
RANDOMLY TRAPPED RANDOM WALKS ON Zd
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Abstract. We give a complete classification of scaling limits of randomly trapped ran-
dom walks and associated clock processes on Zd, d ≥ 2. Namely, under the hypothesis
that the discrete skeleton of the randomly trapped random walk has a slowly varying re-
turn probability, we show that the scaling limit of its clock process is either deterministic
linearly growing or a stable subordinator. In the case when the discrete skeleton is a
simple random walk on Zd, this implies that the scaling limit of the randomly trapped
random walk is either Brownian motion or the Fractional Kinetics process, as conjectured
in [BCČR14].

1. Introduction

Randomly trapped random walks (RTRWs) were introduced in [BCČR14] for two main
reasons. On one hand they generalize several classical models of trapped random walks
such as the continuous-time random walk or the symmetric Bouchaud trap model. On
the other hand they provide a tool to describe random walks on some classical random
structures such as the incipient critical Galton Watson tree or the invasion percolation
cluster on a regular tree.

In [BCČR14] the authors define the RTRW on general graphs and study in depth the
model on Z. They give a complete classification of scaling limits, showing that the limit of
a RTRW on Z is one of the following four processes: (i) Brownian motion, (ii) Fractional
Kinetics process, (iii) FIN singular diffusion, or (iv) a new class of processes called spatially
subordinated Brownian motion. They further give sufficient conditions for convergence to
the respective limits and study in detail how the different limits arise. For RTRW on Zd,
d ≥ 2, they conjectured that only the first two of the above scaling limits are possible,
that is RTRW on Zd converges after rescaling either to the Brownian motion or to the
Fractional Kinetics process. We prove this conjecture here.

Let us briefly introduce the model, its formal definition is given in Section 2 below.
The RTRW on Zd is a particular class of random walk in random environment. Its law
is determined by two inputs: (i) its step distribution, that is a probability measure ν on
Zd, and (ii) a probability distribution µ on the space of all probability measures on (0,∞)
characterising its waiting times. The random environment of the RTRW is given by an
i.i.d. collection π = (πx)x∈Zd of µ-distributed probability measures. For fixed π, the RTRW
X = (X(t))t≥0 is a continuous-time process such that, whenever at vertex x, it stays there
a random duration sampled from the distribution πx and then moves on according to the
transition kernel ν( · − x). If the process X visits x again at a later time, the duration
of this next visit at x is sampled again and independently from the distribution πx. We
always assume that X starts at 0 ∈ Zd and use P for the annealed distribution of the
process X.

From the description above it is apparent that the RTRW is a time change of the discrete-
time random walk (Y (n))n≥0 on Zd with one-step distribution ν. Formally, X can be
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written as
X(t) = Y (S−1(t)), (1.1)

where the time-change process S : N→ [0,∞), the clock process, measures the time needed
for a given number of steps of the RTRW and S−1 is its right-continuous inverse. In view of
(1.1) it should not be surprising that the scaling behaviour of X is (essentially) determined
by the scaling behaviour of the clock process.

While we are primarily interested in Y being a simple random walk on Zd, d ≥ 2, it
does not complicate the proofs to make the following far less restrictive assumption on
the random walk Y , that is on the one-step distribution ν: Let rn : N → [0, 1] be the
probability that Y does not return to its starting point in n steps,

rn = P[Y (k) 6= Y (0) for k = 1, . . . , n].

Assumption A. The function rn can be written as rn = 1
`∗(n)

for a slowly varying function

`∗ : N→ [1,∞).

Assumption A is obviously fulfilled for all transient random walks, where 1/`∗(n)→ γ for
some γ ∈ (0, 1), but there are also recurrent walks satisfying it with `∗(n)→∞ as n→∞.
In particular, the classical result of Kesten and Spitzer [KS63, Theorem 3] implies that
this assumption holds for all aperiodic1 genuinely d-dimensional random walks in d ≥ 2.

We can state our first main theorem giving the complete classification of the scaling
limits of the clock process.

Theorem 1.1. Let S : N → [0,∞) be the clock process of the RTRW. Suppose that
Assumption A holds and there is a sequence aN ↗∞ such that for all but countably many
t ∈ [0,∞)

SN(t) :=
1

aN
S(bNtc) N→∞−−−→ S(t) in P-distribution, (1.2)

where S : [0,∞)→ [0,∞) is a cadlag process satisfying the non-triviality assumption

lim sup
t→∞

S(t) =∞ P-a.s. (1.3)

Then one of the following two cases occurs:

(i) The limit clock process is linear, S(t) = Mt for some constant M > 0, and the
normalizing sequence satisfies aN = N`(N) for some slowly varying function `.

(ii) The limit clock process is an α-stable subordinator, S = Vα, α ∈ (0, 1), and the
normalizing sequence satisfies aN = N1/α`(N) for some slowly varying function `.

In order to study the scaling limits of the RTRW itself, we need a more restrictive
assumption:

Assumption B. The one-step distribution ν of the random walk Y is centred, has finite
range, and it is genuinely d-dimensional, that is E[Y (1)] = 0, P[|Y (1)| > C] = 0 for some
C <∞, and the linear span of the set {x : ν(x) > 0} is Rd.

This assumption ensures that the scaling limit of Y is a d-dimensional Brownian motion:
There exists a d× d matrix A such that

YN(t) :=
1√
N
AY (bNtc) (1.4)

1The aperiodicity assumption can easily be removed by considering the lazy version of Y first, applying
[KS63] and transferring the result back to the original random walk.
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converges to a standard d-dimensional Brownian motion. Note that by the remark after
Assumption A, for d ≥ 2 Assumption A is implied by Assumption B.

Our second main result classifies the possible scaling limits of RTRW and confirms the
conjecture of [BCČR14].

Theorem 1.2. Let d ≥ 2 and X : [0,∞)→ Zd be the RTRW. Suppose that Assumption B
holds and there is a sequence aN ↗∞ such that the processes

XN(t) :=
1√
N
AX(aN t) = YN(S−1N (t)) (1.5)

converge in P-distribution on the space Dd of cadlag Rd-valued functions equipped with
the Skorohod J1-topology to some process X : [0,∞) → Rd satisfying the non-triviality
assumption

lim sup
t→∞

|X (t)| =∞ P-a.s. (1.6)

Then one of the following two cases occurs:

(i) aN = N`(N) and X (t) = B(M−1t) for some constant M > 0, some slowly varying
function `, and a standard d-dimensional Brownian motion B.

(ii) aN = N1/α`(N) for some slowly varying function ` and a parameter α ∈ (0, 1),
and X (t) = B(V −1α (t)), where B is a standard d-dimensional Brownian motion and
V −1α (t) = inf{s ≥ 0 : Vα(s) > t} is the right-continuous inverse of an α-stable
subordinator Vα which is independent of B (i.e. X is the Fractional Kinetics process).

Let us make a few remarks about our setting and results. The definition of the RTRW
we give here is slightly more general than the one in [BCČR14] since we allow the discrete
skeleton to be more general than the simple random walk only. Assumption A on the
discrete skeleton is taken from [FM13]. This assumption can be used to show weak laws
of large numbers for the range of the random walk and for some related quantities. We
would like to point out that the only place in the proof of Theorem 1.1 where we use Zd-
specific properties of the random walk is in the derivation of these laws of large numbers.
In particular, Theorem 1.1 classifying the possible scaling limits of the clock process can
be shown to hold for the RTRW on any countable state space where the discrete-time
skeleton is a Markov chain satisfying such laws of large numbers for the range and the
related quantities.

Our setting generalizes several previous results, let us mention some of them. Mostly, the
models studied in the literature involve trapped random walks with some kind of heavy-
tailed waiting times, with the aim to show convergence of rescaled clock processes to an
α-stable subordinator.

In the so-called continuous-time random walk (CTRW), introduced in [MW65], all πx are
deterministically identical heavy-tailed probability distributions, that is for some α ∈ (0, 1)
and c > 0,

πx[u,∞) = cu−α(1 + o(1)) as u→∞. (1.7)

Independently of the nature of the discrete skeleton Y , the clock process is then a sum of
i.i.d. heavy-tailed random variables, and it is well known that it converges after normaliza-
tion to a stable subordinator. The scaling limits of the CTRW were studied in more detail
in [MS04].

In the symmetric Bouchaud trap model (BTM) the discrete skeleton Y is simple random
walk and the πx are exponential random variables with means mx that are i.i.d. heavy-tailed
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random variables satisfying e.g.

P[mx > u] = cu−α(1 + o(1)) as u→∞, (1.8)

The BTM on Z2 was for the first time studied in [BČM06] where the authors show conver-
gence of the clock process to a stable subordinator and use this to derive aging properties
of the model. In [BČ07] it is then shown, in the case of the BTM on Zd, d ≥ 2, that the
rescaled random walks and clock processes converge jointly to a Brownian motion and a
stable subordinator, and therefore the scaling limit of the BTM is the Fractional Kinetics
process.

A general model of trapped random walk where the waiting times are exponential with
heavy-tailed means as in (1.8) is studied in [FM13]. As mentioned above, they consider
discrete skeleton to be an arbitrary random walk on Zd satisfying Assumption A. Instead of
scaling limits, which require additional restrictions as in our Assumption B, [FM13] focus
on the so-called age process, which is related to the clock process and describes the ‘depth
of the trap in which the process stays at a given time’.

Our setting is restricted to the fact that the discrete skeleton Y is independent of the
random environment π. There are however interesting models where this is not the case,
for example the asymmetric Bouchaud trap model (ABTM). In [BČ11] for d ≥ 3 and in
[Mou11] with different methods for d ≥ 5 it is shown that the scaling limit for ABTM
is also Fractional Kinetics. Yet another approach to prove convergence of rescaled clock
processes to a stable subordinator is given in [GS13], their setting includes the ABTM as
a special case.

The most of the above mentioned previous results are quenched, that is the convergence
holds for almost every realisation of the environment. On the contrary, our results are
annealed, that is averaged over the environment, but this is not an issue for the classification
theorem.

We also believe that when the annealed convergence takes place as in Theorem 1.1,
then the quenched convergence holds true as well. In high dimensions (d ≥ 5) this could
be proved similarly as in [Mou11], using techniques from [BS02], see also the additional
condition in [FM13] under which their annealed result holds quenched. In low dimensions
these methods fail due to many self-intersections of the discrete skeleton. An adaptation
of more complicated methods which give the quenched convergence in low dimensions (like
the coarse-graining procedure of [BČM06, BČ07] or the techniques of [GS13]) to the RTRW
seems to be non-trivial and is out of the scope of this paper.

We conclude the introduction by giving sufficient conditions for convergence in both
cases of our main theorems. Given the collection of probability measures π = (πx)x∈Zd , let
mx =

∫
uπx(du) ∈ (0,∞] be the mean and π̂x(λ) =

∫
e−λuπx(du) the Laplace transform

of πx. Note that in the next theorem Assumption A is not needed, we only need Y to be
non-degenerate.

Theorem 1.3. Let X be RTRW in d ≥ 1. If ν 6= δ0 and the annealed expected waiting
time is finite, E[m0] = M < ∞, then the rescaled clock processes SN with normalization
aN = N converge in P-distribution on D1 equipped with the Skorohod J1-topology to the
linear process S(t) = Mt. If in addition Assumption B holds, then the rescaled processes
XN with aN = N converge in P-distribution on Dd equipped with the Skorohod J1-topology,
and the limit is X (t) = B(M−1t) as in (i) of Theorem 1.2.
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For convergence to Fractional Kinetics we have the following sufficient criterium. In
Section 5 we will sketch some examples of RTRWs that satisfy this criterium with different
functions f .

Theorem 1.4. Let X be RTRW with discrete skeleton Y satisfying Assumption A with
slowly varying function `∗. Assume that there is a normalizing sequence aN ↗ ∞ such
that for any positive real number r > 0,

− logE
[
π̂0(λ/aN)r`

∗(N)
]

= f(r)λα
`∗(N)

N
(1 + o(1)) as N →∞. (1.9)

Then the rescaled clock processes SN with normalization aN converge in P-distribution on
D1 equipped with the Skorohod M1-topology to an α-stable subordinator Vα. If in addi-
tion Assumption B holds, then the rescaled processes XN converge in P-distribution on
D1 equipped with the Skorohod J1-topology, and the limit is the FK process as in (ii) of
Theorem 1.2.

The rest of this paper is structured as follows. In Section 2 we give precise definitions of
the model and introduce some notation used through the paper. Theorem 1.1 and Theo-
rem 1.2 are proved in Sections 3 and 4 respectively, and Section 5 deals with Theorems 1.3
and 1.4. Finally, in Section 6 we prove one technical lemma which is used in the proof
of Theorem 1.1. In Appendix A we explain how Assumption A on the escape probability
implies the laws of large numbers that we mentioned above.

2. Setting and notations

We start by giving a formal definition of the RTRW. Recall that ν is a probability measure
on Zd and µ a probability measure on the space of probability measures on (0,∞). To
avoid trivial situations, we assume that ν 6= δ0.

Given µ and ν, let π = (πx)x∈Zd be an i.i.d. sequence of probability measures with
marginal µ, and ξ = (ξi)i≥1 an i.i.d. sequence with marginal ν independent of π defined on
some probability space (Ω,F ,P). Define

Y (n) = ξ1 + · · ·+ ξn

to be a random walk with step distribution ν and denote by L(x, n) =
∑n

k=0 1{Y (k)=x} its
local time.

Given a realisation of π, let further (τ ix)x∈Zd,i≥1 be a collection of independent random
variables, independent of ξ, such that every τ ix has distribution πx, defined on the same
probability space. The clock process of the RTRW, S : N → [0,∞) is then defined by
S(0) = 0 and

S(n) =
∑
x∈Zd

L(x,n−1)∑
i=1

τ ix =
n−1∑
k=0

τ
L(Y (k),k)
Y (k) for n ≥ 1.

Finally, we define the RTRW X = (X(t))t≥0 by

X(t) = Y (k) for S(k) ≤ t < S(k + 1),

or equivalently
X(t) = Y (S−1(t)),

where S−1(t) = inf{k ≥ 0 : S(k) > t} is the right-continuous inverse of S.
Under P, the process X has exactly the law described in the introduction. The random

variable τ ix denotes the duration of the i-th visit of the vertex x. We refer to P as annealed
distribution of X.
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We write Dd for the space of the Rd-valued cadlag functions on [0,∞), and when needed
Dd(J1), D

d(M1), etc. to point out which of Skorohod topologies we use on this space. We
refer to [Whi02, Chapter 3.3] for an introduction and [Whi02, Chapters 12–13] for details
on these topologies.

It will be useful to introduce the sequence of successive waiting times

τ̃k = τ
L(Y (k),k)
Y (k) , k ≥ 0.

With this notation,

S(n) =
n−1∑
k=0

τ̃k. (2.1)

We now show that τ̃k is ergodic, which will be used in the proof of Theorem 1.3. To this
end let P ′ be the law on Ω′ := [0,∞)N of the sequence (τ̃k)k≥0 and let θ be the left shift
on Ω′, θ(τ̃1, τ̃2, . . . ) = (τ̃2, τ̃3, . . . ).

Lemma 2.1. The left-shift θ acts ergodically on (Ω′,P ′).

Proof. To show that θ is measure-preserving we follow the environment as ‘viewed from
the particle’. Namely, let Θ : Ω→ Ω be such that if ω′ = Θ(ω), then

ξi(ω
′) = ξi+1(ω), i ≥ 1,

πx(ω
′) = πx+ξ1(ω)(ω), x ∈ Zd,

τ ix(ω
′) =

{
τ ix+ξ1(ω), if x 6= −ξ1(ω),

τ i−1x+ξ1(ω)
, if x = −ξ1(ω).

From the independence of ξ from π and τ , and from the i.i.d. properties of π and τ ·x for
every x, it is easy to see that the law of X ◦ Θ agrees with the law of X, that is Θ is
P-preserving. Since, in addition, τ̃(Θ(ω)) = θ(τ̃(ω)) and P ′ = τ̃ ◦ P, this implies that θ is
P ′-preserving.

To prove the ergodicity, we show that θ is strongly mixing. To this end it is sufficient to
verify that ∣∣P [θ−nA ∩B]− P [A]P [B]

∣∣ n→∞−−−→ 0 (2.2)

for all cylinder sets A = {τ̃i ∈ Ai, i ∈ I}, B = {τ̃j ∈ Bj, j ∈ J}, where I, J ⊂ Z are
finite sets and Ai, Bj ⊂ R are Borel sets, see e.g. [Pet83, Prop 2.5.3]. Since τ̃k and τ̃l are
independent with respect to the annealed measure whenever Y (k) 6= Y (l), we have∣∣P[θ−nA ∩B]− P[A]P[B]

∣∣ ≤ P[Y (i+ n) = Y (j) for some i ∈ I, j ∈ J ]

≤
∑

i∈I,j∈J

P[Y (i+ n) = Y (j)].

Now for n large enough the Markov property for Y implies that P[Y (i + n) = Y (j)] =
P[Y (i+ n− j) = 0], which tends to 0 as n→∞ for every (non-degenerate) random walk,
see e.g. [Spi76, P7.6]. Since I and J are finite, (2.2) follows. �

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. To this end we assume that the rescaled clock
processes SN converge to some process S in the way as stated in Theorem 1.1. In the next
two lemmas we study the properties of S.
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Lemma 3.1. The limit clock process S has stationary increments and is self-similar with

index ρ > 0, i.e. S(t)
d
= λρS(t/λ). Moreover, the normalizing sequence is of the form

aN = Nρ`(N), for the same ρ > 0 and some slowly varying function `.

Proof. Stationarity of the increments follows immediately from (2.1) and the stationarity
of the sequence τ̃ of successive waiting times which was proved in Lemma 2.1. To see the
self-similarity, fix λ > 0 and t such that condition (1.2) holds for t and t/λ, and S(t), S(λt)
are not identically zero, which is possible thanks to (1.3). Then,

S(t) = lim
N→∞

1

aN
S(Nt) = lim

N→∞

aλN
aN

1

aλN
S

(
λN

t

λ

)
d
= S

(
t

λ

)
lim
N→∞

aλN
aN

.

Since S(t) and S(t/λ) are not identically zero, it follows that aλN
aN

must converge to some

constant c(λ), yielding the scale invariance. Moreover, elementary results of the theory of
regularly varying functions imply that c(λ) = λρ for some ρ ∈ R, and that aN is regularly
varying of index ρ, that is aN = Nρ`(N) for some slowly varying function `(N). Since
aN →∞, we have of course that ρ > 0. �

Lemma 3.2. The limit clock process S has independent increments.

Let us postpone the proof of this lemma and show Theorem 1.1 first.

Proof of Theorem 1.1. By Lemmas 3.1 and 3.2, S has stationary and independent incre-
ments and is self-similar with index ρ. From this and the fact that S ≥ 0 it follows that
either ρ = 1 and S(t) = Mt for some M ∈ (0,∞), or ρ > 1 and S is an increasing α-stable
Lévy process with α = ρ−1 ∈ (0, 1), that is an α-stable subordinator. Lemma 3.1 gives the
normalizing sequence aN as claimed. �

In order to show Lemma 3.2 we need three technical lemmas which are consequences of
laws of large numbers for the range-like objects related to the random walk Y , as mentioned
in the introduction.

The first lemma states that for any given times 0 = t0 < t1 < · · · < tn = t, the
number of vertices visited by the random walk Y in more than one of the time intervals
[bti−1Nc , btiNc − 1] is small. To this end, let

R(k) = {Y (0), . . . , Y (k − 1)}
be the range of the random walk Y at time k − 1, Ri

N be the ‘range between ti−1N and
tiN ’,

Ri
N = {Y (k) : k = bNti−1c , . . . , bNtic − 1}} ,

Oi
N be the set of the points visited only in this time interval,

Oi
N =

{
x ∈ Ri

N : x /∈ Rj
N for all j 6= i

}
,

and M i
N be the set of points visited in more than one of them, M i

N = Ri
N \Oi

N .

Lemma 3.3. If Y verifies Assumption A, then for any choice of time points 0 = t0 < t1 <
· · · < tn = t,

lim
N→∞

|M i
N |
`∗(N)

N
= 0 in P-probability for all i = 1, . . . , n.

Proof. The size of the sets Oi
N can be bounded by

|R(bNtc)| −

∣∣∣∣∣⋃
j 6=i

Rj
N

∣∣∣∣∣ ≤ |Oi
N | ≤ |R(bNtic)| − |R(bNti−1c)| . (3.1)
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Applying the laws of large numbers from Lemma A.1 and the Markov property at times
bNtic, it follows that for every i = 1, . . . , n,

|R(bNtic)|
`∗(N)

Nti

N→∞−−−→ 1, and

∣∣∣∣∣⋃
j 6=i

Rj
N

∣∣∣∣∣ `∗(N)

N(tn − ti + ti−1)

N→∞−−−→ 1

in probability. Inserting this into (3.1) yields a law of large numbers for |Oi
N |,

|Oi
N |

`∗(N)

N(ti − ti−1)
N→∞−−−→ 1

in probability. By Lemma A.1 and the Markov property again, |Ri
N | satisfies the same law

of large numbers as |Oi
N |. Using |M i

N | = |Ri
N | − |Oi

N | the claim follows. �

The second lemma will help to control the contribution of frequently visited vertices to
the clock process. Fix t > 0, and for K > 0 define the set of ‘frequently visited vertices’

FN,K =
{
x : L(x, bNtc − 1) ≥ K`∗(N)

}
. (3.2)

Let FN,K be the ‘number of visits to FN,K ’

FN,K =
∑

x∈FN,K

L(x, bNtc − 1). (3.3)

Lemma 3.4. If Y verifies Assumption A, then there is a constant c > 0 such that for
every ε > 0

P[FN,K ≥ εNt] ≤ ε for all N large enough,

with
K = K(ε) = −c log

(
ε2
)
. (3.4)

Proof. We claim that for ε small enough and N large enough,

E [FN,K ] ≤ ε2Nt. (3.5)

Applying the Markov inequality then yields the desired result.
To show (3.5), let ψk = 1{Y (l) 6=Y (k) ∀l<k} be the indicator of the event that a ‘new’ vertex

is found at time k. Then

FN,K =

bNtc−1∑
k=0

ψkL(Yk, bNtc − 1)1{L(Yk,bNtc−1)≥K`∗(N)}.

Using the Markov property and the fact that L(Yk, bNtc − 1) is stochastically dominated
by L(0, bNtc − 1),

E[FN,K ] ≤ E
[
L(0, bNtc − 1)1{L(0,bNtc−1)≥K`∗(N)}

] bNtc−1∑
k=0

E[ψk]. (3.6)

By (A.2),
∑bNtc−1

k=0 E[ψk] = E[|R(bNtc)|] = Nt/`∗(N). On the other hand, denoting by H̃0

the first return time of Y to 0, for every k ≥ 1

P[L(0, bNtc − 1) ≥ k] ≤
(
P[H̃0 ≤ bNtc]

)k−1
= (1− `∗(bNtc)−1)k−1,

and thus L(0, bNtc − 1) is stochastically dominated by a geometric random variable with
parameter 1/`∗(bNtc). If G is a geometric variable with parameter p, then for every M ∈ N,

E[G1{G≥M}] = (1− p)M−1
(
M − 1 +

1

p

)
.
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Hence,

E
[
L(0, bNtc − 1)1{L(0,bNtc−1)≥K`∗(N)}

]
≤
(

1− 1

`∗(bNtc)

)K`∗(bNtc)−1 (
(K + 1)`∗(bNtc)− 1

)
,

(3.7)

and the claim (3.5) follows by inserting K as in (3.4) and combining (3.6), (3.7). �

The last of the technical lemmas allows to control the influence of an arbitrary subset
of waiting times to the sum of all waiting times if the subset is small.

Lemma 3.5. Let BN ⊂ {0, 1, . . . , bNtc − 1} be a random set, depending on the trajectory
of the random walk Y up to time bNtc − 1 only. If Assumption A holds, then for every
t > 0 and δ > 0,

lim
ε→0

lim
N→∞

P

[∑
k∈B

τ̃k ≥ δS(bNtc), |B| ≤ εN

]
= 0.

The proof of this lemma is surprisingly lengthy and is therefore postponed to Section 6.
The main source of complications comes from the fact that we cannot make any assump-
tions on the moments of the waiting times τ ix. It is also essential to use some properties of
the random walk Y , as it is easy to construct counterexamples to the lemma when τ ix are
not summed along the trajectory of Y .

With the above three lemmas we can now show Lemma 3.2.

Proof of Lemma 3.2. Fix times 0 = t0 < t1 < · · · < tn = t. Consider first the following
alternative construction of the clock process S. On the same space (Ω,F ,P), let for every
x ∈ Zd independently (πx,j)j=1,...,n be i.i.d. µ-distributed probability measures, and given
a realisation of these measures, let (τ ix,j)x∈Zd,j,i≥1 be independent random variables such

that every τ ix,j has distribution πx,j. For every vertex x ∈ Zd, let j(x) be be such that the

first visit to x occurs in the time interval [
⌊
Ntj(x)−1

⌋
,
⌊
Ntj(x)

⌋
− 1]. Define a new process

S ′ : N→ [0,∞) by

S ′(k) =
∑
x∈Zd

L(x,k−1)∑
i=1

τ ix,j(x).

One can think of choosing the distributions πx at the time of the first visit in x according
to the time interval in which this first visit occurs. Constructed in this way, S ′ has clearly
the same distribution as the original clock process S.

We now define an approximation S̃ of S ′ which collects time τ
L(x,k)
x,j whenever at a vertex

x at time k ∈ [bNtj−1c , bNtjc − 1],

S̃(m) =
n∑
j=1

(m∧bNtjc)−1∑
k=bNtj−1c

τ
L(Y (k),k)
Y (k),j . (3.8)

S̃ can be viewed as the clock for which the whole environment π is being refreshed
at all times bNtjc. Therefore, by the independence structure of the τ ix,j’s, the incre-

ments (S̃(bNtjc) − S̃(bNtj−1c))j=1,...,n are mutually independent. In addition, for every

j, the increment S̃(bNtjc) − S̃(bNtj−1c) is independent of the increments {ξk : k /∈
[bNtj−1c , bNtjc − 1]} of the random walk Y .
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To conclude the proof it is now sufficient to show that for all j = 1, . . . , n and every
δ > 0,

lim
N→∞

P
[∣∣∣S̃(bNtjc)− S ′(bNtjc)

∣∣∣ > δS ′(bNtjc)
]

= 0. (3.9)

This implies that the limit process S has independent increments. Indeed, note that

(3.9) readily implies
S̃(bNtjc)
S′(bNtjc) → 1 in P-probability for all j. This means that when-

ever 1
aN
S ′(bNtjc)

d→ S(tj), then also 1
aN
S̃(bNtjc)

d→ S ′(tj), and therefore the increments

(S(tj) − S(tj−1))j=1,...,n are independent, whenever (1.2) is satisfied for the times tj. By
easy approximation arguments this also holds for the at most countably many tj’s that do
not satisfy (1.2). Since the times tj are chosen arbitrarily, it follows that the process S has
independent increments.

In order to show (3.9), note that the difference of S̃(bNtjc) and S ′(bNtjc) originates in

the waiting times in vertices visited in multiple time intervals. Recalling the sets M j
N from

Lemma 3.2, ∣∣∣S̃(bNtjc)− S ′(bNtjc)
∣∣∣ ≤ j∑

l=1

∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l.

It is therefore sufficient to show that for each j = 1, . . . , n and 1 ≤ l ≤ j, and every δ > 0,

lim
N→∞

P

 ∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l ≥ δS ′(bNtjc)

 = 0,

The probability above is bounded by

P

(1 + δ)

∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l

 ≥ δ

 ∑
x∈R(bNtjc)\M l

N

L(x,bNtjc−1)∑
i=1

τ ix,j(x) +
∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix,l

 .
Note that, by definition of the random variables τ ix,j, requiring the above probability to
tend to 0 as N →∞ is the same as requiring

lim
N→∞

P

 ∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix ≥ δS(bNtjc)

 = 0, (3.10)

for each j = 1, . . . , n and 1 ≤ l ≤ j, and every δ > 0, where here S is the original clock
process, i.e. the sum of the τ ix’s which have distributions πx.

Fix ε > 0 small, set K as in (3.4), recall the definition of FN,K from (3.2) (with tj instead
of t), and write

P

 ∑
x∈M l

N

L(x,bNtjc−1)∑
i=1

τ ix ≥ δS(bNtjc)


≤ P

 ∑
x∈M l

N\FN,K

L(x,bNtjc−1)∑
i=1

τ ix ≥
δ

2
S(bNtjc)

+ P

 ∑
x∈M l

N∩FN,K

L(x,bNtjc−1)∑
i=1

τ ix ≥
δ

2
S(bNtjc)

 .
(3.11)
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By Lemma 3.3 we can choose N large enough such that P[|M l
N | > εN/`∗(N)] ≤ ε. Then

the first term on the right-hand side of (3.11) is bounded by

P

 ∑
x∈M l

N\FN,K

L(x,bNtjc−1)∑
i=1

τ ix ≥
δ

2
S(bNtjc), |M l

N | ≤ εN/`∗(N)

+ ε

= P

[∑
k∈B1

τ̃k ≥
δ

2
S(bNtjc), |M l

N | ≤ εN/`∗(N)

]
+ ε.

Here B1 is the set of all times where a vertex in M l
N \ FN,K , i.e. with L(x, bNtjc − 1) ≤

K`∗(N) is visited. But if |M l
N | ≤ εN/`∗(N), then |B1| ≤ εKN . Since εK → 0 as ε→ 0 by

the definition of K, we can apply Lemma 3.5 to get that the first term on the right-hand
side of (3.11) converges to 0 when N →∞ and then ε→ 0.

The second term on the right-hand side of (3.11) can be bounded similarly. Recalling
FN,K (for tj) from (3.3), it is bounded from above by

P [FN,K ≥ εN ] + P

[∑
k∈BF

τ̃k ≥
δ

2
S(bNtjc), FN,K ≤ εN

]
.

Here BF is the set of times where a frequently visited vertex is visited, i.e. |BF | = FN,K .
Applying Lemma 3.4 to the first term and Lemma 3.5 to the second, this converges to zero
as N →∞ and ε→ 0, and (3.10) follows. This finishes the proof of the lemma. �

4. Proof of Theorem 1.2

The goal of this section is to prove the classification theorem for the RTRW, Theorem 1.2.
This will be done using Theorem 1.1. At first we should however show that the assumptions
of Theorem 1.2 allow to verify the hypotheses of Theorem 1.1.

Proposition 4.1 (d ≥ 1). Let XN be as in (1.5). Suppose that Assumption B holds and
that XN converge in the sense of Theorem 1.2. Then the clock processes SN , defined as
in (1.2), converge in P-distribution on Dd(M ′

1) to some process S. If S(0) = 0, then the
convergence holds with respect to the Skorohod M1-topology.

We first use this proposition to show Theorem 1.2.

Proof of Theorem 1.2. By Proposition 4.1, SN converge to some process S in distribution
on Dd(M ′

1). This convergence implies the convergence of SN(t) to S(t) for all but countably
many t ∈ [0,∞), cf. [Whi02, Theorem 11.6.6 and Corollary 12.2.1]. The non-triviality
assumption (1.6) implies (1.3). We can thus apply Theorem 1.1. By this theorem there
are only two possibilities, either S(t) = Mt or S(t) = Vα(t). Since in both cases S(0) = 0,
the convergence of SN actually holds in the M1-topology.

The possible limits S are in the subspace D1
u,↑↑ of unbounded strictly increasing func-

tions from [0,∞) to R, and their inverses are continuous. By [Whi02, Corollary 13.6.4],
the inverse map from the space D1

u,↑(M1) of unbounded non-decreasing functions to D1(J1)

is continuous at D1
u,↑↑, therefore S−1N converge to S−1 in P-distribution on D1(J1). More-

over, the rescaled random walks YN converge in P-distribution on Dd(J1) to a standard
d-dimensional Brownian motion B.

To proceed, we need to show that B and the limit clock process S are independent.
This is trivial for the case S(t) = Mt, so we may assume that S = Vα. We will use
[Kal02, Lemma 15.6] which applied to our situation states that if B,S are such that
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B(0) = S(0) = 0 and the process (B,S) ∈ Dd+1 has independent increments and no fixed
jumps, S is a.s. a step process and ∆B · ∆S = 0 a.s., then B and S are independent.
The only assumption that remains to be verified is that (B,S) has jointly independent
increments.

For fixed times 0 = t0 < t1 < · · · < tn = t, consider the version S̃(bNtc) from (3.8)
in the proof of Lemma 3.2. We have seen that every increment S̃(bNtic) − S̃(bNti−1c) is
independent of the increments {ξk : k /∈ [bNtj−1c , bNtjc−1]} of the random walk Y . Since

there is such version S̃(bNtc) for every choice of times tj, and every such S̃(bNtc) converges
to S after normalization, we obtain that for the limit S every increment S(t) − S(s) is
independent of {B(u) : u /∈ [t, s]}. Since both B and S have independent increments, this
implies that (B,S) has jointly independent increments. Applying [Kal02, Lemma 15.6] it
follows that the two limit processes B and S, and thus also B and S−1 are independent.

It follows that (YN , S
−1
N ) converge in distribution on Dd(J1)×D1

u,↑(J1) to (B,S−1). By

[Whi02, Theroem 13.2.2], the composition map from Dd(J1) × D1
u,↑(J1) to Dd(J1) taking

(y(t), s(t)) to y (s(t)) is continuous at (y, s) if y is continuous and s non-decreasing. From
this we conclude that the compositions XN(t) = YN(S−1N (t)) converge in distribution on
Dd(J1) to B(S−1(t)) as required. �

For the proof of Proposition 4.1 we will relate the clock process S to the quadratic
variation process of the RTRW X and then apply [JS03, Corollary VI.6.29] which states
that under some conditions, whenever a sequence of processes converges in distribution,
then so does the sequence of their quadratic variations.

We need some definitions first. For a d-dimensional pure-jump process Z, let Z(i) denote
the i-th coordinate of Z, and let ∆Z(i)(t) = Z(i)(t) − Z(i)(t−) be the jump size of Z(i) at
time t. The quadratic variation process [Z,Z]t is a d× d matrix-valued process, where the
(i, j)-th entry is the quadratic covariation of the i-th and j-th coordinate of Z, which is

[Z(i), Z(j)]t =
∑
0<s≤t

∆Z(i)(s)∆Z(j)(s).

We proceed by relating the inverse S−1N of the clock process to the quadratic variation
process of XN .

Lemma 4.2. Let [XN , XN ]t be the quadratic variation process of XN , and define σ2 =
E[|Aξj|2] (recall (1.4) and (1.5) for the notation). Then for every t > 0,

trace[XN , XN ]t

σ2S−1N (t)

N→∞−−−→ 1 in P-probability.

Proof. Easy computation yields

trace[XN , XN ]t =
d∑
i=1

∑
0<s≤t

(∆X
(i)
N (t))2 =

1

N

∑
j≤S−1(aN t)

|Aξj|2.

The process S−1 has increments of size 1, and since the times between increments are
a.s. finite, S−1(aN t) ↗ ∞ a.s. as N → ∞. Therefore, since σ2 = E[|Aξj|2] < ∞ by
Assumption B, the law of large numbers implies

P
[∣∣∣∣ N

S−1(aN t)
trace[XN , XN ]t − σ2

∣∣∣∣ > ε

]
−→ 0 as N →∞ for every ε > 0.

Noting that 1
N
S−1(aN t) = S−1N (t) finishes the proof. �
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We now check that the assumptions for [JS03, Corollary VI.6.29] are fullfilled.

Lemma 4.3. If Assumption B holds, then the rescaled processes XN are local martingales
with bounded increments.

Proof. The increments are bounded by Assumption B. The local martingale property is
unaffected by linear scaling, it is hence sufficient to prove it for the process X.

We show that the sequence of stopping times σl = inf{t > 0 : S−1(t) ≥ l}, l ≥ 1, is a
localizing sequence for X, i.e. we show that (X(t ∧ σl))t≥0 is a martingale for every l ≥ 1.

We introduce the filtration Ft = σ(Y (k), S(k) : k ≤ t). Obviously, Y is an F -martingale,
and S−1(t) is an F -stopping time for every t ≥ 0, with S−1(t) ≥ S−1(s) for t ≥ s. The
natural filtration for X, Gt = FS−1(t), is right-continuous (see [Kal02, Proposition 7.9]), and
X is G-adapted. The sequence of random variables σl is indeed an increasing sequence of G-
stopping times (σl is the time at which the process X jumps for the l-th time). Moreover,
by definition S−1(t ∧ σl) = S−1(t) ∧ S−1(σl) ≤ S−1(σl) = l. Applying Doob’s optional
sampling theorem (see e.g. [Kal02, Theorem 7.12]) to the discrete-time martingale Y and
the bounded stopping time S−1(t ∧ σl), we obtain

E [X(t ∧ σl) | Gs] = E
[
Y
(
S−1(t ∧ σl)

)
| FS−1(s)

]
= Y

(
S−1(t ∧ σl) ∧ S−1(s)

)
= X(s ∧ σl).

This completes the proof. �

We can now prove Proposition 4.1.

Proof of Proposition 4.1. By Lemma 4.3, XN are local martingales with bounded incre-
ments. [JS03, Corollary VI.6.29] then implies that the quadratic variation processes
[XN , XN ]t converge component-wise on D1(J1) to the quadratic variation process [X ,X ]t
of X . Since all jumps of the processes [X

(i)
N , X

(i)
N ]t, i = 1, . . . , d, are positive, [Whi02,

Theorem 12.7.3 (continuity of addition at limits with jumps of common sign)] yields that
trace[XN , XN ]t converges to some non-decreasing process in D1(M1). From Lemma 4.2 it
then follows that the inverses S−1N of the rescaled clock processes converge to some non-
decreasing process S−1(t) in D1(M1).

For non-decreasing functions x ∈ D1 the right-continuous inverse satisfies (x−1)−1 = x,
and thus SN = (S−1N )−1. Hence, by [Whi02, Theorem 13.6.1], which ensures the continuity
of the inverse operation, SN converges to S inD1(M1) provided that S(0) = (S−1)−1(0) = 0.

If we do not know whether S(0) = 0, this theorem does not apply. This issue can be
solved by weakening the topology from M1 to M ′

1 (see [Whi02, Section 13.6.2] for details).
In particular, [Whi02, Theorem 13.6.2] yields that SN converge to S in distribution in
D1(M ′

1). �

5. Proofs of sufficiency criteria

Theorem 1.3, giving a sufficient criterium for convergence to Brownian motion, is an
immediate consequence of the ergodicity of the sequence of successive waiting times.

Proof of Theorem 1.3. Consider τ̃ = (τ̃k)k≥0 and let θ : RN → RN be the left-shift along
the sequence, which by Lemma 2.1 acts ergodically along τ̃ .
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If E[τ̃0] = M is finite, the function f(τ̃) = τ̃0 is integrable, and we can apply the ergodic
theorem to f to get

lim
N→∞

1

N
S(bNtc) = lim

N→∞

1

N

bNtc−1∑
k=0

τ̃k = lim
N→∞

t
1

Nt

bNtc−1∑
k=0

f(θk(τ̃))

= tE [f(τ̃)] = Mt almost surely.

Thus we have that the rescaled clock processes SN converge in distribution on D1(J1) to
Mt, where the normalization is aN = N . If additionally Assumption B holds, using the
same arguments as in the proof of Theorem 1.2 we conclude that the XN converge and the
limit X is as in case (i) of Theorem 1.2. �

Before starting the proof of Theorem 1.4, which deals with the convergence to the Frac-
tional Kinetics, we briefly sketch some examples that illustrate how different functions f
in condition (1.9) arise.

First, consider the CTRW defined in (1.7). Then the waiting times τ ix lie in the domain of
attraction of an α-stable law, thus the quenched Laplace transform (which is deterministic
here) satisfies

π̂0(λ/aN) = exp{−c (λ/aN)α (1 + o(1))} as N →∞

for some c > 0. Taking this to the power r`∗(N) it follows that the CTRW satisfies
condition (1.9) with aN = c1/αN1/α and f(r) = r.

Secondly, consider the following simplified Bouchaud trap model (cf. (1.8)). Let πx = δτx
where the τx, x ∈ Zd, are heavy-tailed i.i.d. random variables, that is

P[τx > u] = u−α(1 + o(1)) as u→∞.

Then the quenched Laplace transform satisfies

π̂0(λ/aN) = exp{−λa−1N τx}.

Taking this to the power r`∗(N) and taking the expectation over τx, this is the Laplace
transform of a random variable in the domain of attraction of an α-stable law, evaluated

at λr `
∗(N)
aN

, which is

E
[
π̂0(λ/aN)r`

∗(N)
]

= exp

{
−cλαrα

(
`∗(N)

aN

)α
(1 + o(1))

}
as N →∞

for some c > 0. Choosing aN = c1/αN1/α`∗(N)1−1/α, condition (1.9) is then satisfied for
f(r) = rα.

To see that f(r) can be more than just a power of r, consider the following mixture of
the above two models. For some p ∈ (0, 1), let each πx with probability p be a heavy-tailed
distribution with

P[τ ix > u] = u−α`∗(u)α−1(1 + o(1)) as u→∞,
and with probability 1− p be δτx where the τx are heavy-tailed random variables with

P[τx > u] = u−α(1 + o(1)) as u→∞.

Then, by combining the arguments above, condition (1.9) is satisfied with the normalization
aN = cN1/α`∗(N)1−1/α and f(r) = pr + (1− p)rα.
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Proof of Theorem 1.4. By Theorem 1.1 it is sufficient to show that

lim
N→∞

E[exp{−λSN(t)}] = e−ctλ
α

(5.1)

for some c ∈ (0,∞), this is equivalent to convergence of SN to an α-stable subordinator.
Using the independence of the πx’s, recalling that π̂x denotes the Laplace transform of πx,
we have

E
[

exp
{
− λ

aN
S(bNtc)

}∣∣∣Y ] = E
[

exp
{
− λ

aN

∑
x∈Zd

L(x,bNtc−1)∑
i=1

τ ix

}∣∣∣Y ]
=
∏
x∈Zd

E
[
π̂x(λ/aN)L(x,bNtc−1)

}∣∣∣Y ]. (5.2)

Treating the case when Y is transient first, let Rk(Nt) = {x ∈ Zd : L(x, bNtc− 1) = k}.
By Lemma A.1, Rk(Nt)/(Nt)

N→∞−−−→ γ2(1 − γ)k−1 in probability. Using the translation
invariance, the right-hand side of (5.2) can be written as

exp
{ ∞∑
k=1

|Rk(Nt)| logE
[
π̂0(λ/aN)k

]}
.

For arbitrary M ∈ N, using the law of large numbers for Rk(Nt) and assumption (1.9),

M∑
k=1

|Rk(Nt)| logE
[
π̂0(λ/aN)k

] N→∞−−−→ −tλα
M∑
k=1

f(k/γ)γ2(1− γ)k−1, (5.3)

in probability. Applying Jensen’s inequality, it is easy to see that f(k) grows at most
linearly with k, so the right-hand side of the above expression converges as M → ∞ to
a finite value, by assumptions of the theorem. On the other hand, by Jensen’s inequality
again, for every δ > 0

P
[
−

∞∑
k=M

|Rk(Nt)| logE
[
π̂0(λ/aN)k

]
≥ δ
]

≤ P
[
− logE

[
π̂0(λ/aN)

] ∞∑
k=M

|Rk(Nt)|k ≥ δ
]
.

(5.4)

By the Markov inequality, for 0 < c1 < − log(1 − γ), P[Rk(Nt)/(Nt) ≥ e−c1k] ≤ e−c
′k

uniformly for all k ≥M and N large enough, and thus by a union bound

P
[
∃k ≥M such that Rk(Nt)/(Nt) ≥ e−c1k

]
≤ Ce−c

′M (5.5)

uniformly in N . Using (5.5) and the fact that logE
[
π̂0(λ/aN)

]
is finite by assumption, it

follows that the left-hand side of (5.4) converges to 0 in probability when N →∞ and then
M → ∞, and therefore (5.3) also holds with M = ∞. Using the bounded convergence
theorem, it then follows that

E
[

exp
{
− λ

aN
S(bNtc)

}]
= E

[
exp

{ ∞∑
k=1

|Rk(Nt)| logE
[
π̂0(λ/aN)k

]}]
N→∞−−−→ exp

{
− tλα

∞∑
k=1

f(k/γ)γ2(1− γ)k−1
}
,

which proves (5.1) in the transient case.
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To treat the recurrent case, we fix β > 0 small and define for k ≥ 1

Rk
β(Nt) = {x ∈ Zd : (k − 1)β`∗(N) < L(x, bNtc − 1) ≤ kβ`∗(N)}.

By Lemma A.1, Rk
β(Nt)`∗(N)/(Nt)

N→∞−−−→ e−(k−1)β − e−kβ in probability. The right-hand
side of (5.2) can be bounded from above by

exp
{ ∞∑
k=1

|Rk
β(Nt)| logE

[
π̂0(λ/aN)(k−1)`

∗(N)
]}
,

and from below by

exp
{ ∞∑
k=1

|Rk
β(Nt)| logE

[
π̂0(λ/aN)k`

∗(N)
]}
.

Following the same steps as in the transient case, it can be easily shown that

exp
{
− tλα

∞∑
k=1

f(β(k − 1))
(
e−(k−1)β − e−kβ

)}
≤ lim

N→∞
E
[
e−λSN (t)

]
≤ exp

{
− tλα

∞∑
k=1

f(βk))
(
e−(k−1)β − e−kβ

)}
Since f is a monotonous function, the sums in the above expression can be viewed as lower
and upper Riemann sums for the integral

∫∞
0
f(x)e−x dx to which they tend when β → 0.

This integral is finite by assumption, and (5.1) is proved in the recurrent case. �

6. Ignoring small sets

In this section we prove Lemma 3.5 which allows us to ignore small sets when dealing
with the clock process.

We first assume that the random walk Y is transient, that is 1/`∗(n) → γ ∈ (0, 1) as
n → ∞. We start by noting that for every x ∈ R(bNtc) and i ∈ {1, . . . , L(x, bNtc − 1)},
since (τ ix)i≥1 are i.i.d.,

E
[

τ ix
S(bNtc)

∣∣∣ Y ] = E
[

τ 1x
S(bNtc)

∣∣∣ Y ] . (6.1)

For fixed 0 ≤ l < bNtc, let x = Y (l) and i = L(Y (l), l), that is τ̃l = τ ix. Using (6.1) and
the fact that (τ 1x)x∈Zd are i.i.d. under P,

E
[

τ̃l
S(bNtc)

∣∣∣ Y ] = E

[
τ ix∑

y∈R(bNtc)
∑L(x,bNtc−1)

j=1 τ jy

∣∣∣ Y ]

≤ E

[
τ 1x∑

y∈R(bNtc) τ
1
y

∣∣∣ Y ]

=
1

|R(bNtc)|
∑

x∈R(bNtc)

E

[
τ 1x∑

y∈R(bNtc) τ
1
y

∣∣∣ Y ]

=
1

|R(bNtc)|
.

(6.2)
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By the law of large numbers for R(n) (Lemma A.1) in the transient case, there is a constant
C <∞ such that for all N large enough

P [|R(bNtc)| < CN ] < ε.

Hence, for N large enough,

P
[∑
l∈B

τ̃l ≥ δS(bNtc), |B| ≤ εN

]
≤ P

[∑
l∈B

τ̃l ≥ δS(bNtc), |B| ≤ εN, |R(bNtc)| ≥ CN

]
+ ε.

Using the Markov inequality and (6.2), this is bounded from above by

≤ 1

δ
E

[∑
l∈B

E
[

τ̃l
S(bNtc)

∣∣∣ Y ]1{|B|≤εN}1{|R(bNtc)|≥CN}

]
+ ε.

≤ 1

δ
E
[

|B|
|R(bNtc)|

1{|B|≤εN}1{|R(bNtc)|≥CN}

]
+ ε

≤ ε

Cδ
+ ε.

Letting N →∞ and then ε→ 0 completes the proof of the lemma in the transient case.
We now consider the recurrent case. Let RB = {Y (l) : l ∈ B}, and for x ∈ RB let

LB(x) = |{l ∈ B : Y (l) = x}|. Fix some small β > 0 and let

R>β = {x ∈ R(bNtc) : L(x, bNtc − 1) > β`∗(N)},
R≤β = {x ∈ R(bNtc) : L(x, bNtc − 1) ≤ β`∗(N)}.

By Lemma A.1, the sizes of R>β and R≤β satisfy weak laws of large numbers with respective
averages Nte−β/`∗(N)(1 + o(1)) and Nt(1− e−β)/`∗(N)(1 + o(1)). In particular for Cβ =
(1− ε)e−βt and cβ = (1 + ε)(1− e−β)t, for all N large enough,

P
[
|R>β| < Cβ

N

`∗(N)

]
+ P

[
|R≤β| > cβ

N

`∗(N)

]
≤ ε.

Therefore, for N large enough,

P
[∑
l∈B

τ̃l ≥ δS(bNtc), |B| ≤ εN

]

≤ P
[ ∑
x∈RB∩R>β

LB(x)∑
i=1

τ ix ≥
δ

2
S(bNtc), |B| ≤ εN, |R>β| ≥ Cβ

N

logN

]
(6.3)

+ P
[ ∑
x∈RB∩R≤β

LB(x)∑
i=1

τ ix ≥
δ

2
S(bNtc), |R>β| ≥ Cβ

N

logN
, |R≤β| ≤ cβ

N

logN

]
+ ε. (6.4)
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Using (6.1) and the similar reasoning as in the transient case, since (
∑β`∗(N)

i=1 τ ix)x∈Zd are
i.i.d. with respect to the annealed measure, we have for x ∈ RB ∩R>β,

E

[∑LB(x)
i=1 τ ix

S(bNtc)

∣∣∣ Y ] =
LB(x)

β`∗(N)
E

[∑β`∗(N)
i=1 τ ix
S(bNtc)

∣∣∣ Y ]

≤ LB(x)

β`∗(N)
E

[ ∑β`∗(N)
i=1 τ ix∑

y∈R>β

∑β`∗(N)
i=1 τ iy

∣∣∣ Y ]

=
LB(x)

|R>β|β`∗(N)
.

Therefore, using the Markov inequality,

(6.3) ≤ 2

δ
E

 ∑
x∈RB∩R>β

E

[∑LB(x)
i=1 τ ix

S(bNtc)

∣∣∣ Y ]1{|B|≤εN}1{|R>β |≥Cβ N
`∗(N)}


≤ 2

δ
E

 ∑
x∈RB∩R>β

LB(x)

|R>β|β`∗(N)
1{|B|≤εN}1{|R>β |≥Cβ N

`∗(N)}


≤ 2ε

δβCβ
.

(6.5)

where for the last inequality we used the fact that
∑

x LB(x) ≤ |B| ≤ εN .

It remains to bound (6.4). Using again the fact that (
∑β`∗(N)

i=1 τ ix)x∈Zd are i.i.d. with
respect to the annealed measure and independent of Y ,

P
[ ∑
x∈RB∩R≤β

LB(x)∑
i=1

τ ix ≥
δ

2
S(bNtc)

∣∣∣ Y ]

≤ P
[(

1 +
δ

2

) ∑
x∈RB∩R≤β

β`∗(N)∑
i=1

τ ix ≥
δ

2

∑
x∈R>β∪(RB∩R≤β)

β`∗(N)∑
i=1

τ ix

∣∣∣ Y ]

≤ 2 + δ

δ
E
[ ∑

x∈RB∩R≤β

∑β`∗(N)
i=1 τ ix∑

x∈R>β∪(RB∩R≤β)
∑β`∗(N)

i=1 τ ix

∣∣∣ Y ]
=

2 + δ

δ

|RB ∩R≤β|
|R>β ∪ (RB ∩R≤β)|

.

Therefore,

(6.4) ≤ 2 + δ

δ

cβ
Cβ

=
2 + δ

δ

1 + ε

1− ε
(
eβ − 1

)
. (6.6)

Combining (6.3)–(6.6) and letting N → ∞, then ε → 0 and finally β → 0 finishes the
proof of the lemma in the recurrent case. �

Appendix A. Laws of large numbers for range-like objects

We prove here that Assumption A implies weak laws of large numbers for several range-
related quantities. The proofs are based on the classical paper [DE51], see also [Rév13,
Chapter 21].
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Recall that

R(n) = {x ∈ Zd : L(x, n− 1) > 0}
is the range of the random walk Y up to time n−1. In the recurrent case, i.e. if `∗(n)→∞,
define for k ≥ 1 and β > 0

Rk
β(n) = {x ∈ Zd : L(x, n− 1) ∈ ((k − 1), k]β`∗(n)}

the set of vertices visited (k − 1)β`∗(n) to kβ`∗ times up to time n − 1. In the transient
case, if 1/`∗(n)→ γ ∈ (0, 1), let for k ≥ 1

Rk(n) = {x ∈ Zd : L(x, n− 1) = k}

the vertices visited exactly k times up to time n− 1.
We say that a sequence of random variables Zn satisfies the weak law of large numbers

if Zn/EZn
n→∞−−−→ 1 in probability.

Lemma A.1. (i) If Assumption A holds, then |R(n)| satisfies the weak law of large
numbers with

E[|R(n)|] =
n

`∗(n)
(1 + o(1)) as n→∞.

(ii) If in addition `∗(n) → ∞ as n → ∞, then |Rk
β(n)| satisfies the weak law of large

numbers for every k ≥ 1 and β > 0, and

E[|Rk
β(n)|] = (e−(k−1)β − e−kβ)

n

`∗(n)
(1 + o(1)) as n→∞.

(iii) If, on the other hand, 1/`∗(n) → γ ∈ (0, 1), then |Rk(n)| satisfies the weak law of
large numbers for every k ≥ 1, and

E[|Rk(n)|] = γ2(1− γ)k−1n(1 + o(1)) as n→∞.

Proof. Note that for the simple random walk in d ≥ 3 and d = 2 respectively, part (i) is
a classical result from [DE51], part (iii) was hinted at in [ET60, Theorem 12] and proved
in [Pit74], whereas part (ii) is a direct consequence of [DE51, Theorem 4] and [Čer07,
Theorem 2]. Part (i) above is proved exactly as in [DE51]. We include its proof, since
proofs of (ii) and (iii) are its extensions. Let ψk be the indicator of the event that a new
vertex is found at time k,

ψk = 1{Y (l)6=Y (k) for all 0≤l<k},

with ψ0 = 1. Recall that ξi denote the i.i.d. increments of the random walk Y . Then,

E[ψk] = P [Y (k) 6= Y (k − 1), Y (k) 6= Y (k − 2), . . . , Y (k) 6= Y (0)]

= P [ξk 6= 0, ξk + ξk−1 6= 0, . . . , ξk + · · ·+ ξ1 6= 0]

= P [ξ1 6= 0, ξ1 + ξ2 6= 0, . . . , ξ1 + · · ·+ ξk 6= 0]

= P[Y (l) 6= 0 for l = 1, . . . , k] = rk.

(A.1)

For a slowly varying function `,
∑n

k=1 `(k) = n`(n)(1 + o(1)) as n → ∞ (see e.g. [Sen76,
p. 55]). Therefore, by Assumption A,

E[|R(n)|] =
n−1∑
k=0

E[ψk] =
n

`∗(n)
(1 + o(1)) as n→∞. (A.2)
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To prove the weak law of large numbers, we compute the variance. First note that for
i ≤ j, by the Markov property,

E[ψiψj] = E
[
1{Y (l)6=Y (i), 0≤l<i}1{Y (l)6=Y (j), 0≤l<j}

]
≤ E

[
1{Y (l)6=Y (i), 0≤l<i}1{Y (l)6=Y (j), i≤l<j}

]
= E[ψi]E[ψj−i].

(A.3)

Then,

Var |R(n)| =
∑

0≤i,j≤n−1

E[ψiψj]− E[ψi]E[ψj]

≤ 2
n−1∑
i=0

n−1∑
j=i

E[ψi] (E[ψj−i]− E[ψj])

≤ 2
n−1∑
i=0

E[ψi]

(
max

k=0,...,n−1

n−1∑
j=k

E[ψj−k]− E[ψj]

)
.

(A.4)

By (A.1), E[ψk] is non-increasing, therefore the maximum in (A.4) is attained in k = n
2
. The

parenthesis in (A.4) can then be estimated using elementary properties of slowly varying
functions,

n−1∑
j=n

2

E[ψj−n
2
]− E[ψj] =

n
2
−1∑
j=0

1

`∗(j)
−

n−1∑
j=n

2

1

`∗(j)

=

n
2
−1∑
j=0

1

`∗(j)
−

n−1∑
j=0

1

`∗(j)
−

n
2
−1∑
j=0

1

`∗(j)


= 2

n
2

`∗(n
2
)
(1 + o(1))− n

`∗(n)
(1 + o(1)) =

n

`∗(n)
o(1) as n→∞.

Inserting this into (A.4), we obtain

Var |R(n)| ≤ 2
n−1∑
i=0

E[ψi]
n

`∗(n)
o(1) = o

((
n

`∗(n)

)2
)

as n→∞,

and the weak law of large numbers for |R(n)| follows by usual arguments.
Before turning to part (ii), we note the following fact on return times. Let as before

H1
0 = inf{i > 0 : Y (i) = 0} denote the time of the first return to 0, and Hk

0 = inf{i >
Hk−1

0 : Y (i) = 0} the time of the k-th return to 0. Let Ti = H i
0 −H i−1

0 (with H0
0 = 0) be

the successive return times. By the Markov property the (Ti)i≥1 are i.i.d., and P[Ti > n] =
rn = 1

`∗(n)
by Assumption A. If `∗(k) → ∞, the Ti are a.s. finite and have slowly varying

tail. It is well known (e.g. [Dar52, Theorem 3.2]) that for such i.i.d. random variables Ti,∑n
i=1 Ti

maxni=1 Ti
→ 1 in probability as n→∞. (A.5)

Since `∗(cn) ∼ `∗(n) as n→∞,

P
[

max{Ti : 1 ≤ i ≤ β`∗(n)} ≤ cn
]

=

(
1− 1

`∗(cn)

)β`∗(n)
= e−β(1 + o(1)) as n→∞.

(A.6)
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From (A.5) and (A.6) we obtain for every c > 0 and β > 0

P [L(0, cn) ≥ β`∗(n)] = P

β`∗(n)∑
i=1

Ti ≤ cn

 = e−β(1 + o(1)). (A.7)

For part (ii) we only prove the statement for Rβ(n) = R1
β(n), the statement for k > 1

follows easily by subtracting the claims with β replaced by βk and β(k − 1). Consider ψk
as above, and additionally define functions ϕk = 1{L(Y (k),n−1)≤β`∗(n)}. Using the Markov
property and translation invariance,

E[|Rβ(n)|] =
n−1∑
k=0

E[ψkϕk] =
n−1∑
k=0

E[ψk]P [L(0, n− 1− k) ≤ β`∗(n)]

=
n−1∑
k=0

1

`∗(k)
P

β`∗(n)∑
i=1

Ti ≥ n− 1− k

 . (A.8)

If k ≤ (1− δ)n for some δ > 0, then we can apply (A.7). Bounding the probability by one
in the remaining cases, we see that (A.8) is bounded from above by

E[|Rβ(n)|] ≤
(1−δ)n∑
k=0

1

`∗(k)
(1− e−β)(1 + oδ(1)) +

∑
(1−δ)n<k<n

1

`∗(k)

=
(1− δ)n
`∗(n)

(1− e−β)(1 + oδ(1)) +
δn

`∗(n)
,

and from below by

E[|Rβ(n)|] ≥
(1−δ)n∑
k=0

1

`∗(k)
(1− e−β)(1 + oδ(1)) =

(1− δ)n
`∗(n)

(1− e−β)(1 + oδ(1)).

Sending δ → 0 proves the statement for E[|Rβ(n)|].
To bound the variance, we first note that for i < i+ δn ≤ j ≤ (1− δ)n, by the Markov

property and using Assumption A and (A.7),

E [ψiϕiψjϕj] ≤ E
[
ψi1{L(Y (i),i+δn)≤β`∗(n)}1{Y (k) 6=Y (j), i+δn≤k<j}1{L(Y (j),n)≤β`∗(n)}

]
= E[ψi]P

[
L(0, δn) ≤ β`∗(n)

]
E
[
ψj−i−δn

]
P
[
L(0, δn) ≤ β`∗(n)

]
=

1

`∗(i)
(1− e−β)

1

`∗(j − i− δn)
(1− e−β)(1 + oδ(1)). (A.9)

The variance of |Rβ(n)| is

Var |Rβ(n)| = 2
∑

0≤i≤j≤n−1

E[ψiϕiψjϕj]− E[ψiϕi]E[ψjϕj]. (A.10)



22

For i < i+ δn ≤ j ≤ (1− δ)n we can use (A.9) and (A.8) to get∑
i<i+δn≤j≤(1−δ)n

E[ψiξiψjξj]− E[ψiξi]E[ψjξj]

≤ (1− e−β)2
∑

i<i+δn≤j≤(1−δ)n

1

`∗(i)

(
1

`∗(j − i− δn)
(1 + oδ(1))− 1

`∗(j)
(1 + oδ(1))

)

= (1− e−β)2
(1−2δ)n∑
i=0

1

`∗(i)

(1−2δ)n−i∑
j=0

1

`∗(j)
(1 + oδ(1))−

(1−δ)n∑
j=i+δn

1

`∗(j)
(1 + oδ(1))


= oδ

((
n

`∗(n)

)2
)
.

(A.11)

For the remaining i, j, using (A.3) we have

n−1∑
i=0

∑
i≤j<i+δn

(1−δ)n<j<n

E[ψiξiψjξj]− E[ψiξi]E[ψjξj]

≤
n−1∑
i=0

∑
i≤j<i+δn

(1−δ)n<j<n

E[ψiψj]

≤
n−1∑
i=0

∑
i≤j<i+δn

(1−δ)n<j<n

E[ψi]E[ψj−i]

≤
n−1∑
i=0

1

`∗(i)

i+δn−1∑
j=i

1

`∗(j)
+

n−1∑
j=(1−δ)n+1

1

`∗(j)


≤ 2

δn2

(`∗(n))2
(1 + oδ(1)).

(A.12)

Inserting (A.11), (A.12) into (A.10) and taking δ → 0 yields Var |Rβ(n)| = o((E|Rβ(n)|)2)
and the weak law of large numbers follows.

Finally, part (iii) is proved in the same way as part (ii). The only difference is that
instead of using (A.7) we note that L(0,∞) is a geometric random variable with parameter
γ, therefore for every c > 0,

P [L(0, cn) = k] = γ(1− γ)k−1(1 + o(1)) as n→∞.

This completes the proof. �
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[BCČR14] G. Ben Arous, M. Cabezas, J. Černý, and R. Royfman, Randomly Trapped Random Walks, To
appear in Ann. Probab. (2014).

http://www.ams.org/mathscinet-getitem?mr=2353391
http://www.ams.org/mathscinet-getitem?mr=2776627


23

[BČM06] G. Ben Arous, J. Černý, and T. Mountford, Aging in two-dimensional Bouchaud’s model,
Probab. Theory Related Fields 134 (2006), no. 1, 1–43. MR 2221784

[BS02] E. Bolthausen and A.-S. Sznitman, On the static and dynamic points of view for certain random
walks in random environment, Methods Appl. Anal. 9 (2002), no. 3, 345–375, Special issue
dedicated to Daniel W. Stroock and Srinivasa S. R. Varadhan on the occasion of their 60th
birthday. MR 2023130
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