma 6.8. By Assumption (L), u and ,LLSSBM are P P-infinite.
Hence, due to (a)—(c) of the last lemma, (fi5)->0 are infinite measures, P-a.s.
From the scahng relation (2.25) one further deduces that F is not a finite
measure, so fi° is P-a.s. dense. Thus, we can apply Theorem 6.1 and deduce
from (d) the P-a.s. convergence in P-distribution of (aZ[,u,w]q(a) 11)t>0 to
(B[2]¢)i>0- By (b),(c) of the last lemma, for every e > 0, Z[u] is distributed
as Z[pif], and Blugep,| is distributed as B[i°], this implies the claim of the
theorem. O

PRrROOF OF LEMMA 7.4. The proof of Lemma 7.4 is split to two parts. In
the first, we construct the coupling that satisfies (a)—(c) of the lemma. In
the second part, we prove that this coupling satisfies the convergence claim

(d).

Construction of the coupling. We consider a probability space
(1, F1,P1) on which we construct a Poisson point process (x;,v;)ien on
R x (0,00) with intensity yv 7" ldrdv. For w € Qi, we define p(w) =
510 iG> and V(w) € D(R) by Vo(w) = 0 and Vi(w) —Va(e) = pl(a, b))(w),
a < b, so that V is a two-sided ~y-stable subordinator.

On the same probability space, we construct for every € > 0 a families
of non-negative random variables (m$),cz, such that (m%).cz has the same
distribution as (m(7;)).ecz. Similarly as in (2.19), we define V¢ € D(R) by

(7.40) ve—do z€|0,1),
Z?xﬁrl m?’ z <0.
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By Assumption (HT), using Remark 2.13, d(s)_lv;ilx converges in distri-
bution on (D(R), J;) to V. By Skorokhod representation theorem we may
choose (m%); . so that this convergence holds Pq-a.s., and we do so.

For w € Q; for which al/VY/f_l.(w) — V(w), we fix an injective mapping
It (2) : Z — N which satisfies

(7.41) £z =0 x;, d(e) " ms. =0 v, for every i € N,

with z¢ := (I5)71(i), i € N, & > 0. This is possible by the matching of jumps
property of the Jj-topology (see e.g. [27, Section 3.3]). Remark that, as I
is not necessarily surjective, z; is not defined for all ¢ and . On the other
hand, (7.41) implicitly requires that, for every i € N, 27 is defined for all e
small enough.

To proceed with the construction we need a simple lemma.

LEMMA 7.5. Let (v:)es0 be such that ve — v as e — 0. Then
(7.42) U, (rde)vey 220

PROOF. Let t(¢) be defined by d(t(e)) = d(¢)ve or equivalently ¢(e) :=
d=1(d(e)v.) (recall that d is strictly decreasing and continuous). Then, using
the function ¢2 introduced in (2.9),

\Ija(ﬂ_d(s)vg) — Efl (1 _ / efq(s)/\uﬂ,d(s)vg (du))
R4

+

_ ! 1/ —evet(e) Lg(t(e)Mu_d(1(e)) (4
(7.43) < k. A “))

() Ve \ T _141/4 d(t(e))
= ( ) O-(m,s)_vjrl(\llt(s)(ﬂ- ))
t(e)
:<t(6)>71+1051101+1/7 _i(ffll,:l/v(

(i)

€

0, (Wd(t(a))))).

As d(g) and thus d~!(¢) are regularly varying,
tie)  dH(ved(e)) =0

44 Be)_ -,
(7:44) e T EdE) "
Hence,

Ly
(7.45) (tf))”*lvg“ =01,
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and similarly

[ €V \ TFHT &m0
(7.46) 0. ( ) =0
t(e)
and thus o T/7 )_ ,_converges to the identity. Assumption (L) together
v;/ %Q) ~+
with ¢(e) — 0 and (2.25) then implies the lemma. O

The space C(R,), and thus § C C(R,), endowed with the topology of
uniform convergence over compact sets is separable. It is a known fact that
in the space §* the pointwise convergence and the uniform convergence over
compact sets coincide. (Recall §* is the space of Laplace exponents. When
the Laplace exponents converge pointwise to an element of §*, the corre-
sponding probability measures converge weakly, which in turns gives the
uniform convergence over compacts.) We deduce that §* with the topology
of pointwise convergence is also separable.

We further consider a measurable space ({22, F2) and construct a proba-
bility kernel P, from € to Qs, and §F*-valued random variables (¢5).cz >0,
(fi)ien on Q9 such that under P4 the random variables (¢/),cz are indepen-
dent for every € > 0, ¥; has the same distribution as \Ps(ﬂ;ni(w)), and f;,
i € N, are i.i.d. with marginal 1. As vf := d(s)_lm% — v;, by Lemma, 7.5,

(7.47) e = a;fj/ f,,  foralli€N,
in distribution on §*. Using the separability of §* and thus of (3*)%, by
Skorokhod representation theorem, we may require that ¢’s are such that
this convergence holds [P§-a.s.

We take Q = Q; x Qo, F = F1 ® F» and we define P to be a semi-direct
product

(7.48) PlA] = /Q P [{ws : (w1, wn) € APy (duwr).

For @ = (w1, ws) € ) we define sequences of probability measures (75(©)).ez,
€ > 0, by requiring that

(7.49) Ve (m3 (@) = ¢3(@).

This determines 75 (w) uniquely, because U, is an affine transformation of
the Laplace transform. Since (m$), has the same distribution as (m(7;)).
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and (¢%), has the same distribution as (\If(Tr;ni)) 2, it follows that for every
e >0, (7%), has the same distribution as (7).

Finally, we set i, to be the trap measure on (€, F,P) with the trapping
landscape (75(@)),, and define i to be mixture of i w.r.t. P. From the
previous discussion it is obvious that ¢ satisfy (a),(b) of the Lemma 7.4.
We define

-0 __
(750) Mo = M(Ii(wl)’gitxz—ﬁfi(wl))
(see Example 5.10 for the notation) and set i° to be mixture of il w.r.t. P.
The measure i’ clearly satisfies (a),(c) of the lemma.

P-a.s. convergence of it5,. We need to show that P-a.s., the trap mea-
sures p(g)&.(fis) converge to the Lévy trap measure i vaguely in distribu-
tion. Using Proposition 6.5, it is sufficient to check that

(7.51) p(e)G: () (1 x [0,1]) <=2 A2(1 x [0,1])

P-a.s., in distribution, for every interval I = [a,b] whose boundary points
are not in the set {x; : i € N}. Computing Laplace transforms, and taking
—log, the last display is equivalent to

(152) = 3 <o (H@)(p(EN) T YT o UL H@W).

z:ze€el ix; €1

for all A > 0,P-a.s.
We fix 4, > 0 (depending on @) such that

Qi €1

This is always possible as V' is an increasing pure jump process and V(b) —
V(a) is P-a.s. finite. We define a finite set J := {i : x; € I,v; > §'}. We
consider ¢ small enough so that zf is defined for all ¢ € J, and set J& = {zf :
i € J}. We consider separately the sum over J and its complement.

We start with the sum over J. Observe that as the boundary points of I
are not in {z;};, €2; € I for all € small enough. By the coupling construc-
tion, more precisely by (7.47) and (7.49), using that J is finite and some
elementary analysis, we see that for 6, ¢’ fixed, P-a.s.,

(7.54)
- Z e log (75(@)(p(e)N)) 29, Z i—ti/vflw)( ) VA > 0,P-as.

zeJe icJ
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The contribution of ¢ ¢ J might be neglected on the right-hand side of
(7.52). Indeed, by Remark 2.14 and (7.53),
(7.55)

1+1 - - 1
0< Y T @M= Y v AN <A Y w<a
i¢Jax;el i¢Jaxel i¢J:x;el

Finally, the contribution of the sum over z ¢ J¢ on the left-hand side of

(7.52) is asymptotically negligible. Indeed, as J is finite, '/ Tmg. — v; for

every i € J, and £/ TVE . converges to V, it follows that for € small enough

(7.56) die)™t > mE <28
ze€e—1I\J=

—0
It follows that mS < 26d(e) and thus mSp(e) —— 0, for every z ¢ J°. From

&€

m(75) = m, it follows that 75(p(e)A) > 1 — mp(e)A. Using the inequality
—logz < 2(1 — x) which holds in some interval (¢, 1|, we obtain

0<— 3 g (R@pEN) <2 3 e 'mipeA

zee~11\Je zee~11\Je
(7.57) ce~ I\ ce~ 11\
=27 )T mE <4,
zee~1I\J=
by (7.53) again. This finishes the proof. O

7.5. Convergence to FIN. Since the FIN diffusion is a special case of the
SSBM (see Definition 2.4), we can specialize Theorem 2.15 to obtain criteria
for the convergence of a rescaled RTRW with i.i.d. trapping landscape is the
FIN diffusion. Here we present the proof of such convergence as stated in
Theorem 2.17. We recall that p is a trapping measure of a RTRW X = Z[u]
with an i.i.d. random trapping landscape 7 whose marginal is P.

PROOF OF THEOREM 2.17. Due to Definition 2.4 and the scaling prop-
erty (2.24), we only need to verify Assumption (L) with F; = §)., . For all
positive x, it holds that x — %2 < 1—e7?® < x. Inserting this inequality in
the definition of ¥, we obtain
(7.58)
et (Ag()m(m9) = 5q(e)*Nma(r®))) < W (x¥))(N) < e Ag()m(x ).

Taking the limit ¢ — 0 in this inequality, recalling q(¢) = ed(¢) ™!, we obtain
using the assumptions of the theorem,

(7.59) lim U, (7)) (\) = A

e—0

in distribution. This completes the proof. ]
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8. Applications. In this section we make use of the previously devel-
oped theory to prove Theorems 3.2 and 3.5.

8.1. The simplest case of a phase transition. Recall from Definition 3.1,
that the trap model with transparent traps is defined using two positive
parameters «, (3, a family (7;)zez of i.1.d. random variables satisfying 7, > 1
and

(8.1) lim u*P(19 > u) = c € (0, 00),

U— 00

and its i.i.d. trapping landscape w = (7;),ez, where
(8.2) To(w) == (1 = 7o(w)?)d1 + 72 (w) 6, (w)-

In words, given 7,.’s, at site x the walk is trapped for time 7,, with probability
To A , otherwise it spends just a unit time at x. Here we present the proof of
Theorem 3.2.

REMARK 8.1. For the sake of simplicity, during the computations we
will replace the traps m, := (1 — 7{6)51 + T;ﬁ&z by (1 — T;ﬁ)(SO + 75’85%.
It should be clear that the asymptotics should be the same in both cases.

PROOF. Directly from the definition of the model, m(7,(w)) = 7. (w)' =7,
and thus

(8.3) lim mﬁﬁ”[m(ﬂ'z) >z] =1.

T—r00

When o + 5 > 1, m(n,) has finite expectation, and Theorem 2.9 yields
claim (i).

For claims (ii) and (iv), condition (HT) is verified due to (8.3). The func-
tion d(e) introduced in Remark 2.13 may be chosen to be d(e) = e~ /7. Con-
ditioning on m(my) = d(e) is equivalent to conditioning on 7'01 = e/,
which, in turn, is equivalent to 7y = e~ /*. Hence, conditionally on m(my) =
d(e), mo is deterministic probability measure 73 = (1—eP/*)so+e8/25_ 1,
and

(8.4) FUO(N) =1 — Pl 4 Pl exp(— e ™),
Therefore, \Ilg(ﬁ'd(s)) is deterministic,

(55) D)) = /(1 - exp(-Acle ),
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When o+ 3 < 1 and o > f3, this implies lim._,o ¥, (7%©))()\) = X\. Hence
condition (L) is verified, and Theorem 2.15 together with Definition 2.4
yields claim (ii).

Similarly, when a+ 8 < 1 and o = §, lim._o U (7%®))(\) = 1 —exp(—)),
which implies (iv). Observe that in this case, the traps are “Poissonian” in
the sense that F; is concentrated on A — 1 —exp(—2A), which is the Laplace
exponent of a Poisson process.

When a4+ 8 < 1 and a < 8, U (749)) converges to 0, indicating that
Theorem 2.11 should be used instead of Theorem 2.15. Recall that I'(e) =
E(1 — 7(e)). We will first show that I'(¢) is regularly varying of index x at
e = 0. Let v be the distribution of 79. Then

(8.6) E(1— #(e)) = /0 TP — exp(—et))w(dt).

Changing variables we obtain

(8.7) E(1 — #(e)) = &° /Ootﬁ(l — exp(—t))v(eLdt).
0

By (8.1), e~ %v(e~'dt) converges weakly to cat~1~dt. After a simple calcu-
lation this yields

(8.8)  E(1 —#(e)) = cae®tP /Ooo t71797B(1 — exp(—u))du(1 + o(1)).

The integral on the right hand side is finite, so the condition (2.15) (cf.
also (2.17)) of Theorem 2.11 is verified with gpk (¢) = €%/%. Similarly,

E((1—0(e)?) = a/ooo t72(1 — exp(—et))?v(dt)

(8.9) .
~ ae?fte w211 — exp(—u))? du
/ (1 - exp(—u))2d
Leading to
(8.10) e3P((1 — 7(qrk(€)))?) — 0.

Hence, the assumptions of Theorem 2.11 are fulfilled, and claim (iii) holds.
O

8.2. The comb model. 1In this section we give the proof of Theorem 3.5.
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PROOF OF THEOREM 3.5. To proof the theorem we need to control the
distribution of the time that the simple random walk Y™ spends in the
teeth of the comb. Therefore, for N > 1, we let VIV = (VkN)kzo to stand for
a random walk on 0,..., N with drift g(N), reflection on N, started from
VN = 1. Let 7V = inf{n > 0,V,, = 0} be the hitting time of 0 by V¥, and
let 8V be the law of 7V.

It is easy to see that the distribution 7, of the time that X ™ spends on
one visit to z coincides with the law of E?:O(l +&7), where &7 are 1.i.d. with
distribution #"=, and G is a geometric random variable with parameter %,
P[G = k] = (3)*, k > 0. In particular,

oA
(811)  m(m) = (1+m(6"))/2,  and ﬁz()\):g_QéNz()\)’

and thus
(8.12) 1—7(\) = A+ (1-0(\)/2) (1 +o0(1), asA—0.
The distribution @V is characterized by the following lemma.

LEMMA 8.2. Letp=(1+g(N))/2, {=(1—p)/p, and

1+ +/1—4s%p(1 —p)
X = B .
Sp

(8.13)

Then, the generating function of OV is given by

N log ) = EleT = X 20— 8) + & x(sx = §)
(8:14) o) =B = e e k-0

PROOF. The proof is a standard one-dimensional random walk computa-
tion. Writing f.(s) = E[s™" |Vp = ] for the generating function of 7V for the
random walk starting at x (i.e. ™ (—1logs) = fi(s)), we have the equation

(8.15) fz(s) = spfasi(s) +s(1 —p) fo—i(s), forl <z <N -1,

with the boundary conditions fo(s) = 1, and fx(s) = sfy—1(s). Solving this
system we obtain

(8.16) F2(5) = AL (A4 (5)7 + A_(s)A_(5)7,
with Ay (s) = x, A_(s) = &/x and

A ()M (A(s) — 5)

(8.17) Ay(s) = A (S)N=T( Ay (s) —s) = A_(s)N-L(A_(s) — 5)’
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_ A ()Y (A4 (5) — 5)
BI8) AL = SR )~ A TG~
A simple rearrangement yields the claim. O

Knowing the generating function, the moments of 8% can be obtained eas-
ily. We collect the asymptotic behavior of the first and second moments in
the following lemma. Its proof is an easy asymptotic analysis of the deriva-
tives of the generating function of 8V and is omitted.

LEMMA 8.3. When 8 >0, as N — oo, the first and second moment of
N satisfy
N26+1 N3+48
" Blog(N)’ " B log?(N)

where f ~ g as N — oo means limy_o0 f/g = 1. Moreover, when 5 = 0,
then m(6N) ~ 2N.

(8.19) m(6N) M

m2(9

We further need asymptotics of 1 — gV (e) as € — 0 for large (possibly
diverging) N. This is the content of the next two lemmas.

LEMMA 8.4. When 8 =0, then there is ¢ > 0, such that for all N > 1
and € € (0,1/2)

(8.20) 1—6N(e) < (1A (MY —1)).

Moreover, fory >0,

(1— oly/ V2] (e))
V2e

PROOF. From (8.14), we obtain

(X — X2 (x —s) + V11— x)(sx — &)
XN (x —8) +EN (s =€)

When 8 = 0, then £ = 1 and x = (1 + V1 — s?)/s. Therefore, setting
s=e  ~1—¢, wefind as e — 0,

(8.23) X — 1~ V2.
This together with (8.22), implies

AN (1+v2e)*N —1
(8.24) 1—0 (g)N\/g(l—F\/E)WV—I—l'

This yields the both claims of the lemma. O

e—0

(8.21)

tanh(y).

(8.22) 1-6N(—logs) =
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LEMMA 8.5. When 8 > 0, set

(8.25) u(e) = e~V (2H28) 1og/ A+B) (=1,

Then, for a constant ¢ < oo,

) em(AV), N <u(e)'/?,
(8.26) 1-6V() < { eg, wE)FE < N < u(e)+P,
cVE, N > u(e)'*7,

Moreover, setting

28N'*20log N
8.27 N,e) =
(8.27) v(N,e) N2+28 1 28211002 N
we have
4N
(8.28) sup ! ]ff ()E) —1] =% 0.
worrencue+h e

PRrROOF. The first line of (8.26) follows from the fact that 1 — o(\) <
Am(v) for every probability distribution v supported on [0, c0).
For the remaining parts of (8.26), observe that

(8.29) 6N (—log s) > &/x.

To see that this inequality holds, it is sufficient to replace 6N (—logs) by
the right-hand side of (8.14), multiply the inequality by the denominator
(which is always positive) and observe that x > 1 > £. Using (8.29),

(8.30) 1-60N(—logs) < (x —&/x < x—¢&

Moreover, for s = e ¢ ~ 1 —¢ and § > 0 that is g = g(INV) # 0, we have
1—-¢&~2gasg— 0, and

— Qe — g2 2,2
(8.31) X_lza gteg+/2e—c¢ —i—sg‘

s(1+g)

Therefore, after some computations, as € — 0,

(8.32) X—1n~ {V% when ¢* <,

< when 1> ¢ > ¢,
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and in general for some ¢ < oo

(8.33) Xx—1<ce(Ve+s).
Going back to (8.30), this implies that

(8.34) 1—0N(—logs) < c(vVe+ < +yg).

Observing further that when N = u(a)HB , then ¢? is comparable with e,
the rest of (8.26) follows.

Finally, to show (8.28), observe that uniformly over N in the considered
regime (i.e. in the same sense as in (8.28)), x —1 ~ /g by (8.31), 1 —& ~
2g, and thus EV-1 ~ N728 \2N-1 ] ag e/g < N~! Inserting these
observations into (8.22), (8.28) follows. O

We can now proceed with the proof of Theorem 3.5. From (8.11) and
Lemma 8.3, it follows that for 5 > 0,

(8.35) Pim(mo) > x| = 2~ 7 L(x),

for v = a/(1 + 28) and a slowly varying function L. This implies that
E[m(m)] is finite for & > 1424, and claim (i) follows by applying Theorem
2.9.

To show claim (ii), we observe that Lemma 8.3 implies that m (V)27 >
ma(6N) as N — oo, which is sufficient to check the assumptions of Theo-
rem 2.17.

For claim (iii), we need to check the assumptions of Theorem 2.11. Using
(8.11), and dominated convergence

(8.36) T(e) = E(1 —#g(e)) ~ e + % i N7e1 - V().
N=1

We now discuss separately the cases § =0 and 8 > 0.
When g = 0, choosing d > 0 small, using the second claim of Lemma 8.4,
and the change of variables y = v/2e N we obtain

(8.37)

_1\/£ . 671 Lia R
S ONTR- ) ~ [ @)y - YR @) 2e) oy
N=3§v2¢ 0

1+a

671
~(2) 2 /5 y~ 17 tanh(y)dy.
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The first claim of Lemma 8.4 can be then used to justify that the remaining
part of the sum is bounded from above by 0(5)51+Ta for some ¢(d) — 0 as
d — 0. As the integral on the right-hand side of (8.37) converges, we have
proved that I'(¢) is regularly varying with index k = (14 «)/2, that is (2.17)
and thus (2.15) holds for ¢(g) = £%/*.

Repeating the same line of reasoning we obtain

(8.38) e 3E((1 — 0(q(e)))?) ~ cel=r)/~,

Hence, the second assumption of Theorem 2.11 is verified and claim (iii) is
proved for 8 = 0.

We follow similar steps in the case 8 > 0, using the estimates from
Lemma 8.5. We first get using the first part of (8.26) and Lemma 8.3

(ﬁ/ -0V (e) % e
N7 -0"%(e)) <ec N—"7%
(8.39) o] o] Blog N
< €(2ﬁ+a+3)/(2,8+2)L(€> < ",
where L is a slowly varying function and k = ;BJF—JFO‘Q, as in the theorem.
Further, by the second part of (8.26),
u(e)!+? u(e)+h
Z N1 —0N(e)) < Z cN~27“Blog N
(8.40) N—u(e)'+5 N—u(e)'+5

< (5")#L(5) <",

and by the third part of (8.26),

(8.41)
SN M) <evE Y N < () TELE) < e
N=u(e)!+8 N=u(e)!+?

Using (8.28), we then get for the remaining part of the sum

8 8

e M gpNalogN
(8.42) o N -NE))~ D -
N2 Nedoi/2 N2+28 4 232¢e=1og® N

Substituting N = u(e)y, an easy analysis yields

- /“W” 26u() 1y log(u(e)y)

8.43
(84 (172 W(EPTHAETRET + 2521 log(u(e)y)

~ e"L(e).
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Combining all the parts of the sum yields I'(¢) = €"L(e), that is the first
assumption of Theorem 2.11 is satisfied with ¢(¢) = 2/*L(¢). Analogously
it can be shown that (2.16) holds. Claim (iii) for 5 > 0 then follows from
Theorem 2.11. This completes the proof. O

APPENDIX A: RANDOM MEASURES

In this appendix we collect frequently used notation and recall few known
theorems from the theory of random measures.

For any topological space E, B(F) stands for the Borel o-field of E. We
write M (E) for the set of positive Radon measures on F, that is for the set
of positive Borel measures on F that are finite over compact sets. We will
endow M (FE) with the topology of vague convergence. M (E) stands for the
space of probability measures over £ endowed with the weak convergence.

It is know fact [18, Lemma 1.4, Lemma 4.1] that the o-field B(M(FE))
coincides with the field generated by the functions {u — wu(A) : A €
B(E) bounded }, as well as with the with the o-field generated by the func-
tions {p — [ fdu: f € Co(E)}.

For every measure v € M ((0,00)), we define its Laplace transform o €
C(Ry) as

(A.1) () ::/R exp(—At)v(dt).

We recall that p is a random measure on H defined on a probability
space (€, F,P) iff p : Q@ — M(H) is a measurable function from the mea-
surable space (Q,F) to the measurable space (M (H), B(M(H))) (see [18]).
Equivalently, 12 is a random measure iff 1(A) : © — R, is a measurable func-
tion for every A € B(H). The law induced by p on M (H) will be denoted

P,,
(A.2) P,=Pou™t.

Let 1 be a random measure on H defined on a probability space (Q, F, I@’)
and f:H — R4 be a measurable function. We define Laplace transforms

(A.3) L5 =E[exp{ - [ fuian}].
H
The following proposition is well known (see Lemma 1.7 of [18]).

PROPOSITION A.1.  Let (Q, F,P) be a probability space and let (p)wen
be a family of random measures on (Q, F,P) indexed by w € Q. Then there
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exists a probability measure P on M(H) given by (recall (A.2) for the nota-
tion)

(A.4) P(A) = /QPW (A)P(dw)  for each A € B(M (H))

if and only if the mapping w — Ly, (f) is F-measurable for each f € Co(H).
The random measure p : Q x Q — M(H) given by p(w,®) = p, (@) whose
distribution is P is called the mixture of (u,),cq with respect to P.

Let p be a random measure. Denote
(A.5) T = {A € B(H) : u(0A) = 0 P-as.}.

By a DC semiring we shall mean a semiring & C B(H) with the property
that, for any given B € B(H) bounded and any € > 0, there exist some finite
cover of B by U-sets of diameter less than e. It is a known fact that

PROPOSITION A.2 (Theorem 4.2 of [18]). Let u be a random measure
and suppose that A is a DC semiring contained in T,. To prove vague con-
vergence in distribution of random measures ut to u as e — 0, it suffices to
prove convergence in distribution of (u°(A;))i<k to (1(A;))i<k as e — 0 for
every finite family (A;)i<k of bounded, pairwise disjoints sets in A.

Finally, we recall here the multidimensional individual ergodic theorem.
For its proof for square domanins see e.g. [15, Theorem 14.A5]. The proof
can be easily adapted to rectangles.

THEOREM A.3 (Multidimensional ergodic theorem). Let (X,G,Q) be a
probability space and © = (0;;); jyezz be a group of Q preserving trans-
formations on X such that 0(;, ;) © 0, j0) = 0, 4is,j1+j2)- Let T be the
field of ©-invariant sets, a < 0 < b and ¢ < 0 < d be real numbers,
and A, = [lan],|bn]] x [|en], |dn|]. Then, for any Q-measurable f with

Qf]) < oo

1
(A.6) lim —— Y fo0; = Q(f|T),Q-a.s.
n—00 ’An’ =5
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