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ABSTRACT

This Ph-D Thesis is devoted to the mathematical study of two properties of
strongly disordered systems.

In the first part, we investigate a method that was used widely by physicists
to estimate the conductivity of disordered systems. This method is called
Critical Path Analysis. We construct a model based on continuum percolation
in which, in the limit of strong disorder, we prove the validity of Critical Path
Analysis. We use homogenisation techniques to estimate the conductivity.

In the second part of the thesis, we study aging in Bouchaud’s trap model
on Zd. This model describes a Markov process whose evolution is slowed
down by a random environment. The transition rates are given by wij =
ν exp(−β((1−a)Ei−aEj)) if i, j are neighbours, where Ei are i.i.d. exponential
random variables, β is inverse temperature and a determines the influence of
neighbouring sites on the dynamics. We study two two-point functions. The
first one, Π(tw, t+tw), is the probability that the system does not jump between
the times tw and tw + t. The second one, R(tw, t+ tw), is the probability that
the system is in the same state at times tw and t+tw. If d = 1 and the disorder
is strong enough (β > 1), we prove, for any a ∈ [0, 1], that a proper rescaling of
process X converges to a singular diffusion. We use this result to prove aging
behaviour for the function R and subaging for the function Π. We get the
same results in higher dimensions (d = 2, 3, . . . ), but only in the case a = 0.

RÉSUMÉ

Cette thèse est consacrée à l’étude mathématique de deux propriétés des
systèmes fortement désordonnés.

Dans la première partie, on étudie une méthode bien connue des physi-
ciens, servant à estimer la conductivité des systèmes désordonnés. Cette
méthode s’appelle Critical Path Analysis (“analyse des chemins critiques”).
On construit un modèle de percolation continue dans lequel on montre, dans
la limite de grand désordre, la validité de CPA. On utilise des techniques
d’homogénéisation pour estimer la conductivité.
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Dans la deuxième partie du travail, on étudie le vieillissement du modèle de
pièges de Bouchaud sur Zd. Ce modèle décrit un processus Markovien X dont
l’évolution est freinée par un environnement aléatoire. Les taux de transition
sont donnés par wij = ν exp(−β((1 − a)Ei − aEj)) si i, j sont plus proches
voisins. Les Ei sont des variables aléatoires exponentielles, β est l’inverse de
la température et a détermine l’influence des sites voisins sur la dynamique.
On considère deux fonctions à deux points. La première, Π(tw, t + tw), est
la probabilité que le système ne change pas d’état entre les temps tw et t +
tw. La seconde, R(tw, t + tw), est la probabilité que le système soit dans
le même état aux temps tw et tw + t. Si d = 1, on montre que pour tout
a ∈ [0, 1], le processus X converge, après un changement d’échelle approprié,
vers une diffusion singulière. On utilise ensuite ce résultat pour montrer que
R présente le phénomène dit de vieillissement (“aging”) et que Π présente le
sous-vieillissement. On obtient les mêmes résultats en dimensions supérieures
(d = 2, 3, . . . ) dans le cas a = 0.



PREFACE

Disorder plays a fundamental role in many areas of industrial and scientific in-
terest. To cite a few, we mention geological systems (like porous and fractured
rocks), semiconductors, polymers, and spin-glasses. All these systems have
been studied for quite a long time both experimentally and theoretically. Dur-
ing the last three decades, the development of powerful theoretical methods
has allowed to interpret experimental observations. Many of these methods
have been put on a rigorous basis, but there are still many open areas.

In the two main parts of this thesis we shed light on two methods that
were used in physics literature to describe the properties of disordered systems.
Regarding the treated models and the properties which we are interested in,
the two parts of the thesis are independent. However, both are connected by
one crucial property, the presence of strong disorder. This means that the
probability distributions of some characteristics important for the behaviour
system are very broad. The presence of such broad distributions implies that
some parts of the system have more importance and dominate somehow the
properties of the whole system. In this short introduction we describe the
kind of problems treated in the sequel and we give a trivial example where it
is possible to spot the connection between the two parts of the thesis.

In the first part we will study the conductivity (or water permeability) of
disordered systems. Here strong disorder will be present in the distribution
of local conductivity. If an electrical potential is applied on such a system,
the presence of strong disorder leads to the creation of a few relatively small
domains (paths) where the largest amount of the electrical current flows. It
is evident that the conductivity of these small domains should influence the
conductivity of the whole system. This behaviour is completely different from
the one observed in systems where the distribution of local conductivity is
relatively narrow, since in these systems the whole volume is important for
transport.

We will construct a model (which is a modification of the random chess-
board model of [GK99]), where it is possible to show the existence of such
strongly conducting paths and to prove that the conductivity of these narrow
paths dominates the overall conductivity.

The second part of the thesis is devoted to the study of one model that
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has been used in the physics literature [Bou92, MB96, RMB01, BCKM98] to
explain the aging properties of some glassy materials. In this model the phase
space of the system consists of states whose energy distribution is very broad.
The system stays (is trapped) in any state a time that is proportional to the
energy of this state. The broad distribution of the local properties in this case
implies that most of the time is spent in a very small number of states.

The rules governing the dynamics between the different states can be chosen
quite arbitrarily. Evidently, some choices have more physical relevance than
others. Here we will study the case where the states are placed on the d-
dimensional square lattice and the system can jump only between neighbouring
sites. If d ≥ 2, then the system will perform the simple random walk on Zd,
and will be slowed down by the presence of traps. In d = 1 we will work with
more complicated rules for the dynamics of the system. Namely, we will be
able to consider some sort of attraction to the states with high energy. We
will prove aging behaviour of these systems.

To illustrate better the connection between both models we construct here
two trivial and rather artificial models, where it is easy to observe the transition
between strong and weak disorder. Both these models are based on a well
known object in probability theory, the sum of i.i.d. random variables. Let
ri, i = 1, 2, . . . , be a sequence of positive i.i.d. random variables. In the
conductivity setting, ri’s can be simply regarded as the resistances of small
conducting elements ranged linearly. Then the resistance of a system composed
of n elements equals Sn =

∑n
i=1 ri.

Consider now the “phase space” model, where the system follows simple
transition rule: after leaving state i it jumps to state i+ 1. Let ri be, for the
sake of simplicity, the time spent by the system in the i-th state. The time
that the system needs for the first n jumps is then also Sn. Note that a very
similar model was studied in [Bou92].

To illustrate the role of strong disorder, consider that ri are in the domain
of attraction of a totally asymmetric α-stable law. We use Mn to denote
max{ri, i = 1, . . . , n}. If α < 1, then it is known (see e.g. [Fel71] page 172)
that the expectation of Mn/Sn converges to 1− α as n → ∞. If α > 1, then
it converges to 0. Thus, the presence of strong disorder implies that the total
resistivity is dominated by one particularly resistant element, or that during
the first n jumps the system spends a non-negligible proportion of time in the
site with the “energy” Mn.

The models we will treat later are obviously less trivial than a sum of
i.i.d. random variables, but we will see that the effects of strong disorder are
very similar to the above described trivial models.
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CRITICAL PATH ANALYSIS





1. CRITICAL PATH ANALYSIS, TRANSPORT IN

FRACTURED ROCKS

1.1 Introduction

This part of the thesis is devoted to the study of the conductivity of disordered
systems. We focus on one method that has been widely used in physical and
geological literature to estimate the global properties of complex disordered
systems.

This method is called Critical Path Analysis (CPA). It was applied for
the first time by Ambegaokar, Halperin, and Langer [AHL71] to justify the
dependence of the conductivity of some semiconductors on temperature. The
CPA method was further adapted by Katz and Thompson [KT86] to estimate
the saturated hydraulic conductivity of porous rocks. It was then successfully
used many times in different context. Charlaix, Guyon, and Roux [CGR87]
used it to describe the properties of fractured rocks. Recently, this method
was compared by Bernabe and Bruderer [BB98] with three other methods for
the calculation of saturated hydraulic conductivity, and was found to be the
most promising in many situations. It was also applied together with some
fractal methods to estimate the unsaturated hydraulic conductivity of porous
rocks by [HG02].

Our interest in this method originated from the project in collaboration
with the group of Sanitary and Environmental Engineering at the Department
of Rural Engineering at EPFL. The aim of this project was to estimate the
transport properties of rocks. Needless to emphasise that the research in this
domain is very important from the point of view of the applications. For
many areas of human activity good estimations of the transport properties
of rocks are crucial. These areas include construction and security of nuclear
waste repositories, establishment of the productivity of petroleum reservoirs,
pollution and cleaning of underground water, etc. The CPA method itself is,
however, not bounded to the geological context. It can be applied in other
areas of technological interest like porous electrochemical electrodes, filters
and gels.

It was concluded already by Kirkpatick [Kir73] (who had done numerical
simulations on transport in heterogeneous media), that percolation theories,
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and thus CPA, perform best of known approaches when disorder is (relatively)
high. On the other hand, effective medium theories are more efficient when
disorder is low. Porous and fractured rocks fall usually into the category of
highly disordered systems.

It is known that the distribution of local hydraulic conductivity in rocks is
usually very broad. This is mainly due to the very complex structure of void
spaces in rocks. It follows from geological measurements that the ratio of the
extreme values of size of these voids can spam several (up to 5) orders of mag-
nitude in porous rocks. This ratio can be even larger in the case of fractured
rocks. The void spaces are created during geological evolution of rocks. They
include small pores between grains of sand that are created during sedimen-
tation process, as well as huge fractures created for example by earthquakes,
and whose length can exceed several kilometres.

The effect of voids of different sizes is further intensified by the fact that the
dependence of hydraulic conductivity on the aperture of pores or fractures is
very strong. For example, flat cracks of constant aperture δ have the hydraulic
conductivity proportional to δ3 (if we suppose very slow laminar flow, which
is usually the case in rocks). For necks that connect pores between spherical
grains, the power can be even larger.

For a mathematician there are other interesting aspects of the study of
transport in rocks. A large variety of questions important for applications can
be posed. It is necessary to estimate the average transport properties, because
they are important e.g. for oil mining and extracting of underground water.
On the other hand, the fastest paths, not the bulk transport, are fundamental
for nuclear waste repositories.

Different physical and chemical processes in the rock can make the problems
even more difficult and interesting. Among them we may mention the trapping
of radioactive nucleotides by some kinds of argils, sedimentation of minerals
dissolved in the water during transport, and others.

During our project we concentrated mainly on fractured rocks, since their
study was of more interest for our geology partners. As we have already pointed
out, the distribution of apertures in these rocks is usually very broad. This
creates, under certain conditions, strongly conducting paths that contribute
overwhelmingly to the permeability of the whole system. The study of these
strongly conducting paths and mainly of the conditions that lead to their
existence was the main subject of the project.

The idea about strongly conducting paths came up after geological obser-
vations that were done near Granada, Spain. It was apparent there that only a
few fractures in the rock had been the preferential paths for hydraulic conduc-
tivity in the past. On the other hand, there were a lot of fractures in the same
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geological period that were relatively small with respect to the first set, and
through which was almost no water flew. This second set of fractures became
closed by sedimentation as time passed by.

The existence of strongly conducting paths can be important for simulation
efforts since it allows to restrict the attention to a small subset of the system,
and thus to decrease considerably the complexity of the computation. It is
clear that such restriction cannot be done generally. Our goal was to clarify
its domain of applicability. In a more general (not specifically geological) way,
we wanted to justify that some global properties of disordered systems can be
derived, if some conditions are satisfied, only from the properties of a small
portion of the system.

Our research follow two main lines. The first one is to find a numerical
justification of our working hypothesis. The second one is more theoretical
and occupies the majority of the first part of this thesis. The theoretical part
is concentrated on the construction of a model, where the justification of the
Critical Path Analysis is possible. However, before we start to go into the
details of the theoretical direction of our research, we make a short digression,
and describe the numerical part of the project.

1.2 Numerical simulations

For the justification of the idea of Critical Path Analysis the software called
CPA has been developed. The main part of the coding was done by the
author of this thesis. The program has several cooperating modules that were
developed separately.

Simulator of the rock. At the beginning of the project it was necessary
to create a good simulator of the geometry of the fractured rock. This task
is quite complicated, because the geometry of the rock tends to be consider-
ably complex. All its properties depend on the geological history of the rock,
which is never precisely known. Usually, the fractured rock contains several
families of fractures (normally from two to five). All fractures in one family
have approximately the same age. Their normals are distributed around some
direction with the variance that depends also on the family. The density of
fractures, their spacing, shape, size, aperture and surface roughness are other
parameters that characterise every family. Moreover, due to geological history,
there are various correlations between different families (e.g. the intersections
of two fractures from different families can have shape of T more often than
of X). The creation of a “realistic” rock simulator reveals thus to be quite
complicated.

Another problem is connected to the simulation of the rock. It is practically
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impossible to obtain enough data to calibrate the simulator. It is caused by the
fact that almost all geological measurements are done by using two-dimensional
outcrops or one-dimensional boreholes, where only the traces of fractures are
observed. The access to the interior of the rock is highly restricted. Moreover,
such access usually changes the conditions inside of the rock. So, the measured
characteristics (like e.g. appertures) do not correspond exactly to the reality.

It was therefore clear that the model we wanted to create should be a sim-
plification, that should be, on one hand, sufficiently realistic for our geological
partners and, on the other hand, simple to simulate with the data we had.

Some geometry simulators have already been described in the geological
literature [BLE77, LRWW82, LB87]. Our simulator does not differ signifi-
cantly from them. The fractures are represented by disks distributed in three-
dimensional space. The program allows to tune the different parameters for
the different families of fractures. The centres of fractures of each family are
distributed according to a Poisson point process; the densities of different fam-
ilies can differ. For each family it is further possible to set the distributions of
radii, of the normal direction and of the aperture.

Owing to the roughness of the fracture surface and to the sedimentation
of the minerals inside fractures, a fracture cannot be considered as a two-
dimensional object. Usually, one-dimensional channels are created in every
fracture and the transport takes place in these channels. A different set of
channels arises in the intersections of fractures from different families. For
some types of rock the channel transport dominates. It is thus not completely
unrealistic to replace the set of fractures by a network of channels. This is
the approximation that we used; it allows to decrease the complexity of the
program since the conducting objects become one-dimensional. At the start of
the development channels that arise due to the surface roughness were ignored,
and we concentrated mainly on the “intersection channels”. This omission
was possible since the geological systems considered by our partners had such
nature.

The program calculates the network of intersection channels from the frac-
ture network. As the result of this calculation, a graph is obtained. Every
vertex of this graph has assigned its position in space, and to every bond is
associated its hydraulic conductivity.

Conductivity calculation. The second component of the program de-
termines the conductivity of the graph prepared by the previous part. At the
first stage of development, a very simple model was used for this computation.
We used the analogy between water flow and electrical networks. This analogy
is valid for slowly flowing liquid in one-dimensional channels (which is the case
in most geological applications). The potential difference was applied on op-
posite sides of the rock and the current flow was calculated. The conductivity
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calculation was thus reduced to the solution of a possibly quite large system
of linear equations, which was obtained from Kirchoff’s and Ohm’s laws. This
system is usually very sparse and standard numerical methods were used to
solve it.

Network reduction. Since the main aim of the simulation is to test
the Critical Path hypothesis, we have to find a small subset of the original
graph that can be a candidate for such a path and compute its conductivity.
This conductivity (which is calculated again by the previous component) is
then compared to the conductivity of the complete network. The critical path
between the opposite sides of the rock is constructed by the following pruning
procedure: First, all bonds from the graph are deleted. Then we start to re-add
them step by step, in the order of decreasing conductivity. This means that
first we add the most conducting one, etc. After each step we check for loops.
If there is a loop in the newly created graph, we delete the bond we have just
added and we continue with the next one. The procedure stops if a connection
between the sides where potential difference was applied is produced. Then
all dead-ends and isolated edges are removed. This leaves a one-dimensional
path.

Let us finish this section with some comments on the results we obtain
by numerical simulations and that are relevant for verification of Critical Path
Analysis. Not surprisingly, we find that the hydraulic conductivity of the whole
network and of the critical path differ if the local conductivity distribution is
not sufficiently broad. If this distribution becomes “broader”, the permeability
of the critical path starts to be a good approximation of the permeability of
the whole network.

There is one important observation. The “broadness” where the approx-
imation starts to be good depends on the size of the sample. When the size
of the sample increases, we have to take broader distributions of apertures to
obtain a good agreement between both hydraulic conductivities. This is also
easy to explain at the heuristic level. For any broad but bounded distribution
there exists a length above which the system can be considered as homoge-
neous. If the size of the system exceeds this size, the CPA looses sense and
the homogenisation techniques becomes more appropriate.

1.3 One simple model

We construct here one quite simple model where CPA can be proved. It is not
very elaborate and serves only to illustrate some ideas that will be used later.
However, already in this simple model it is possible to see how the required
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broadness of the distribution depends on the size of the box. Indeed, the level
of disorder in the system should diverge as the size of the system increases.

The model that we use is motivated by [NS94], where a very similar model
is used to discuss some problems connected with the ground state structure of
Edwards-Anderson spin-glasses.

We consider the square lattice Z2, where every two points i, j satisfying
dist(i, j) = 1 are connected by the bond 〈i, j〉 with the conductivity cij . We
will try to estimate the conductivity between the left and the right edge of the
box BL = [0, L]2 ∩ Zd.

The conductivities cij are i.i.d. random variables whose distribution will be
specified later. We first describe the key property of these variables. We want
the conductivity of any bond to exist at its own scale. More precisely, for a
sufficiently large system, with overwhelming probability, the conductivity of
each bond is at least twice the size of the next smaller conductivity. If this is
satisfied, then for any bond b = 〈i, j〉, i, j ∈ BL

cb ≥
∑

b′∈BL
cb′<cb

cb′ and c−1
b ≥

∑

b′∈BL
cb′>cb

c−1
b′ . (1.1)

This property can be achieved by the following construction of cij . Let Kij

be i.i.d. positive random variables with continuous distribution (e.g. uniform
on [0,1]). We set the conductivity cij as

cij = c
(L)
ij = exp(λLKij). (1.2)

The nonlinear scaling factor λL is chosen to diverge fast enough as Λ→∞ to
ensure that (with probability 1) for all large L, each c

(L)
ij in BL is larger than

at least twice the next one.
To see that such a choice is possible, note that for every distinct pair of

bonds 〈i, j〉 and 〈i′, j′〉, the function

g(λL) = P
[

1/2 ≤ exp(λLKij)/ exp(λLKi′j′) ≤ 2
]

= P
[

|Kij −Ki′j′|
]

≤ log 2/λL] (1.3)

decreases to 0 as λL → ∞, because Kij and Ki′j′ are independent random
variables with continuous distribution. The probability that cij ’s do not satisfy
the key property is then bounded by

∑

〈i,j〉∈BL

∑

〈i′,j′〉∈BL

g(λL) = O(L4g(λL)). (1.4)

If we choose λL so that g(λL) = O(L−4+1+ε) for some ε > 0, then the sum
of (1.4) over L is finite. Hence, the Borel-Cantelli lemma gives that, with
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probability one, the key property is satisfied for L large enough. If Kij are
uniform on [0, 1], then g(λL) = O(1/λL) and so λL ≥ L5+ε is sufficiently fast
divergence.

Let pc = 1/2 denote the critical probability of the percolation on Z2, and
let Kc be the solution of

P[Kij ≤ Kc] = pc. (1.5)

We use c⋆L to denote the conductivity of the whole box BL, and cCP
L to denote

the conductivity of the critical path constructed by the pruning procedure.
Further, let clastL denote the conductivity of the last bond added during the
pruning procedure. Then we can show the following proposition

Proposition 1.3.1. For almost every realisation of the random variables Kij,
the conductivity c⋆L of the box satisfies

1

2
clastL ≤ cCP

L ≤ c⋆L ≤ 2clastL ≤ 4cCP

L (1.6)

and

lim
L→∞

1

λL
log cCP

L = lim
L→∞

1

λL
log c⋆L = Kc (1.7)

Proof. The proof is inspired by [GK84]. We start with the lower bound on c⋆L.
Clearly, c⋆L ≥ cCP

L . If L is large enough, then the conductivity of the critical
path satisfies

(cCP

L )−1 =
∑

b∈CP

c−1
b ≤ 2(clastL )−1, (1.8)

where the sum runs over all bonds in the critical path and the last inequality
follows from property (1.1) of cij . Using K last

L for λ−1
L log clastL we get

lim inf
L→∞

1

λL
log c⋆L ≥ lim inf

L→∞

1

λL
log

clastL

2
= lim inf

L→∞
K last

L . (1.9)

Using the exponential decay of crossing probabilities, it is easy to see that,
with probability one for L large enough, K last

L ≥ Kc − ε for any ε > 0. This
means that lim infK last

L ≥ Kc. This completes the proof of the lower bound.
The proof of the upper bound uses the self-duality of Z2. Let Z2

⋆ denote the
dual lattice. To every bond of the dual lattice we associate the same conduc-
tivity as has its dual bond. Since the adding of the bond with conductivity clastL

during the pruning procedure produces a left-right crossing of BL by bonds
with large conductivity, there should exist a top-bottom crossing CP⋆ of the
rectangle [1

2
, L − 1

2
] × [−1

2
, L + 1

2
] in Z2

⋆ using only bonds with conductivity
smaller than clastL . Then (by setting the conductivity of all bonds that are not
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dual to some bond of this top-bottom crossing equal to infinity) it is easy to
see

c⋆L ≤
∑

b∈CP⋆

cb ≤ 2clastL ≤ 4cCP

L . (1.10)

Taking the limit and using the fact that for L large enough K last
L ≤ Kc + ε

with probability one we get easily the upper bound.

Let us make some comments on the obtained result. This simple model
has a lot of features that we will see later in the more complicated situation.
First, as we have already noted, the level of disorder should increase with the
size of the box. Later we will use homogenisation techniques to estimate the
conductivity. Using such techniques usually means that infinite volume limit
should be considered. Hence, to be able to verify the validity of CPA, we will
be forced to work in the limit of strong disorder.

From a technical point of view, observe also the role of dual crossing CP ⋆.
It is the traversal crossing of the box by bonds with small conductivities. This
crossing creates a “barrier” that any flow should pass. We will use such barriers
later to construct an upper bound on the conductivity.

The next chapter contains the main result of the first part of the thesis.
We construct there a two-dimensional continuous model where we can verify
the validity of the Critical Path Analysis.



2. CRITICAL PATH ANALYSIS FOR CONTINUUM
PERCOLATION

Jiř́ı Černý

Abstract. We prove the validity of the Critical path analysis for a contin-
uum percolation model close to Golden-Kozlov one. This is obtained in the
limit of strong disorder.

2.1 Introduction

One of the central issues of the theory of disordered materials is the determi-
nation of effective properties (like electrical conductivity or fluid permeability)
from the knowledge of the micro-structural properties. In many areas of prac-
tical importance, the probability distribution of local physical characteristics is
very broad. An interesting property of these so-called “highly disordered” sys-
tems is that the effective conductivity of the sample can often be approximated
by the conductivity of a very small part of it. Such part is usually composed
by a small number of paths that contribute overwhelmingly to the effective
conductivity. It is thus important to find out the conditions that lead to this
behaviour, since it is usually far less complex to compute the conductivity of
a small number of paths than of the whole sample.

This idea was, for the first time, introduced by [AHL71] and is known in the
physical literature as “Critical Path Analysis (CPA)”. It was used successfully
in many areas of physics [KT86, CGR87]. However, rigorous investigations are
sparse up to now [NS96, GK99].

It should be obvious that the creation of strongly conducting paths (and
thus the calculation of effective properties of the sample) is connected with the
percolation of highly conducting areas. Let us explain this relation heuristically
on a simple model. The procedure of reduction of the sample to a small set
of “critical paths” follows [CMB94]. We will call this procedure a “pruning
procedure”.

Let ΛN be the box of size N in Z2 and let LN be the set of all bonds
connecting nearest neighbours in ΛN . Assign to each bond b ∈ LN a random
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i.i.d. conductivity cb. We want to compute the conductivity of the sample with
the potential difference applied on the left and right edge of the box.

Now we start describing the “pruning procedure”. First, we sort all the
bonds in the graph (ΛN ,LN) according to their conductivity. Then we delete
all the bonds from the graph except the bonds that are contained in left of
right edge of the box, and we start to re-add them bond by bond in the order
of decreasing conductivity. After each step we check for loops. If there is a
loop, we delete the bond just added and we continue with the next one. At
the beginning of this procedure, there will be no connection between the left
and right edge. After sufficiently many steps, adding the next bond produces
a connection between the left and right edge. We stop the procedure at this
moment. What we get at this point is a treelike structure containing one
connection from left to right and many dead-ends that we can delete safely,
because they do not contribute to the transport. The conductivity of this
connection is easy to obtain. If the distribution of local characteristics is
broad enough, then the CPA claims that the conductivity of this connection
is close to the conductivity of the graph before the pruning.

One can go further in this type of reasoning. The conductivity of one-
dimensional path of conducting elements with conductivities drawn from a very
broad distribution is essentially determined by the element with the smallest
conductivity. Applying this to the path constructed by pruning, one can con-
clude that the conductivity of the box is not far from the conductivity of the
bond we have added as the last one. Denoting by F (x) = P(cb ≤ x) the distri-
bution function of the local conductivity and by pc the percolation threshold
of the bond percolation, the conductivity of the box should be close to

sup{x : 1− F (x) ≥ pc}. (2.1)

In this paper we construct a model where the above heuristic can be proved.
The effective conductivity will be very close (at least in the limit of strong
disorder) to the “critical local conductivity”. This can be interpreted as a
justification of the CPA for this model. The model we use is a continuous
generalisation of the “chess-board” model used in [GK99].

2.2 Definitions and results

We consider the following two-dimensional medium. Let X = X(ω), ω ∈
Ω be a homogeneous Poisson point process with density λ defined on some
probability space Ω (see Section 2.3 for the definition). For every point x ∈ R2

let S(x) = S(x, ω) denote the minimal distance to some point of X,

S(x) = inf{d(x, y) : y ∈ X}, (2.2)
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where d(·, ·) denotes the Euclidean distance of two points. We define the local
conductivity of the medium by

σ(x, µ) = σ(x, µ, ω) = exp(µS(x)), (2.3)

where µ is a positive parameter. That means that our medium can be consid-
ered as the set of insulating grains with the centres in the points of the point
process. The parameter µ controls the amount of disorder of the system. We
will be interested in the case where µ is very large.

The medium we have just defined is obviously statistically isotropic. Thus,
its macroscopic properties can be described by one scalar effective conductivity
σ⋆(µ, ω) defined as follows. Let ΛN be the box [0, N ]2 and let uN(x, µ) =
uN(x, µ, ω) be the solution of the system

div(σ(x, µ)∇uN(x, µ)) = 0 x = (x1, x2) ∈ ΛN

uN(x, µ) = 0 x1 = 0

uN(x, µ) = N x1 = N

∂uN(x, µ)

∂x2
= 0 x2 ∈ {0, N}.

(2.4)

The function uN(x, µ) is the electrical potential in the box ΛN with the pre-
scribed boundary conditions. Let JN(µ) = JN(µ, ω) denote the overall flow
through the vertical line x2 = b, b ∈ (0, N),

JN(µ) =

∫ N

0

σ((b, x2), µ)
∂uN((b, x2), µ)

∂x1
dx2, (2.5)

which obviously does not depend on b. The effective conductivity is then
defined by

σ⋆(λ, µ, ω) = lim
N→∞

1

N
JN(µ, ω). (2.6)

Since our medium is evidently ergodic, it follows from the results of homogeni-
sation theory that this limit exists almost surely and does not depend on ω
(see [JKO94] Theorem 7.4).

To state our first theorem we need one quantity from the continuum per-
colation (for a good survey see [MR96]). It is well known that there exists a
nontrivial value Sc(λ), such that the set {x ∈ R2 : S(x) ≤ r} percolates iff
r > Sc(λ), and its complement percolates iff r < Sc(λ). We call Sc(λ) the
critical radius. As we have noted in the introduction, this value should be
important for the estimation of the effective conductivity in the limit of the
strong disorder. Actually, we have
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Theorem 2.2.1. For almost all realisations of the medium the value of the ef-
fective conductivity depends only on the parameters λ and µ and asymptotically
satisfies

lim
µ→∞

1

µ
log σ⋆(λ, µ) = Sc(λ). (2.7)

To clarify the relation of this result with equation (2.1) observe that Theo-
rem 2.2.1 roughly says that σ⋆(λ, µ) ∼ exp(µSc(λ)). This value is the largest σ
such that the domain where the conductivity is larger or equal to σ percolates.

The next theorem shows something that resembles the pruning that was
described before, and also clarifies the meaning of Theorem 2.2.1. The prun-
ing in this case cannot be defined in the same way as for the square lattice.
However, it is possible to reduce our medium and to obtain a medium that
essentially consists of points connected by tubes. These points will not be
located on the square lattice, but this does not pose major problems for the
pruning procedure.

As we have already noted, our medium can be regarded as an ensemble of
insulating grains in the plain. Between every pair of neighbouring grains there
is a domain where the conductivity is large. The structure of these grains can
be identified with the Voronoi tessellation defined by the process X(ω). If µ
is large, the conductivity decreases very rapidly with the distance from the
borders of Voronoi cells. Hence, the contribution of a small neighbourhood of
these borders to the effective conductivity should be very important. Thus, we
should not make a large error if we consider the rest of the medium as totally
insulating. We get a medium that consists only of the thin tubes around the
borders of the Voronoi cells.

More precisely, let V(ω) ⊂ R2 denote the set of borders of Voronoi cells
around the points of X(ω) and let ρ > 0 be a small positive constant. We
define first the modified conductivity σ̃(x)

σ̃ρ(x, µ) =

{

σ(x, µ) if d(x,V) < ρ

0 if d(x,V) > 2ρ.
(2.8)

In the domain between ρ and 2ρ the function σ̃ρ(x) continuously and “mono-
tonically” interpolates between the values on the boundary of this domain.
The way how the interpolation is done is not important. We use it only to
make the conductivity continuous and to avoid problems with the boundary
conditions on the walls of the tubes.

The medium σ̃ρ(x) can be “pruned” further. It is obvious that at each
bond b of V there is exactly one point sb where the function S(x) has the
saddle point. Intuitively, the conductivity of the tube around the bond b
should be proportional to the value of conductivity in the point sb. Actually,
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it can be easily proved at least for µ large enough, but we will not need this
claim later. Using this observation, one sees that the bonds with σ(sb) very
small should not contribute too much to the overall conductivity. So we delete
them. More formally, let Vδ be the subset of V containing only the bonds
with S(sb) > Sc(λ)− δ, i.e. the bonds that are far from the points of X. Let
us define another modified medium σ̂ρ,δ(x, µ) in the same way as we defined
σ̃ρ(x, µ) but using Vδ instead of V:

σ̃ρ,δ(x, µ) =

{

σ(x, µ) if d(x,Vδ) < ρ

0 if d(x,Vδ) > 2ρ.
(2.9)

The medium σ̂ρ,δ consists of the tubes from σ̃ρ with large conductivity.
Note, that we do not define pruning in the inductive way that we have

described before. The “pruned” medium σ̂ρ,σ(x) does not consist of a single
one-dimensional path crossing the box and it contains more tubes than it
should. However, if the parameter δ is small (how small it should be, depends
on the size of the box that we consider) the difference should not be substantial.

We use σ̃⋆
ρ(λ, µ) and σ̂⋆

ρ,δ(λ, µ) to denote the effective conductivities of the
modified media. Then we have:

Theorem 2.2.2. For every δ > 0 and ρ > 0, the effective conductivities of the
pruned media σ̃⋆

ρ(λ, µ) and σ̂⋆
ρ,δ(λ, µ) satisfy the same relation as the original

medium, i.e.

lim
µ→∞

1

µ
log σ̃⋆

δ (λ, µ) = lim
µ→∞

1

µ
log σ̂⋆

ρ,δ(λ, µ) = Sc(λ). (2.10)

At first sight, the results of our theorems can be found quite unsatisfactory,
because they give us only the estimation in logarithmic scale and in the limit
of the strong disorder. However, they can be useful to find out the depen-
dence of the effective conductivity on other parameters. Indeed, let the local
conductivity σ(x, α) be defined by exp(µf(S(x), α)), where f is a strictly in-
creasing and differentiable in the first argument, and with the first derivative
with respect to this argument in the point Sc(λ) bounded away from zero and
infinity. Then an easy modification of the arguments given in the proof of
Theorem 2.2.1 gives

lim
µ→∞

1

µ
log σ⋆(λ, µ, α) = f(Sc(λ), α). (2.11)

This is essentially the way how the idea of CPA was used in the original
article [AHL71].

Note also that there are two reasons for having results only in the loga-
rithmic scale. The first one is the “non-gaussian” shape of the graph of the
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conductivity around the saddle points. This problem can be probably resolved
by a more careful computation. However, there is still a second problem. We
do not have enough control of the infinite cluster of continuum percolation
near the critical point.

The proofs of Theorems 2.2.1 and 2.2.2 can be found in Section 2.4 and
they use homogenisation techniques. In Section 2.3 we show some facts about
continuum percolation in R2.

2.3 Percolation results

In this section we prove some facts that are known to be valid for discrete
percolation. To our knowledge similar results do not exist in the case of con-
tinuum percolation. The proofs we present are rather standard modifications
of the discrete versions. The reader familiar with the technical details can skip
the rest of this section and read only Propositions 2.3.1 and 2.3.7 that will be
used later.

Let N be a set of all finite counting measures assigning the weight at most
one to singletons equipped with the usual σ-field N generated by sets of the
form {n ∈ N : n(A) = k}, where A ⊂ R2 is a Borel set and k ∈ N. Every
n ∈ N can be identified with a set of points in R2. This allows us to write
x ∈ n, if n has an atom at x ∈ R.

Let (Ω,F ,P) be some probability space. The Poisson point process with
density λ is an N -valued random variable which satisfies the following two
conditions. X(A) is a Poisson random variable with mean λ|A|, where |A|
denotes the Lebesgue measure of A. If A1, A2 ⊂ R2, A1 ∩A2 = ∅, then X(A1)
and X(A2) are independent. We write Pλ for the law of X and Eλ for the
corresponding expectation.

Let us now define set X(ω), ω ∈ Ω, as the set {x ∈ R2 : S(x) ≤ 1}. The
set X is the union of unit disks with centres in X(ω). We will call it the
occupied region. The complement of X(ω) is called the vacant region. For any
A ⊂ R2 we use W (A) to denote the union of all components of X (occupied
components) intersecting A. Similarly, we write V (A) for the union of vacant
components intersecting A. It is well known that in dimension two there exists
a constant λc such that for every bounded set A the following holds

λc = sup{λ : Pλ[diamV (A) =∞] > 0} = inf{λ : Eλ[diamV (A)] <∞}
= inf{λ : Pλ[diamW (A) =∞] > 0} = sup{λ : Eλ[diamW (A)] <∞},

(2.12)

i.e. occupied region percolates above λc and vacant region percolates below λc.
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Let E be an event. We say that E is increasing event if from ω ∈ E follows
ω′ ∈ E for all ω′ satisfying X(ω′) ⊃ X(ω). The event E is decreasing if Ec is
increasing.

We now introduce some obvious geometrical notation. Let A1, A2, B be
subsets of R2. We write A1

occ←→
in B

A2 if A1 is connected to A2 in B∩X, i.e. there

exists a continuous function φ : [0, 1] 7→ R2 such that φ(0) ∈ A1, φ(1) ∈ A2,
and φ(t) ∈ X ∩ B for every t ∈ [0, 1]. If the set B is omitted, then it is
understood B = R2. We use A1

occ←→
out B

A2 for A1
occ←→

inBc
A2. Similarly, we write

A1
vac←→
inB

A2 if there exists a curve connecting A1 and A2 laying completely in

B ∩Xc.
Let BL(x) be the box [x1 − L, x1 + L] × [x2 − L, x2 + L]. We say that

the polygonal line xi, i = 0, . . . , n, forms a left-right (LR) occupied crossing of
BL(0) if all points xi are in X, the disks around the successive points intersect
(i.e. d(xi−1, xi) ≤ 2, i = 1, . . . , n), the points xi, i = 1, . . . n− 1, are in BL(0),
and the first and the last disk intersect the left, resp. right, edge of BL(0)
(i.e. x1

0 ∈ [−L − 1,−L + 1], x1
n ∈ [L − 1, L+ 1]). Two LR occupied crossings

are called disjoint if the corresponding polygonal lines do not intersect.
A smooth curve φ : [0, 1] 7→ R2 is called LR vacant crossing of BL(0) if

φ(0) ∈ {−L}× [−L,L], φ(1) ∈ {L}× [−L,L], and φ([0, 1]) ∈ BL(0)∩Xc. Two
LR vacant crossings φ and φ′ are called disjoint if

inf
{

d(φ(t), φ′(t′)) : t, t′ ∈ [0, 1]
}

≥ 2. (2.13)

The constant 2 has not any particular importance, any other positive constant
can be chosen. Similarly, one defines the top-bottom (TB) crossings of BL(0).
We will need the following proposition to prove Theorem 2.2.1.

Proposition 2.3.1. (a) Let λ > λc, then there exist positive constants β, γ,
L0 depending only on λ such that

Pλ[# of disjoint occ. LR crossings of BL(0) ≤ βL] ≤ e−γL (2.14)

for L ≥ L0.

(b) Let λ < λc, then there exist positive constants β ′, γ′, L′
0 depending only

on λ such that

Pλ[# of disjoint vac. LR crossings of BL(0) ≤ β ′L] ≤ e−γ′L (2.15)

for L ≥ L′
0.

We will prove part (a) of this proposition using the methods that are
strongly inspired by discrete percolation (see [Gri99], Lemma 11.22). We start
with the following lemma.
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Lemma 2.3.2. Let λ > λc, then there exists κ > 0, such that for L large
enough

Pλ[∃ occ. LR crossing of BL(0)] ≥ 1− e−κL. (2.16)

Proof. Using duality in R2 it is easy to see

Pλ[∄ occ. LR crossing of BL(0)] = Pλ[∃ vac. TB crossing of BL(0)]. (2.17)

If we place on the upper edge of BL(0) 2L+ 1 boxes of size 2, then it is easy
to see that the last expression can be bounded by

≤
L

∑

i=−L

Pλ[B1((i, L))
vac←→ lower edge of BL(0)]

≤ (2L+ 1)Pλ[B1(0)
vac←→ ∂B2L(0)].

(2.18)

We used the obvious notation ∂BL(0) for boundary of BL(0) and the transla-
tion invariance of the measure Pλ.

Since λ > λc, it follows from (2.12) that Eλ[diam(V (B1(0)))] <∞. Denot-
ing by diam′(A) the diameter of the set A in ∞-norm and using the obvious
fact diam′(A) ≤ diam(A), we can write

∞ > Eλ[ diam(V (B1(0)))] ≥ Eλ[ diam′(V (B1(0)))]

≥ Eλ[sup{‖x‖∞ : x ∈ V (B1(0))}]

≥
∞

∑

i=0

Pλ[sup{‖x‖∞ : x ∈ V (B1(0))} ≥ i]

=

∞
∑

i=0

Pλ[B1(0)
vac←→ ∂Bi(0)].

(2.19)

From the last expression one can see that there exist k such that

4(k + 2)P(0
vac←→ ∂Bk(0)) ≤ η < 1. (2.20)

Indeed, suppose on the contrary that P (0
vac←→ ∂Bk(0)) > η/4(k+ 2) for every

k. Then the last sum in (2.19) is clearly infinite and we get the contradiction
with the first inequality in (2.19).

Let N ≥ k + 2. By dividing the vacant connection from 0 to ∂BN (0) into
two parts, first one from 0 to ∂Bk(0) and second one from ∂Bk+2(0) to ∂BN (0)
we get

Pλ[B1(0)
vac←→ ∂BN (0)]

≤ Pλ[(B1(0)
vac←→ ∂Bk(0)) ∩ (∂Bk+2(0)

vac←→
out Bk+2(0)

∂BN (0))]. (2.21)
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Further, let Z be the set of points laying on the segments composing the
boundary of Bk+2 that have the distance from the vertices of these segments
divisible by 2. Around every point of Z we put a box whose edges have length
2. We get

Pλ[B1(0)
vac←→ ∂BN (0)] ≤
≤ Pλ

[

B1(0)
vac←→ ∂Bk(0) ∩

(

⋃

z∈Z

B1(z)
vac←→

out Bk+2(0)
∂BN (0)

)]

. (2.22)

The events in the last equation are decreasing and are chosen to be disjoint
(i.e. the disks, that can have influence on first event cannot change the sec-
ond and vice versa). We can thus use BK inequality proved for continuum
percolation by [GR99]. Hence,

Pλ[B1(0)
vac←→ ∂BN (0)]

≤ Pλ[B1(0)
vac←→ ∂Bk(0)]

∑

z

Pλ[B1(z)
vac←→

out Bk+2(0)
∂BN (0)]

≤ 4(k + 2)Pλ[B1(0)
vac←→ ∂Bk(0)]Pλ[B1(0)

vac←→ ∂BN−k−2(0)]

≤ ηPλ[B1(0)
vac←→ ∂BN−k−2(0)].

(2.23)

We used again the translation invariance of Pλ and (2.20). Iterating equation
(2.23) until N − j(k + 2) ≥ k + 2 we get

Pλ[B1(0)
vac←→ ∂BN (0)] ≤ η⌊N/(k+2)⌋. (2.24)

Substituting this into (2.18) we obtain

Pλ[∄ occ. LR crossing of BL(0)] ≤ (2L+ 1)η⌊2L/(k+2)⌋ (2.25)

and the proof is finished taking L sufficiently large and κ slightly smaller than
−2 log η/(k + 2) > 0.

To state the next lemma we need the following definition. Let E be an
increasing event. We define the r-kernel Ir(E) of this event as Ir(E) = {ω ∈ E :
every ω′ such that X(ω) ⊃ X(ω′) and |X(ω) \X(ω′)| ≤ r is also in E}. The
event Ir(E) is the set of configurations from which we can delete arbitrary r
disks and E still occurs. The utility of this definition follows from the fact that
the r-kernel of the event “there is a LR occupied crossing” is the event “there
are r + 1 LR occupied crossings”. We have the following lemma (compare it
with [Gri99], Theorem 2.45).

Lemma 2.3.3. Let λ2 > λ1 and let E be an increasing event. Then

1− Pλ2[Ir(E)] ≤
(

λ2

λ2 − λ1

)r

(1− Pλ1[E]) . (2.26)
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Proof. Let X ′ be the λ1/λ2-thinning of X, i.e. the point process that we obtain
from X by deleting each point independently with probability 1−λ1/λ2. If X
is the Poisson point process with density λ2, then X ′ is again a Poisson point
process, but this time with density λ1. If ω /∈ Ir(E), then there exists a set
B ⊂ X(ω), such that |B| ≤ r and ω̃ obtained from ω by deleting the points in
B is not in E. If there are more such sets B, we choose one according to some
predefined order. Conditionally on B, there is probability (1− λ1/λ2)

|B| that
we delete all points in B, i.e. we have

P[X ′ /∈ E|X /∈ Ir(E)] ≥
(

1− λ1

λ2

)r

P[X ′ /∈ E] ≥
(

λ2 − λ1

λ2

)r

P[X /∈ Ir(E)]

(2.27)

and the claim follows easily.

Proof of Proposition 2.3.1(a). Let AL be the event that there exists an occu-
pied LR crossing of BL(0). If λ > λc, then there exists λ′, such that λ > λ′ > λc

and κ > 0, such that

Pλ′[AL] ≥ 1− e−κL for L ≥ L0. (2.28)

Since Ir(AL) = {∃ at least r + 1 disjoint LR occupied crossings} we choose
r = βL. Using Lemma 2.3.3 we have

1− Pλ[∃ at least βL occ. LR crossings] ≤
(

λ

λ− λ′
)βL

e−κL. (2.29)

We now take β small enough to have γ(λ, λ′, β) = κ(λ′)−β log λ
λ−λ′ > 0. Using

this choice we easily complete the proof.

Proof of Proposition 2.3.1(b). The proof of this part is slightly more compli-
cated since the vacant crossings do not have the discrete underlying structure.
We will use a coarse graining to reduce this case to the discrete site percolation.
We start with the following lemma.

Lemma 2.3.4. Let H(M,L) be the event that there is vacant crossing of the
rectangle with sides M and 2L connecting the sides with length M . If λ < λc,
then there exist positive constants C, ρ such that

Pλ[H(M,L)] ≥ 1− CLe−ρM . (2.30)
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Proof.

Pλ[H(M,L)] = 1− Pλ[∃ occ. crossing in perpendicular direction]

≤ 1− 2LPλ[0
occ←→ ∂BM (0)] ≤ 1− 2LCe−ρM ,

(2.31)

In the last inequality we use the fact that if λ < λc, then (see page 38 of
[MR96])

Pλ(0
occ←→ ∂BM (0)) ≤ Ce−ρM . (2.32)

This finishes the proof.

Using this lemma we will prove a two dimensional version of coarse graining
following closely the proof from [Gri99], page 191. We call the box Bk(x) good
if the next two conditions hold:

(i) there are both TB and LR vacant crossings of Bk(x).

(ii) all other vacant clusters have diameter (in ∞-norm) smaller than k.

We want to prove the following lemma.

Lemma 2.3.5. If λ < λc, then for every ε > 0 there exist k, such that

P[Bk(x) is good ] ≥ 1− ε. (2.33)

Proof. Without lost of generality we put x = 0. Let ρ be the constant from
Lemma 2.3.4, ν > 1/ρ, and k large enough such that ν log k ≤ k. We take four
rectangles with sides 2k and ν log k composing an “annulus” around the origin
with the “outer radius” k and “inner radius” k − ν log k. More precisely, let
R1 be the rectangle [−k, k] × [−k,−k + ν log k] and let R2, R3 and R4 be its
images under rotations by π/2, π, and 3π/2 around the origin.

Let B denote the event that there is a vacant crossing connecting the sides
of length ν log k inside of all these rectangles. The probability of this event
can be bounded from below using the FKG inequality,

Pλ[B] ≥
(

Pλ[H(ν log k, k)]
)4
. (2.34)

Applying the previous lemma we have

Pλ[B] ≥ (1− Ak1−ρν)4. (2.35)

The last expression converges to 1 as k goes to infinity. Hence, we verified
that condition (i) from the definition of the good block can be satisfied with
arbitrarily large probability.

It remains to exclude the possibility that there is another cluster with
diameter larger than k. This cluster has to cross the rectangle [−k, k]×[i, i+k]
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vertically or [i, i + k] × [−k, k] horizontally (−k ≤ i ≤ 0). However, the
probability that there is horizontal or vertical vacant crossing of this rectangle
tends exponentially to 1. Hence, this cluster is with overwhelming probability
connected to the vacant crossing of one of the four rectangles R1, . . . , R4. This
finishes the proof of Lemma 2.3.5.

We now construct a block process Zx, x ∈ Z2. Let ε > 0 and choose k
large enough such that Pλ[Bk(0) is good ] ≥ 1 − ε. Let Zx = 1 if Bk(xk) is
good, and Zx = 0 otherwise. Obviously, Zx is a dependent site percolation
on Z2 with probability that Zx = 1 larger than 1 − ε. The definition of the
good blocks implies the following property. For every nearest neighbours path
x1, . . . , xn in Z2 such that Zxi

= 1, i = 1, . . . , n, there exist a vacant path of
original continuum percolation passing through the blocks Bk(xik). Hence, if
we show that there is at least βL disjoint crossings of the square BL/k(0) for
the process Zx, the proof will be finished.

To prove this we use the standard method, namely stochastic domination.
Let Ux and Vx be two families of random variables indexed by x ∈ Z2 and
taking values in the set {0, 1}. We say that U stochastically dominates V if
for all bounded, increasing, measurable functions f : {0, 1}Z

2 → R we have

E(f(U)) ≥ E(f(V )). (2.36)

We say that the family Ux is k-dependent if the random variables Ux and Uy

are independent for all x, y such that ‖x− y‖∞ > k. The block process Zx is
clearly 2-dependent. Let Y p

x denote the independent Bernoulli site percolation
process on Z2 with the density p and let P⋆

p denote its measure. We use the
following lemma from [LSS97].

Lemma 2.3.6. Let Vx be a k-dependent family of random variables that sat-
isfies P[Vx] ≥ δ for all x ∈ Z2. Then there exists a non-decreasing function
π(δ) : [0, 1] → [0, 1] satisfying π(δ) → 1 as δ → 1, such that V stochastically
dominates Y π(δ).

We apply this lemma with V = Z. Let C be the event “there is at least
βL disjoint LR crossings of BL/k(0).” The event C is clearly increasing. Thus
we have

Pλ(C) ≥ P⋆
π(1−ε)(C). (2.37)

We take ε such that π(1 − ε) is larger than the percolation threshold pc of
independent site percolation. It is known that for independent site percolation
above the threshold there exist constants β̃ and γ̃ such that

P⋆
p[there is at least β̃L crossings of BL(0)] ≥ 1− e−γ̃L. (2.38)

Using this fact we easily complete the proof.
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For the proof of Theorem 2.2.2 we will need the following proposition. We
recall that V denotes the set of borders of Voronoi cells around the points of
the point process X. Let W ⊂ V. The LR crossing of BL(0) in W is the curve
φ : [0, 1]→ R2 connecting the left and right side of BL(0) such that φ([0, 1]) is
a subset of W ∩BL(0). Two LR crossings are disjoint if they do not intersect.

Proposition 2.3.7. LetW be the set of bonds b in V such that d(b,X) ≥ 1 and
let 0 < λ < λc. Then there exist positive constants β ′′, γ′′ and L′′

0 depending
only on λ such that

Pλ[# of disjoint LR crossings of BL(0) in W ≤ β ′′L] ≤ e−γ′′L (2.39)

for L ≥ L′′
0.

Proof. The proof of this proposition can be probably done by more elementary
methods, but we prefer to use the previous result to prove it. We will use the
fact that for every vacant crossing of BL(0) it is possible to find a path in W
that is “not far” from this crossing.

To formalise the previous claim we first define the equivalence relation
between LR vacant crossings of the strip SL = [−L,L] × R (the LR vacant
crossings of SL are defined in the obvious way). We say that two crossings
φ1 and φ2 are equivalent if there exists a continuous function Φ(t, s), such
that Φ(t, 0) = φ1(t), Φ(t, 1) = φ2(t), for every fixed s ∈ [0, 1] Φ(t, s) is a LR
crossing of SL, and Φ([0, 1]× [0, 1]) ∩X = ∅. Less formally, two crossings are
not equivalent if there is a disk between them.

Observing now that every component W of the occupied region X is sep-
arated from X \ W by a loop in W, it is easy to see that every vacant LR
crossing of BL(0) is equivalent to a path in W that forms a crossing of SL

and, moreover, this path is almost uniquely determined (upto its starting and
ending parts). There are two problems with this path. First, it can leave the
box BL(0), secondly, two disjoint occupied crossings can be transformed to no
disjoint paths in W. Hence, we should construct a sufficient number of vacant
crossings such that these two cases do not happen.

This can be achieved by a redefinition of the good blocks. We want to
assure that the vacant crossing of the good block does not leave it after the
transformation to a path inW and that the crossings of two neighbouring good
blocks cannot be equivalent. The easiest way how to achieve it, is to force the
good blocks to contain some disks that will force the paths in W to stay in
the box. One way to do it is to consider the following definition of the good
block.

We say that the block B7k(0) is good if every rectangle [(2j − 1)k, (2j +
1)k] × [−7k, 7k], j ∈ {−2, 0, 2} contains a vertical vacant crossing and every
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rectangle [−7k, 7k]×[(2j−1)k, (2j+1)k] contains a horizontal vacant crossing.
More over, every square

Gjl = [(2j − 1)k + 1, (2j + 1)k − 1]× [(2l − 1)k + 1, (2l + 1)k − 1], (2.40)

where j, l ∈ {−3,−1, 1, 3}, contains at least one disk. This construction is
illustrated on Figure 2.1

Fig. 2.1: Good block

The reader can verify that the disks in the squares Gjl do not permit the
paths in W equivalent to the crossings of [−k, k] × [−7k, 7k] and [−7k, 7k] ×
[−k, k] to leave the box B7k(0). We define the box B7k(x) being good in the
obvious way.

We should now show that the probability of the block being good can
be made arbitrarily close to one. First, we observe that the crossings of the
rectangles are independent of the configuration of X in the squares Gjl. The
probability of having the long vacant crossings in all six rectangles can be
bounded from below using the FKG inequality and Lemma 2.3.4 by (1 −
7Ck exp(−2k))6. The probability that there is at least one disk in any of Gjl

is 1− exp(−λ(2k − 2)2). Hence

P(B7k(x) is good ) ≥ (1− 7Ck exp(−2k))6[1− exp(−λ(2k − 2)2)]16. (2.41)

Taking k large enough the right hand side of the previous expression can be
made arbitrarily close to one.
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We proceed in the obvious way. We define the process Zx, x ∈ Z2. We
set Zx = 1 if the block Bk(kx) is good. Otherwise we set Zx = 0. As before,
having path in Z assures us to have a crossing in W not leaving the boxes
corresponding to the points of this path. Then we can continue exactly in the
same manner as in the proof of Proposition 2.3.1.

2.4 Proof of Theorems 2.2.1 and 2.2.2

Proof of Theorem 2.2.1. To prove Theorem 2.2.1 we apply the usual strategy.
We express the effective conductivity σ⋆(λ, µ) in the form of a variational
formula and we construct a test function that plugged into it will give us the
required bound.

Upper bound: We use the following formula

σ⋆ = lim
N→∞

1

N2
inf
u∈P

∫

ΛN

σ(x)|∇u(x)|2 dx, (2.42)

where ΛN = [0, N ]2 and

P = {u ∈ H1(ΛN) : u satisfies the boundary conditions in (2.4) }. (2.43)

The infimum in (2.42) is attained by the solution of the system (2.4). That
is why we are looking for a function that is not far from the solution and,
moreover, the integral on the right-hand side of (2.42) is easy to compute.

Using the one dimensional analogy of our problem, it is not difficult to check
that the potential u has large gradient in the places where there is a barrier
to go through, i.e. where the conductivity is small. In the two-dimensional
case such barriers should span all the width of the box. As we have already
noted, our medium can be regarded as an ensemble of insulating grains around
the points of the point process X. Hence, the easiest way how to construct a
barrier is to have a chain of closely packed grains crossing the box from the
top to the bottom. We need to specify what we mean by “closely packed”.
According to the definition of Sc(λ) we could not expect to find a crossing
of the large box with the grains that have centres at a distance smaller than
2Sc(λ). Thus, we will choose the radius of grains slightly larger than Sc(λ).

Let take ε > 0 and consider grains with the radius Sc(λ) + ε. We rescale
temporarily the box ΛN such that these grains become disks with radius 1.
After the scaling we get a point process with density

λ′ = λ(Sc(λ) + ε)2. (2.44)

From the definition (2.12) of λc it is easy to see that

Sc(λc) = 1. (2.45)
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Another application of scaling properties of the Poisson point process gives us

λSc(λ)2 = λc. (2.46)

If we put together the last three claims, we get λ′ > λc. According to Proposi-
tion 2.3.1 (a), we know that there are with overwhelming probability at least

β(λ′)N(2(Sc(λ) + ε))−1 ≡ βεN (2.47)

top-bottom occupied crossings of rescaled box ΛN with disks of radius one. If
we now return to the original scale, we obtain βεN chains of disks with radius
Sc(λ) + ε crossing ΛN . Note that it will become clear in the next part of the
proof why we need O(N) crossings. One crossing would not be sufficient for
our purposes.

We now define the test function that we will use. We use Si to denote
the crossings which we discussed in the previous paragraph. Let i = 1, . . . , R,
with R being the random number of crossings. We denote the crossings in the
way that S1 is the left most one, S2 the second left one, etc. We recall that
the occupied crossing was defined as a sequence of points from X with certain
properties. We use x

(i)
j , j = 1, . . . , ni, to denote the points composing Si in

the way that x
(i)
1 is the point that is close to the lower edge and x

(i)
ni is close

to the upper edge of ΛN . We use S̄i to denote the polygonal line connecting
them. When x

(i)
1 is in the interior of ΛN , we extend S̄i by the vertical segment

connecting x
(i)
1 with the lower edge of ΛN . Similarly, if x

(i)
ni is in the interior of

ΛN , we connect it to the upper edge. Now, every line S̄i divides the box into
two disjoint parts.

We continue by smoothing off the lines S̄i. By smoothing we mean replac-
ing the curves S̄i by other set of curves that will be everywhere once differen-
tiable and will have bounded curvature. The smoothing is necessary, it allows
to construct a test-function that will have well defined gradient everywhere
around these curves. The way how the smoothing is defined has no particular
importance. For the sake of definiteness we chose the following one.

We will change the curves S̄i only in the neighbourhoods U(x
(i)
j ) of x

(i)
j

with the radius Sc(λ)/10. Choose one such point x. If there is no y ∈ Si such
that U(x) ∩ U(y) 6= ∅, we simply replace the two segments of S̄i in U(x) by
a piece of circle. We do it in the way that the resulting curve is everywhere
once differentiable. Since we can suppose that the minimal angle by any point
x

(i)
j ∈ Si is π/3 (otherwise we can connect directly x

(i)
j−1 with x

(i)
j+1), we can

bound the radius of the circle from below by some positive constant.
If, on the other hand, there is vertex y ∈ Si satisfying U(x) ∩ U(y) 6= ∅,

we argue in the following way. First, note that we can “optimise” the sets Si

in the way that for every point x there is at most one such y. Hence, we can
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consider only the pairs of “close” vertices. We should replace the polygonal
line in the union of neighbourhoods U(x), U(y) by a smooth curve. We let
the reader check that it is possible to make such replacement by two pieces of
circle with the radii bounded from below.

Finally, we deform S̄i slightly at its ends in the way that the smooth version
is perpendicular to the boundary of ΛN . We denote the smooth version of S̄i

by S̃i. We use cr to denote the lower bound on the radius of curvature of S̃i.
Let us choose another constant 0 < d < cr. Denote by Si the “tube”

of radius d around S̃i, i.e. the set {x ∈ ΛN : d(x, S̃i) ≤ d}. We use SL
i ,

SR
i to denote left and right boundary of Si. Let SR

0 , resp. SL
R+1, be the left,

resp. right, edge of ΛN .
We construct the test function u⋆(x) as follows. Let u⋆(x) be constant

between SR
i and SL

i+1, i = 0, . . . , R, and let u⋆(x) grow linearly on the segments

perpendicular to S̃i in the tubes Si. The condition d < cr ensures that for any
point in Si there is one and only one such segment. Let u⋆(x) be continuous in
ΛN and let the difference of the values of u⋆(x) on SR

i and SL
i be N/R. Such

function is evidently in P.
We plug the function u⋆(x) into expression (2.42). Since ∇u⋆(x) = 0 for

all x outside the tubes Si we have

1

N2

∫

ΛN

σ(x)|∇u⋆(x)|2 dx =
1

N2

R
∑

i=1

∫

Si

σ(x)|∇u⋆(x)|2 dx. (2.48)

The value of |∇u⋆(x)|2 we can bounded from above by

|∇u⋆(x)|2 ≤ 1

4d2
· N

2

R2
. (2.49)

Indeed, let x be an arbitrary point in Si and let sx ∋ x be the segment
perpendicular to S̃i with the length 2d centred at S̃i. The difference of the
values of u⋆ on the ends of sx is by definition N/R and function u⋆ is linear
on sx. Hence, the value of derivative of u⋆ in the direction of sx is N/2dR. It
remains to check that the derivative of u⋆(x) in the direction perpendicular to
sx is zero. However, it is easy to verify using the fact that S̃i is composed by
segments and pieces of circle, and that it is smooth.

We proceed by bounding the value of σ(x). To achieve it, we divide every
tube Si into two disjoint regions. The good one

S
g
i = Si ∩ {x ∈ R2 : S(x) ≤ Sc(λ) + ε} (2.50)

and the bad one Sb
i = Si \ S

g
i .

For x ∈ S
g
i , the conductivity σ(x) is smaller than exp(µ(Sc(λ) + ε)). To

control the value of σ(x) inside Sb
i we observe that Sb

i consists of parts similar



28 2. CPA for continuum percolation

����
����
����
����

����
����
����

����
����
����

Sb
i

SL
i SL

iS̃i

d

Fig. 2.2: Bad region of Si

to the striped regions on Figure 2.2. It is easy to check that there exists
a constant c1 > 0 such that for d small enough the area of one such piece
is smaller than c1d

3. Similarly, we can find a constant c2 > 0 such that the
conductivity in the bad parts is bounded from above by exp(µ(Sc(λ)+ε+c2d

2)).
Hence, we have

∫

Si

σ(x)|∇u⋆(x)|2 dx =

∫

S
g
i

σ(x)|∇u⋆(x)|2 dx+

∫

Sb
i

σ(x)|∇u⋆(x)|2 dx (2.51)

with

∫

S
g
i

σ(x)|∇u⋆(x)|2 dx ≤ 1

4d2
· N

2

R2
exp(µ(Sc(λ) + ε))|Si|, (2.52)

and

∫

Sb
i

σ(x)|∇u⋆(x)|2 dx ≤ 1

4d2
· N

2

R2
exp(µ(Sc(λ) + ε+ c2d

2))c1d
3Nb, (2.53)

where we use Nb to denote the number of bad pieces and |A| to denote the
Lebesgue measure of the set A ⊂ R2.

Since we try to find the result on the logarithmic scale only, we can use a
rather crude bound, |⋃i Si| ≤ N2. We also claim that there exists a constant
c3 depending only on λ such that Nb ≤ c3N

2. The easiest way to see it, is to
observe that bad pieces can come up only if there are two disks that almost
touch in ΛN . It is not possible to pack more than O(N2) disks that almost
touch on R crossings of the box ΛN . Putting all these estimates in expression
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(2.42) we get

σ⋆(λ, µ) ≤ lim
N→∞

{

1

N2
· 1

4d2
· N

2

R2
exp[µ(Sc(λ) + ε)]N2+

1

N2
· 1

4d2
· N

2

R2
exp[µ(Sc(λ) + ε+ c2d

2)]c3N
2c1d

3

}

.

(2.54)

By Proposition 2.3.1(a) and Borel-Cantelli lemma for P-a.e. realisation of the
medium there is N0 such that R ≥ βεN for all N ≥ N0. Hence, we have with
probability one

σ⋆(λ, µ) ≤ Kd−2β−2
ε eµ(Sc(λ)+ε) +K ′dβ−2

ε eµ(Sc(λ)+ε+c1d2)

= eµ(Sc(λ)+ε)β−2
ε

(

K
1

d2
+K ′deµd2

)

,
(2.55)

where K, K ′ are the constants that do not depend on µ, d and ε. From the
last expression we easily get

1

µ
log σ⋆(λ, µ) ≤ Sc(λ) + ε+ d2 +

1

µ
[2 log βε − log d+K ′′] . (2.56)

We now set d = d(µ) = exp(−µ1/2) and compute the limit µ→∞ of the last
display. We obtain

lim sup
µ→∞

1

µ
log σ⋆(λ, µ) ≤ Sc(λ) + ε. (2.57)

Since ε was arbitrary this gives the required upper bound.
Lower bound: For the lower bound we use the standard variational formula

for the inverse of the homogenised matrix (see Chapters 1 and 8 of [JKO94]
for its proofs for periodic, resp. random setting). The isotropic version of such
formula can be written as

(σ⋆)−1 = inf
f∈V2

sol

1

N2

∫

ΛN

σ(x)−1(e1 + f (x))2 dx, (2.58)

where V2
sol = {f = (f1, f2) : f1, f2 ∈ L2(ΛN), div f = 0,

∫

ΛN
f (x) dx = 0}, and

e1 is the unit vector in x-direction.
The formula (2.58) can be rewritten using the fact that every function

f ∈ V2
sol can be written as f = ( ∂v

∂x2 ,− ∂v
∂x1 ) for some function v ∈ H1(ΛN)

that satisfies v ≡ 0 on ∂ΛN . Setting u(x1, x2) = v(−x2, x1) + x1, we have
∇u(x) = e1 + f (x). Thus (2.58) yields

1

σ⋆
= lim

N→∞

1

N2
inf

u∈P ′

∫

ΛN

σ−1(x)|∇u(x)|2 dx, (2.59)
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where P ′ = {u ∈ H1(ΛN) : u(x1, x2) = x1 on ∂ΛN}. This is the same vari-
ational formula as we used for the proof of the upper bound only with σ
replaced by σ−1 and with P replaced by P ′. The second change corresponds
to the change of boundary conditions. Since the boundary conditions do not
influence the value of the effective conductivity we replace P ′ in (2.59) by P. It
allows us to use almost the same test-function as in the upper bound. The only
difference is that the role of insulating grains and highly conducting domains
between them will be reversed.

As in the proof of the upper bound we start by temporary rescaling of
the box ΛN . This time disks with radius Sc(λ)− ε become disks with radius
one. Using the same reasoning as in equations (2.44) and (2.46) we find that
the density λ′ of the rescaled point process is smaller than λc. According
to Proposition 2.3.1 (b), there are at least β ′(λ′)N(2(Sc(λ) − ε))−1 ≡ β ′

εN
vacant crossings of rescaled box. Returning to the original scale we obtain the
same number of paths traversing ΛN in the complement of disks with radius
Sc(λ)− ε.

We now use these crossings to construct the tubes similarly as in the upper
bound. First note, that we can always deform them in the way that they will
become once differentiable and will have the curvature bounded from above.
We denote these smooth curves by S̃i, i = 1, . . . , R, and we construct the tubes
Si with the sufficiently small radius d and the function u⋆(x) as before. The
value of |∇u⋆|2 in Si is bounded from above by

|∇u⋆(x)|2 ≤ 1

4d2
· N2

R(ω)2
(2.60)

and is zero in the rest of ΛN . For σ−1(x) the following bound is valid in Si,

σ−1(x) ≤ exp[−µ(Sc(λ)− ε− d)]. (2.61)

Plugging these two estimates into (2.59) we get

1

σ⋆
≤ lim

N→∞

1

N2
exp[−µ(Sc(λ)− ε− d)] 1

4d2
· N

2

R2

R
∑

i=1

|Si|. (2.62)

We bound the last sum by N2 and use the fact that with overwhelming prob-
ability R ≥ β ′

εN . Taking the logarithm we get

1

µ
log σ⋆(λ, µ) ≥ Sc(λ)− ε− d− 1

µ
[2| logβ ′

ε| − log d+K] . (2.63)

Setting d = d(µ) = exp(−µ1/2) we obtain

lim inf
µ→∞

1

µ
log σ⋆(λ, µ) ≥ Sc(λ)− ε. (2.64)

Since ε was arbitrary it proves the lower bound.
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Proof of Theorem 2.2.2. From the fact

σ̂ρ,δ(x, µ) ≤ σ̃ρ(x, µ) ≤ σ(x, µ). (2.65)

and the variational formula (2.42) we easily get the upper bound,

lim sup
µ→∞

1

µ
log σ̂⋆

ρ,δ(λ, µ) ≤ lim sup
µ→∞

1

µ
log σ̃⋆

δ (λ, µ) ≤ Sc(λ). (2.66)

The dual variational formula (2.59) together with (2.65) imply that it is suffi-
cient to prove the lower bound only for σ̂ρ,δ(x, µ). We use the usual strategy
to show it.

Let ε > 0 such that ε ≤ δ. We rescale ΛN in such a way that the disks with
radius Sc(λ)−ε become the disks with radius one. As in the proof of the lower
bound for Theorem 2.2.1 we receive the process with sub-critical density λ′.
The image of Vε in this scaling is the set W defined in Proposition 2.3.7. As
proved in that proposition there are at least β ′′(λ′)N(2(Sc(λ) − ε))−1 ≡ β ′′

εN
crossings of the rescaled box in W. If we return back to the original scale, we
conclude that there is β ′′

εN crossings of ΛN in Vε. Moreover, it is not difficult to
check that every crossing in Vε can be smoothened in the way that the minimal
radius of curvature is ρ and the tubes with radius ρ around the smooth version
rest inside the tubes with the radius ρ around Vε. We use S̃i to denote the
smooth crossings. We choose d < ρ and we construct the test-function u⋆(x)
in the same way as before. Since Si ⊂ {x ∈ R2 : d(x,Vε) ≤ ρ} and Vε ⊂ Vδ

we have

σ̂ρ,δ(x, µ) = σ(x, µ) in Si. (2.67)

After this observation the proof of the lower bound can be continued precisely
in the same way as the proof of the lower bound for Theorem 2.2.1.
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Part II

AGING IN BOUCHAUD’S TRAP MODEL





3. INTRODUCTION TO THE AGING PROBLEM

This part of the thesis is devoted to the study of aging in Bouchaud’s trap
model. Aging is one of the most interesting properties of the dynamics of
complex disordered systems. It has been largely studied experimentally, nu-
merically, and theoretically by physicists (see [BCKM98] for survey). The
mathematical literature is relatively sparse, although some progress has been
done in the last years [BBG02b, DGZ01, BG97].

In the physics literature, aging was studied particularly in the context of
glassy dynamics. Bouchaud’s trap model was proposed for the first time, in
its simplest form, in [Bou92], and was further developed, among others, in
[MB96] and [RMB01]. The model has a lot of dynamical properties that can
be observed experimentally in glassy systems. Nevertheless, it can be studied
rigorously.

In its most general form Bouchaud’s trap model is defined in the follow-
ing way. Let G = (V, E) be a connected graph. To every vertex x ∈ V is
associated an energy Ex. The random variables Ex are usually chosen to be
i.i.d. In the physics literature the distribution of Ex is mostly chosen to be
exponential with mean one, but in this thesis we will consider a more general
case. Bouchaud’s trap model is a continuous time Markov chain X(t) with
state space V. Its dynamics is determined by the transition rates between
different vertices, P[X(t+ dt) = y|X(t) = x] = wxydt, where

wxy =

{

ν exp
{

− β
(

(1− a)Ex − aEy

)}

if 〈x, y〉 ∈ E ,
0 otherwise.

(3.1)

The constant β denotes the inverse temperature, the linear scaling factor ν
changes only the time scale and is irrelevant for us. The parameter a charac-
terises the symmetry of the dynamics. Its role will be precised later.

Originally, the model was studied in its “mean field form” [Bou92, MB96].
In this case the Ex’s are updated after each jump. This simplifies the dynamics,
since the time that is needed for n jumps becomes the sum of n i.i.d. random
variables. It is evident that the properties of the graph G have in such a
case very small relevance. In [MB96] the mean field case with G = Zd was
considered only to permit the study a kind of space correlations.
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Bouchaud’s trap model (already in its mean field version) undergoes dy-
namical phase transition at the temperature β0 (β0 = 1 if Ex are exponential
with mean one). This transition can be observed for example considering the
probability distribution PE(t) of the energy of the site where the system is at
time t. If β < β0, then this distribution converges when t → ∞ to an equi-
librium distribution PE . On the other hand, if β > β0, then PE(t) does not
converge.

Another way to observe this dynamical transition is suggested by the fol-
lowing argument put forward in the physics literature. The idea is to think in
“the two-times plane”, that is to consider the evolution of the system between
two large times, generally denoted by tw (like waiting time, tw is the age of the
system) and t + tw (t is then the duration of the observation of the system),
and to let both tw and t tend to infinity. The next step is to choose an appro-
priate two-point function, that is a function that depends on the evolution of
the system during the time interval (tw, t + tw), in order to measure how the
system forgets its past during this interval. The simplest such function, con-
sidered frequently in the physics literature, is the probability that the system
does not jump during the specified interval,

Π(tw, t+ tw) = P
[

X(t′) = X(tw) ∀t′ ∈ [tw, t+ tw]
]

. (3.2)

How can the dynamical phase transition can be observed using this func-
tion? In the high temperature regime, β < β0, since PE(t) converges, there
exists a nontrivial limit

lim
tw→∞

Π(tw, t+ tw) = f(t) for all t > 0 fixed. (3.3)

On the other hand, if β > β0, then this limit equals one. This is true not only
for constant times t, but also for all t satisfying t = o(tγw) for some γ > 0.
Further, if t ≫ tγw, then the function Π(tw, t + tw) tends to zero. Such a
behaviour is referred to as aging.

Even more interesting is the behaviour of Π when t is taken in the critical
regime, t = θtγw. In this regime it is often possible to prove the existence of a
nontrivial limit

lim
tw→∞

Π(tw, tw + θtγw) = f(θ) for all θ > 0. (3.4)

Some authors reserve the term aging only for γ = 1. The cases γ > 1 and
γ < 1 are then referred to as superaging and subaging.

The aging properties of Π are in fact closely related (by the Markov prop-
erty) to the behaviour of the distribution PE(t). As we will see later, in the
aging regime the energy EX(t) of the trap where the system is at time t should
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be normalised in order to its distribution converges. To this end it is useful to
introduce quantity

τx = exp(βEx). (3.5)

further referred to as the depth of the trap at site x. It is then possible to find
a constant γ′ such that the distribution of τX(t)/t

γ′
converges. If a = 0 then

γ′ = γ.
This behaviour of the distribution of depth suggests which mechanism can

be responsible for aging. At time tw the system explores only a small part of
its state space; the depth of the deepest trap is typically of the order tγ

′

w . In
its future the system continues to explore its state space and can always find
a much deeper trap, which slow it down more than all traps before.

There are other possible choices of two-point functions. Besides Π we will
consider also the function

R(tw, t+ tw) = P[X(tw) = X(tw + t)]. (3.6)

It is the probability that the system is in the same state at both times. Note,
that both functions Π and R can be studied in both quenched and annealed
regime, which means with and without taking the mean over all realisations
of the random variables Ex.

Let us now explain how the dynamics of Bouchaud’s trap model is related
to the dynamics of real disordered systems. It is widely accepted in the physics
literature that the energy landscape of a finite disordered system is extremely
rough, with many local minima corresponding to metastable configurations.
These minima are surrounded by rather high energy barriers. That is why
such minima act like traps which get hold of the system during a certain
time τ . The time τ clearly depends on the temperature of the system, but
mainly on the depth of the valley around the particular local minimum.

The dynamics of Bouchaud’s trap model is inspired by this picture. The
configuration space of the original system is strongly reduced. To every state
x of Bouchaud’s trap model corresponds one local minimum of the energy
landscape. The value Ex is then the depth of the valley around this minimum.
The high energy configurations of the original system are neglected, because
the time spent there is short. The deep traps in Bouchaud’s trap model thus
correspond to really very deep local minima of the energy landscape.

As we have already noted, the distribution of Ex is usually chosen to be
exponential in physics literature. This choice is justified by the fact that only
extremal configurations are considered, and that the tail of the exponential
distribution is the same as the tail of the Gumble distribution of extreme
value statistics. A more detailed discussion of the choice of Ex can be found
in [BM97].
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In the easiest case, when a = 0, the dynamics of Bouchaud’s trap model
is particularly simple, because the transition rates depend only on the state
where X is, and not on its neighbours. Such dynamics is sometimes called the
Random Hopping Time (RHT) dynamics. In this case the mean time that the
system is trapped in state x is proportional to τx = exp(βEx). The probability
distribution of τx becomes heavy tailed in the low temperature regime, β > β0.
Actually, τx satisfies

P[τx > u] ∼ u−α, (3.7)

with α = β−1. This implies that the mean time of stay in a trap has no
expectation if the temperature is low. This induces very slow dynamics. The
system needs an infinite time to explore its configuration space. Such behaviour
is sometimes referred to in physics literature as weak entropy breaking [Bou92].

If a 6= 0, then the system is attracted by deep traps, and the dynamics
becomes more difficult to handle. Note, however, that wxy can be written as

wxy = ντ
−(1−a)
x τa

y . This means that τx still has some importance owing to the
fact that the neighbouring sites of very deep traps are usually quite “normal”
(this picture will be precised later). The importance of τx can be seen also
from the fact that τx satisfies the detailed balance equation

∑

y∈V

wxyτx =
∑

y∈V

wyxτy. (3.8)

Hence, τx (if regarded as a measure on V) is reversible for the Markov chain
X, for all values of a.

The first mathematical treatment of Bouchaud’s trap model can be found
in [FIN02], where the behaviour of the function R in the case V = Z, E =
{〈i, i + 1〉, i ∈ Z}, and a = 0 is considered. In this thesis we generalise their
results to a 6= 0, and we will also prove the subaging of the function Π (Chapter
4). Further (in Chapters 5 and 6), we will consider Bouchaud’s trap model on
d-dimensional cubic lattice, that is V = Zd, d ≥ 2, E = {〈i, j〉, dist(i, j) = 1},
with the symmetry parameter a equal to 0. In all studied cases we will show
that the aging occurs if the temperature is smaller than the critical temperature
β0. The critical temperature is characterised by the fact that for any β > β0

the random variable τx = exp(βEx) is in the domain of the attraction of a
α-stable law with index α < 1. (To simplify the reasoning in d ≥ 2 we will
suppose that limu→∞ uαP[τx > u] = 1.)

We will prove that in all dimensions for a = 0 and in d = 1 for a ∈ [0, 1],
the two-point function R has the aging behaviour,

lim
tw→∞

R(tw, tw + θtw) = R(θ), (3.9)

where R(θ) does not depend on a in d = 1.
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The behaviour of the two-point function Π is more interesting. The critical
scaling between tw and t depends on d and also on a if d = 1. We will show
the (sub)aging behaviour of the two-point function Π,

lim
tw→∞

Π(tw, tw + θf(tw)) = Π(θ), (3.10)

where f(tw) satisfies

f(tw) =















t
1−a
1+α
w if d = 1, a ∈ [0, 1],
tw

log tw
if d = 2, a = 0,

tw if d ≥ 3, a = 0.

(3.11)

The different scaling follows from the fact that the Markov chain X in low
dimensions is recurrent and visits any site an infinite number of times. In
d ≥ 3 any site is visited only a finite number of times. This implies that there
is no difference between the scalings of Π and R.

The study of one-dimensional Bouchaud’s trap model is contained in Chap-
ter 4, which is taken over from [BČ02]. The two-dimensional model is studied
in Chapter 5, which will be contained in [BČM]. The modifications of the
proof given there that are needed if d ≥ 3 can be found in Chapter 6.





4. BOUCHAUD’S MODEL EXHIBITS TWO DIFFERENT
AGING REGIMES IN DIMENSION ONE

Gérard Ben Arous, Jiř́ı Černý

Abstract. Let Ei be a collection of i.i.d. exponetnial random variables.
Bouchaud’s model on Z is a Markov chain X(t) whose transition rates are
given by wij = ν exp(−β((1 − a)Ei − aEj)) if i, j are neighbours in Z. We
study the behaviour of two correlation functions: P[X(tw + t) = X(tw)] and
P
[

X(t′) = X(tw)∀t′ ∈ [tw, tw + t]
]

. We prove the (sub)aging behaviour of
these functions when β > 1 and a ∈ [0, 1].

4.1 Introduction

Aging is an out-of-equilibrium physical phenomenon that is gaining consider-
able interest in contemporary physics and mathematics. An extensive litera-
ture exists in physics (see [BCKM98] and their references). The mathematical
literature is substantially smaller, although some progress was achieved in
recent years ([BDG01, BBG02a, DGZ01, FIN02], see also [Ben02] for short
summary).

The following model has been proposed by Bouchaud as a toy model for
studying the aging phenomenon. Let G = (V, E) be a graph, E = {Ei}i∈V
be the collection of i.i.d. random variables indexed by vertices of this graph
with the common exponential distribution with mean one. We consider the
continuous time Markov chain X(t) with state space V, such that

P(X(t+ dt) = j|X(t) = i, E) =

{

wijdt if i, j are connected in G

0 otherwise.
(4.1)

The transition rates wij are defined by

wij = ν exp
(

− β((1− a)Ei − aEj)
)

. (4.2)
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The parameter β denotes, as usually, the inverse temperature and the param-
eter a, 0 ≤ a ≤ 1, drives the “symmetry” of the model. The value of ν fixes
the time scale and is irrelevant for our paper, we thus set ν = 1.

This model has been studied when G is Z and a = 0 in [FIN99, FIN02]. It
is an elementary model when G is the complete graph, which is a good ansatz
for the dynamics of the REM (see [BBG02b]).

The time spent by the system at site i grows with the value of Ei. The
value of Ei can thus be regarded as the depth of the trap at the site i. The
model is sometimes referred to as “Bouchaud’s trap model.” It describes the
motion of the physical system between the states with energies −Ei. It can be
regarded as a useful rough approximation of spin-glass dynamics. The states of
Bouchaud’s trap model correspond to a subset of all possible states of the spin-
glass system with exceptionally low energy. This justifies in a certain sense
the exponential distribution of Ei since it is the distribution of extreme values.
The idea behind this model is that the spin-glass dynamics spends most of the
time in the deepest states and it passes through all others extremely quickly.
Thus, only the extremal states are important for the long time behaviour of
dynamics, which justifies formally the introduction of Bouchaud’s model.

Usually, proving an aging result consists in finding a two-point function
F (tw, tw + t), a quantity that measures the behaviour of the system at time
t+ tw after it has aged for the time tw, such that a nontrivial limit

lim
t→∞

t/tw=θ

F (tw, tw + t) = F (θ) (4.3)

exists. The choice of the two-point function is crucial. For instance it has be
shown in [RMB00] that a good choice is

R(tw, tw + t) = EP(X(t+ tw) = X(tw)|E), (4.4)

which is the probability that the system will be in the same state at the end
of the observation period (i.e. at time t+ tw) as it was in the beginning (i.e. at
time tw). Another quantity exhibiting aging behaviour, which was studied in
[FIN02] is

Rq(tw, tw + t) = E
∑

i∈Z

[P(X(t+ tw) = i|E,X(tw))]2, (4.5)

which is the probability that two independent walkers will be at the same site
after time t+ tw, if they were at the same site at time tw. These authors have
proved that, for these two two-point functions, aging occurs when a = 0. We
extend this result to the case a > 0. The limiting object will be independent
of a. Thus the parameter a could seem to be of no relevance for aging.
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However, it is not the case for all two-point functions. For instance, for the
function

Π(tw, tw + t) = EP(X(t′) = X(tw)∀t′ ∈ [tw, tw + t]|E), (4.6)

giving the probability that the system does not change its state between tw
and tw + t, it was predicted in [RMB00] that there exists a constant γ such
that the limit limtw→∞ Π(tw, tw + θtγw) exists and depends non-trivially on a.
The name subaging was introduced for this type of behaviour, i.e. for the fact
that there exists a constant 0 < γ < 1 such that for some two-point function
F (tw, tw + t), there is a nontrivial limit

lim
t→∞

t/t
γ
w=θ

F (tw, tw + t) = F (θ). (4.7)

One of the main results of the present paper is the proof of the subaging
behaviour of the function (4.6) for an arbitrary a ∈ [0, 1].

Let us have a closer look at the role of the parameter a. If a = 0, the
dynamics of the model is sometimes referred as “Random hopping time (RHT)
dynamics” (cf. [Mat00]). In this case the rates wij do not depend on the
value of Ej . Hence, the system jumps to all neighbouring sites with the same
probability and the process X(t) can be regarded as a time change of the
simple random walk.

On the other hand, if a > 0, the system is attracted to the deepest traps
and the underlying discrete time Markov chain is some kind of random walk in
a random environment (RWRE). There are already some results about aging of
RWRE in dimension one [DGZ01]. It that article Sinai’s RWRE is considered.
It is proved there that there is aging on the scale log t/ log tw → const.

In our situation the energy landscape, far from being seen as a two-sided
Brownian motion as in Sinai’s RWRE, should be seen as essentially flat with
few very narrow deep holes around the deep traps. The drifts on neighbouring
sites are dependent and this dependency does not allow the existence of large
domains with drift in one direction. This can be easily seen by looking at sites
surrounding one particularly deep trap Ei. Here, the drift at site i− 1 pushes
the system very strongly to the right and at site i + 1 to the left because the
system is attracted to the site i. Moreover, these drifts have approximately
the same size. A more precise description of this picture will be presented later
(Section 4.5). However, these differences do not change notably the mechanism
responsible for aging. Again, during the exploration of the random landscape,
the process X finds deeper and deeper traps that slow down its dynamics.

It was observed numerically in [RMB00] that X(t) ages only if the tem-
perature is low enough, β > 1. (In the sequel we will consider only the low
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temperature regime.) This heuristically corresponds to the fact that if a = 0
and β > 1, the mean time E(exp(βE0)) spent by X(t) at arbitrary site be-
comes infinite. This implies that the distribution of the depth at which we
find the system at time t does not converge as t→∞. The process X(t) can
find deeper and deeper traps where it stays longer.

If a > 0, the previous explanation is not precise. The time before the jump
is shortened when a increases. On the other hand, the system is attracted to
deep traps. This means that, instead of one long period spent in one deep
trap, the process prefers to jump outside and then to return to it more often.
For the two-point functions (4.4) and (4.5) these two effects cancel and the
limiting behaviour is thus independent of a. For the two-point function (4.6),
there cannot be cancellation, because the attraction to deeper traps has no
influence on it.

Before stating the known results about the model we generalise it slightly.
All statements in this paper do not actually require Ei to be an exponential
random variable. The only property of Ei that we will need is that the random
variable exp(βEi) is in the domain of attraction of the totally asymmetric
stable law with index β−1 ≡ α. Clearly, the original exponential random
variable satisfies this property.

Recently, this model was studied rigorously in [FIN99, FIN02] in connection
with the random voter model and chaotic time dependence. In this paper only
the RHT case, a = 0, was considered. If d = 1 and β > 1, they proved that
the Markov chain X(t) possess an interesting property called there localisation.
Namely, it was shown there that

lim sup
t→∞

sup
i∈Z

P(X(t) = i|E) > 0. (4.8)

Also aging for the two-point functions (4.4) and (4.5) was proved there. In
dimension d ≥ 2, results of this paper imply that there is no localisation in the
sense of (4.8). However, there is numerical evidence [RMB00] that the system
ages. A rigorous proof of this claim will be presented in a forthcoming paper
[BČM].

In this article we generalise the results of [FIN02] in dimension one to the
general case, a 6= 0. As we have already noted, the main difficulty comes
from the fact that the underlying discrete time Markov chain is not a simple
random walk. We will prove aging for the quantities (4.4) and (4.5). We will
then prove sub-aging for the two-point function (4.6).

As in [FIN02] we relate the asymptotic behaviour of quantities (4.4), (4.5),
and (4.6) to the similar quantities computed using a singular diffusion Z(t)
in a random environment ρ — singular meaning here that the single time
distributions of Z are discrete.
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Definition 4.1.1 (Diffusion with random speed measure). The random
environment ρ is a random discrete measure,

∑

i viδxi
, where the countable

collection of (xi, vi)’s yields an inhomogeneous Poisson point process on R ×
(0,∞) with density measure dxαv−1−αdv. Conditional on ρ, Z(s) is a diffusion
process (with Z(0) = 0) that can be expressed as a time change of a standard
one-dimensional Brownian motion W (t) with the speed measure ρ. Denoting
ℓ(t, y) the local time of W (t) at y, we define

φρ(t) =

∫

ℓ(t, y)ρ(dy) (4.9)

and the stopping time ψρ(s) as the first time t when φρ(t) = s; then Z(t) =
W (ψρ(t)).

A more detailed description of time changes of Brownian motion can be
found in Section 4.2.

Our main result about aging is the following

Theorem 4.1.2. For any β > 1 and a ∈ [0, 1] there exist nontrivial functions
R(θ), Rq(θ) such that

lim
t→∞

R(t, t+ θt) = lim
t→∞

EP[X((1 + θ)t) = X(t)|E] = R(θ),

lim
t→∞

Rq(t, t+ θt) = lim
t→∞

E
∑

i∈Z

[P(X((1 + θ)t) = i|E,X(t))]2 = Rq(θ).
(4.10)

Moreover, R(θ) and Rq(θ) can be expressed using the similar quantities defined
using the singular diffusion Z:

R(θ) = EP[Z(1 + θ) = Z(1)|ρ],
Rq(θ) = E

∑

x∈R

[P(Z(1 + θ) = x|ρ, Z(1))]2. (4.11)

For a = 0, this result is contained in [FIN02]. Since the diffusion Z(t) does
not depend on a, the functions R(θ) and Rq(θ) do not depend on it either.
This is the result of the compensation of shorter visits of deep traps by the
attraction to them.

We will also prove sub-aging for the quantity Π(tw, tw + t). We use γ to
denote the subaging exponent

γ =
1

1 + α
=

β

1 + β
. (4.12)
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Theorem 4.1.3. For any β > 1 and a ∈ [0, 1] there exist a nontrivial function
Π(θ) such that

lim
t→∞

Π(t, t+ fa(t, θ))

= lim
t→∞

EP
[

X(t′) = X(t)∀t′ ∈ [t, t+ fa(t, θ)]|E
]

= Π(θ), (4.13)

where the function fa is given by

fa(t, θ) = θtγ(1−a)L(t)1−a, (4.14)

and L(t) is a slowly varying function that is determined only by the distribution
of E0. Its precise definition is given in Lemma 4.8.1. The function Π(θ) can
be again written using the singular diffusion Z,

Π(θ) =

∫ ∞

0

g2
a(θu

a−1)dF (u), (4.15)

where F (u) = EP[ρ(Z(1)) ≤ u|ρ], and where ga(λ) is the Laplace transform
E(e−λTa) of the random variable

Ta = 2a−1 exp(aβE0)[E(exp(−2aβE0))]
1−a. (4.16)

If a = 0, (4.15) can be written as

Π(θ) =

∫ ∞

0

e−θ/udF (u). (4.17)

Remark. Note that if Ei’s are exponential random variables, the function
L(t) satisfies L(t) ≡ 1. The same is true if exp(βEi) has a stable law.

As can be seen, in this case the function Π(θ) depends on a. This is not
surprising since the compensation by attraction has no influence here and the
jumps rates clearly depend on a.

This behaviour of the two-point functions Π(tw, t + tw) and R(tw, t + tw)
is not difficult to understand, at least heuristically. One should first look at
the behaviour of the distribution of the depth of the location of the process
at time tw. It can be proved that this depth grows like t

1/(1+α)
w (see Propo-

sition 4.8.2). From this one can see that the main contribution to quantities
(4.4) and (4.5) comes from trajectories of X(t) that, between times tw and

tw + t, leave t
(a+α)/(1+α)
w times the original site and then return to it. Each visit

of the original site lasts an amount of time of order t
(1−a)/(1+α)
w .

In the case of the two-point function (4.6), we are interested only in the

first visit and thus the time t should scale as t
1/(1+α)
w . Proofs can be found

in Sections 4.7, 4.8 and 4.9. In Section 4.2 we summarise some known results
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about time-scale changes of Brownian motion and about point-process con-
vergence. In Section 4.3 we express the process X and its scaled versions as
a time-scale change and in Section 4.4 we introduce a coupling between the
different scales of X. In Section 4.5 we prove convergence of speed measures
which is used for time-scale change and we apply this result to show the con-
vergence of finite time distributions of rescaled versions of X to the finite time
distributions of Z.

4.2 Definitions and known results

In this section we define some notations that we will use often later, and we
summarise some known results.

4.2.1 Time-scale change of Brownian motion

The limiting quantities R(θ), Rq(θ), and Π(θ) are expressed using the singular
diffusion defined by a time change of Brownian motion. So, it will be convenient
to express also the chains with discrete state space as a time-scale change of
Brownian motion. The scale change is necessary if a 6= 0, because the process
X(t) does not jump left or right with equal probabilities.

Consider a locally finite measure

µ(dx) =
∑

i

wiδyi
(dx) (4.18)

which has atoms with weights wi at positions yi . The measure µ will be
referred to as the speed measure. We denote positions of atoms yi in the
way that yi < yj if i < j. Let S be a strictly increasing function defined on
the set {yi}. We call such S the scaling function. Let us introduce slightly
nonstandard notation S ◦ µ for the “scaled measure”

(S ◦ µ)(dx) =
∑

i

wiδS(yi)(dx). (4.19)

We use W (t) to denote the standard Brownian motion starting at 0. Let ℓ(t, y)
be its local time. We define the function

φ(µ, S)(t) =

∫

R

ℓ(t, y)(S ◦ µ)(dy). (4.20)

and the stopping time ψ(µ, S)(s) as the first time when φ(µ, S)(t) = s. The
function φ(µ, S)(t) is a nondecreasing, continuous function, and ψ(µ, S)(s) is
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its generalised right continuous inverse. It is an easy corollary of the results of
[Sto63] that the process

X(µ, S)(t) = S−1(W (ψ(µ, S)(t))) (4.21)

is a nearest neighbours continuous time random walk on the set of atoms of
µ. Moreover, every nearest neighbours random walk on a countable, nowhere
dense subset of R satisfying some mild conditions on transition probabilities
can be expressed in this way. We call the process X(µ, S) the time-scale change
of Brownian motion. If S is the identity function, we speak only about time
change.

The following proposition describes the properties of X(µ, S). It is the
consequence of [Sto63], Section 3. The extra factor 2 comes from the fact that
Stone uses the Brownian motion with generator −∆.

Proposition 4.2.1. The process X(µ, S)(t) is a nearest neighbours random
walk on the set {yi} of atoms of µ. The waiting time in the state yi is expo-
nentially distributed with mean

2wi
(S(yi+1)− S(yi))(S(yi)− S(yi−1))

S(yi+1)− S(yi−1)
. (4.22)

After leaving state yi, X(µ, S) enters states yi−1 and yi+1 with respective prob-
abilities

S(yi+1)− S(yi)

S(yi+1)− S(yi−1)
and

S(yi)− S(yi−1)

S(yi+1)− S(yi−1)
. (4.23)

It will be useful to introduce another process Y (µ, S) as

Y (µ, S)(t) = X(S ◦ µ, Id)(t), (4.24)

where Id is the identity function on R. The process Y (µ, S) can be regarded
as X(µ, S) before the final change of scale in (4.21). Actually,

Y (µ, S)(t) = W (ψ(µ, S)(t)). (4.25)

We will also need processes that are not started at the origin but at some
point x ∈ supp µ. They are defined in the obvious way using the Brownian
motion started at S(x). We use X(µ, S; x) and Y (µ, S; x) to denote them.

4.2.2 Point process convergence

To be able to work with quantities (4.4)–(4.6) that have a discrete nature (in
the sense that they depend on the probability being exactly at some place) we
recall the definition of the point process convergence of measures introduced
in [FIN02]. LetM denote the set of locally finite measures on R.
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Definition 4.2.2 ([FIN02]). Given a family ν, νε, ε > 0, inM, we say that

νε converges in the point process sense to ν, and write νε pp→ ν, as ε →
0, provided the following holds: if the atoms of ν, νε are, respectively, at
the distinct locations yi, y

ε
i′ with weights wi, w

ε
i′, then the subsets of V ε ≡

∪i′{(yε
i′, w

ε
i′)} of R× (0,∞) converge to V ≡ ∪i{(yi, wi)} as ε→ 0 in the sense

that for any open U , whose closure Ū is a compact subset of R× (0,∞) such
that its boundary contains no points of V , the number of points |V ε ∩ U | in
V ε ∩ U is finite and equals |V ∩ U | for all ε small enough.

Beside this type of convergence we will use the following two more common
types of convergence

Definition 4.2.3. For the same family as in the previous definition, we say
that νε converges vaguely to ν, and write νε v→ ν, as ε→ 0, if for all continuous
real-valued functions f on R with bounded support

∫

f(y)νε(dy)→
∫

f(y)ν(dy)

as ε → 0. We say that νε converges weakly, and we write νε w→ ν, as ε → 0,
if the same is true for all bounded continuous functions on R.

To prove the point process convergence we will use the next lemma that is
the copy of Proposition 2.1 of [FIN02].

Let ν, νε be locally finite measures on R and let (yi, wi), (yε
i , w

ε
i ) be the

sets of atoms of these measures (yi is the position and wi is the weight of the
atom).

Condition 1. For each l there exists a sequence jl(ε) such that

(yε
jl(ε)

, wε
jl(ε)

)→ (yl, wl) as ε→ 0. (4.26)

Lemma 4.2.4. For any family ν, νε, ε > 0, inM, the following two assertions
hold. If νε pp→ ν as ε → 0, then Condition 1 holds. If Condition 1 holds and
νε v→ ν as ε→ 0, then also νε pp→ ν as ε→ 0.

4.2.3 Convergence of the fixed time distributions

We want to formulate, for the future use, a series of results from [FIN02]. They
will allow us to deduce the convergence of fixed time distributions from the
convergence of speed measures.

Proposition 4.2.5. Let µε, µ be the collection of deterministic locally finite
measures, and let Y ε, Y be defined by

Y ε(t) = Y (µε, Id)(t) and Y (t) = Y (µ, Id)(t). (4.27)
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For any deterministic t0 > 0, let νε denote the distribution of Y ε(t0) and ν
denote the distribution of Y (t0). Suppose

µε v→ µ and µε pp→ µ as ε→ 0. (4.28)

(i) Then, as ε→ 0,

νε v→ ν and νε pp→ ν. (4.29)

(ii) Let (xε
i , v

ε
i ) and (xi, vi) be the collections of atoms of µε and µ. Simi-

larly, let (yε
i , w

ε
i ) and (yi, wi) be the collections of atoms of νε and ν. Then the

sets of locations of the atoms are equal,

{yε
i } = {xε

i} and {yi} = {xi}. (4.30)

(iii) Suppose that we have denoted xi’s and yi’s in such a way that xi = yi,
xε

i = yε
i (which is possible by (ii)). Let the sequence jl(ε) satisfy

(xε
jl(ε)

, vε
jl(ε)

)→ (xl, vl) as ε→ 0. (4.31)

Then the sequence of corresponding atoms of νε satisfies

(yε
jl(ε)

, wε
jl(ε)

) = (xε
jl(ε)

, wε
jl(ε)

)→ (yl, wl) as ε→ 0. (4.32)

(iv) Parts (i)–(iii) stay valid if we replace the process Y ε(t) by the pro-
cess started outside the origin Y (µε, Id; zε), and similarly the process Y (t) by
Y (µ, Id; z) with zε → z as ε→ 0.

Part (i) of this proposition is stated as Theorem 2.1 in [FIN02]. Part (ii)
is a consequence of Lemmas 2.1 and 2.3 of the same paper. Part (iii) follows
from the proof of that theorem, but it is not stated there explicitly. Its proof
is, however, the central part of the proof of (i). The remaining part is an easy
consequence of (i)–(iii) and of the joint continuity of the local time ℓ(t, y).

4.3 Expression of X(t) in terms of Brownian motion

To explore the asymptotic behaviour of the chain X(t), we consider its scaling
limit

Xε(t) = εX(t/εcε). (4.33)

The constant cε will be determined later. For the time being the reader can
consider cε ∼ ε1/α.
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As we already noted in the previous section, it is convenient to express the
walks X(t) and Xε(t) as a time-scale change of the standard Brownian motion
W (t) started at 0. To achieve it we use Proposition 4.2.1. We define measures

µ(dx) = µ1(dx) =
∑

i∈Z

τiδi(dx) and µε(dx) = cε
∑

i∈Z

τiδεi(dx), (4.34)

where

τi =
1

2
exp(βEi)E(exp(−2aβE0)). (4.35)

We will consider the following scaling function. Let

ri =
exp(−βa(Ei + Ei+i))

E(exp(−2βaE0))
, (4.36)

and let

S(i) =

{

∑i−1
j=0 rj if i ≥ 0,

∑−1
j=i rj otherwise.

(4.37)

The constant factor E(exp(−2βaE0)) that appears in (4.35) and (4.36) is not
substantial, but it is convenient and it will simplify some expressions later.

We use X̃ε(t), 0 < ε ≤ 1, to denote the process

X̃ε(t) = X(µε, εS(ε−1·))(t), (4.38)

which means that X̃(t) is time-scale change of Brownian motion with speed
measure µε and scale function εS(ε−1·). If we write ψε(t) for ψ(µε, εS(ε−1·))(t),
then we have

X̃ε(t) = εS−1(ε−1W ε(ψε(t))). (4.39)

The process W ε is the rescaled Brownian motion, W ε(t) = εW (ε−2t), which
has the same distribution as W (t). It is introduced only to simplify the proof
of the next lemma. In the sequel we will omit the superscript if ε = 1, i.e. we
will write X̃(t) for X̃1(t), etc. Note that the function S−1(·) is well defined for
all values of its argument. Indeed, the set of atoms of εS(ε−1·) ◦ µε is the set
{εS(i) : i ∈ Z}, and thus ε−1W ε(ψε(t)) takes values only in {S(i) : i ∈ Z}.
Proposition 4.3.1. The processes X̃(t) and X̃ε(t) have the same distribution
as X(t) and Xε(t) = εX(t/cεε).

Proof. We use the symbol ∼ to denote the equality in distribution. The time
that X(t) stays at site i is exponentially distributed with mean (wi,i+1 +
wi,i−1)

−1. The probability that it jumps right or left is

wi,i+1

wi,i+1 + wi,i−1
and

wi,i−1

wi,i+1 + wi,i−1
. (4.40)
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Plugging the definition (4.2) of wij into these expressions, it is easy to see that
these values coincide with the same quantities for X̃(t) which can be computed
using Proposition 4.2.1. This implies that X(t) ∼ X̃(t).

To compare the distributions of Xε(t) and X̃ε(t), let us first look at the
scaling of ψε(t). After an easy calculation, using the fact that the local time
ℓε(t, y) of W ε satisfies ℓε(t, y) = εℓ(ε−2t, ε−1y), we obtain

φε(t) =

∫

ℓε(t, y)(εS(ε−1·) ◦ µε)(dy) = εcεφ(ε−2t). (4.41)

From it we get ψε(t) = ε2ψ(t/εcε). Hence,

εX̃(t/εcε) = εS−1(W (ψ(t/εcε))) = εS−1(W (ε−2ψε(t)))

= εS−1(ε−1W ε(ψε(t))) = X̃ε(t),
(4.42)

where we used the scaling of W (t) and (4.39). Since X̃(t) has the same distri-
bution as X(t), the same is valid for X̃ε(t) and Xε(t).

4.4 A coupling for walks on different scales

It is convenient to introduce the processes Y (t) and Y ε(t) that are only a
time change of Brownian motion with speed measures S ◦µ and εS(ε−1·) ◦µε.
Namely,

Y ε(t) = Y (µε, εS(ε−1·))(t) and Y (t) = Y (µ, S)(t). (4.43)

Using (4.25) we have

Y (t) = W (ψ(t)) and Y ε(t) = W (ψε(t)). (4.44)

The original processes X and Xε are related to them by

X(t) = S−1(Y (t)) and Xε(t) = εS−1(ε−1Y ε(t)). (4.45)

In the sequel we want to use Proposition 4.2.5 to prove the convergence of
the finite time distributions of Y ε. Thus, we want to apply this proposition to
the sequence of random speed measures µε. It is easy to see that convergence
in distribution of this sequence is not sufficient for its application. That is
why we will construct a coupling between measures µε on different scales ε on
a larger probability space. Using this coupling we obtain the a.s. convergence
on this space. It is not surprising that the same coupling as in [FIN02] does
the job.
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Consider the Lévy process V (x), x ∈ R, V (0) = 0, with stationary and
independent increments and cadlag paths defined on (Ω̄, F̄ , P̄) given by

Ē
[

eir(V (x+x0)−V (x0))
]

= exp
[

xα

∫ ∞

0

(eirw − 1)w−1−αdw
]

. (4.46)

Let ρ̄ be the random Lebesgue-Stieltjes measure on R associated to V , i.e.
ρ̄(a, b] = V (b) − V (a). It is a known fact that ρ̄(dx) =

∑

j vjδxj
(dx), where

(xj , vj) is an inhomogeneous Poison point process with density dxαv−1−αdv.
Note that ρ̄ has the same distribution as ρ which we used as speed measure in
the definition of the singular diffusion Z.

For each fixed ε > 0, we will now define the sequence of i.i.d. random
variables Eε

i such that Eε
i ’s are defined on the same space as V and ρ̄ and they

have the same distribution as E0.
Define a function G : [0,∞) 7→ [0,∞) such that

P̄(V (1) > G(x)) = P(τ0 > x). (4.47)

The function G is well-defined since V (1) has continuous distribution, it
is nondecreasing and right continuous, and hence has nondecreasing right-
continuous generalised inverse G−1. Let gε : [0,∞) 7→ [0,∞) be defined as

gε(x) = cεG
−1(ε−1/αx) for all x ≥ 0, (4.48)

where
cε =

(

inf[t ≥ 0 : P(τ0 > t) ≤ ε]
)−1

. (4.49)

Note that if τ0 is the α stable random variable with characteristic function

E(eirτ0) = exp
[

α

∫ ∞

0

(eirw − 1)w−1−αdw
]

, (4.50)

the choice of cε and gε can be simplified (although it does not correspond to
the previous definition)

cε = ε1/α and gε(y) ≡ y. (4.51)

The reader who is not interested in the technical details should keep this choice
in mind.

Lemma 4.4.1. Let

τ ε
i =

1

c ε
gε(V (ε(i+ 1))− V (εi)), (4.52)

and

Eε
i =

1

β
log

(

2τ ε
i

E(exp(−2aβE0))

)

. (4.53)

Then for any ε > 0, the τ ε
i are i.i.d. with the same law as τ0, and {Eε

i }i∈Z

have the same distribution as {Ei}i∈Z.
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Proof. By stationarity and independence of increments of V it is sufficient to
show P̄(τ ε

0 > t) = P(τ0 > t). However,

P̄(τ ε
0 > t) = P̄(V (ε) > ε1/αG(t)) (4.54)

by the definitions of τ ε
0 and G. The result then follows from (4.47) and the

scaling invariance of V : V (ε) ∼ ε1/αV (1). The second claim follows easily
using (4.35).

Let us now define the random speed measures µ̄ε using the collections {Eε
i }

from the previous lemma,

µ̄ε(dx) =
∑

i∈Z

cετ
ε
i δεi(dx). (4.55)

We also define the scaling functions Sε similarly as in (4.37). Let

rε
i =

exp(−βa(Eε
i + Eε

i+1))

E(−2aβE0)
(4.56)

and

Sε(i) =

{

∑i−1
j=0 r

ε
j if i ≥ 0,

∑−1
j=i r

ε
j otherwise.

(4.57)

It is an easy consequence of Lemma 4.4.1 that µ̄ε ∼ µε and Sε ∼ S for any
ε ∈ (0, 1].

4.5 Convergence of speed measures

The following proposition proves the convergence of the scaled speed measures.
If S is the identity, i.e. a = 0, it corresponds to Proposition 3.1 of [FIN02].

Proposition 4.5.1. Let µ̄ε and ρ̄ be defined as above. Then

εSε(ε
−1·) ◦ µ̄ε v→ ρ̄ and εSε(ε

−1·) ◦ µ̄ε pp→ ρ̄ as ε→ 0 P̄-a.s. (4.58)

The proof requires three technical lemmas.

Lemma 4.5.2. As ε→ 0 we have

εSε(⌊ε−1y⌋)→ y as ε→ 0 P̄-a.s. (4.59)

uniformly on compact intervals.
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Notice that this lemma sheds more light on the difference between the
discrete time embedded walk of the process X and the Sinai’s RWRE. In the
case of Sinai’s RWRE the scale function S corresponds, loosely speaking, to
the function

S ′(n) =

n
∑

i=1

ρ1 . . . ρn, (4.60)

where ρi = (1− pi)/pi, pi is the probability going right at i, and pi’s are i.i.d.
In our case ρi = ri/ri−1. An easy computation gives that the product ρ1 . . . ρn

depends only on E0 and En+1. Thus, S ′(n) is in our situation essentially a
sum of i.i.d. random variables which is definitively not the case for the Sinai’s
RWRE.

Proof of Lemma 4.5.2. We consider only y > 0. The proof for y < 0 is very

similar. By definition of Sε we have εSε(⌊ε−1y⌋) = ε
∑⌊ε−1y⌋−1

j=0 rε
j , where for

fixed ε the sequence rε
i is an ergodic sequence of bounded positive random

variables. Moreover, rε
i is independent of all rε

j with j /∈ {i − 1, i, i + 1}.
The P̄-a.s. convergence for fixed y is then a consequence of the strong law
of large numbers for triangular arrays. Note that this law of large numbers
can be easily proved in our context using the standard methods, because the
variables rε

i are bounded and thus their moments of arbitrary large degree are
finite. The uniform convergence on compact intervals is easy to prove using
the fact that Sε(i) is increasing and the identity function is continuous.

The next two lemmas correspond to Lemmas 3.1 and 3.2 of [FIN02]. We
state them without proofs.

Lemma 4.5.3. For any fixed y > 0, gε(y)→ y as ε→ 0.

Lemma 4.5.4. For any δ′ > 0, there exist constants C ′ and C ′′ in (0,∞) such
that

gε(x) ≤ C ′x1−δ′ for ε1/α ≤ x ≤ 1 and ε ≤ C ′′. (4.61)

Proof of Proposition 4.5.1. We first prove the vague convergence. Let f be a
bounded continuous function with compact support I ⊂ R. Then,

∫

f(x)(εSε(ε
−1x) ◦ µ̄ε)(dx) =

∑

i∈Jε
0

f(εSε(i))gε(V (ε(i+ 1))− V (εi)), (4.62)

where we used the notation

Jε
y = {i ∈ Z : εSε(i) ∈ I, V (ε(i+ 1))− V (εi) ≥ y}. (4.63)

Choose now δ > 0. To estimate the last sum, we treat separately the sums
over Jε

δ , J
ε
ε1/α \ Jε

δ and Jε
0 \ Jε

ε1/α.
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Due to the convergence of εSε(ε
−1·) to the identity, we know that for ε

small enough there is a small neighbourhood I ′ of I such that Jε
0 ⊂ ε−1I ′. The

process V has P̄-a.s. only finitely many jumps larger than δ in I ′, so the first
sum has only a finite number of terms. Using the continuity of f and applying
Lemmas 4.5.2 and 4.5.3 we have

∑

i∈Jε
δ

f(εSε(i))gε(V (ε(i+ 1))− V (εi))→
∑

j:vj≥δ

f(xj)vj , (4.64)

with (xi, vi) being the set of atoms of ρ̄. In the previous expression we also use
the fact that iε→ xi for the corresponding terms in the sums.

By Lemma 4.5.4 we have for some δ′ such that δ′ + α ≤ 1
∑

i∈Jε

ε1/α
\Jε

δ

f(εSε(i))gε(V (ε(i+ 1))− V (εi))

≤ C
∑

i∈Jε

ε1/α
\Jε

δ

(

V (ε(i+ 1))− V (εi)
)1−δ′ ≤ C

∑

j:vj≤δ

xj∈I′

v1−δ′

j = Hδ.
(4.65)

From the definition of the point process (xi, vi) we have

Ē(Hδ) ≤ α|I ′|
∫ δ

0

w1−δ′w−1−αdw → 0 as δ → 0. (4.66)

Since Hδ is decreasing and positive, the limit limδ→0 Hδ exists P̄-a.s. The domi-
nated convergence theorem then gives Ē limδ→0Hδ = 0, and thus limδ→0Hδ = 0
P̄-a.s.

The third part of the sum is also negligible for ε small enough. Indeed, by
monotonicity of gε, we have gε(x) ≤ gε(ε

1/α) ≤ Ccε for all x ≤ ε1/α. Hence,
∑

i∈Jε
0\J

ε

ε1/α

f(εSε(i))gε(V (ε(i+ 1))− V (εi))

≤ C ′cε
∑

i∈ε−1I′∩Z

1 ≤ C ′′cεε
−1 → 0 as ε→ 0.

(4.67)

In the last equation we use the fact that if τ0 is in the domain of attraction of
the stable law with index α, there exists κ > 0 such that the function cε can
be bounded from above by Cε−κ+1/α with −κ + 1/α > 1.

Putting now all three parts together, we have

lim
ε→0

∑

i∈Jε
0

f(εSε(i))gε(V (ε(i+ 1))− V (εi))

= lim
δ→0

∑

j:vj≥δ

f(xj)vj =

∫

fdρ̄.
(4.68)
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This proves the vague convergence.
To prove the point process convergence we use Lemma 4.2.4. Since we have

already proved the vague convergence, we must only verify Condition 1 for the
measures εSε(ε

−1·) ◦ µ̄ε and ρ̄. Thus, for any atom (xl, vl) of ρ̄ we want to find
a sequence jl(ε) such that

εSε(jl(ε))→ xl and gε

(

V (ε(jl(ε) + 1))− V (εjl(ε))
)

→ vl. (4.69)

Choose jl(ε) such that xl ∈
(

εjl(ε), ε(jl(ε) + 1)
]

. Then by Lemma 4.5.2 we
have the first statement of (4.69), and by Lemma 4.5.3 we have the second.
This finishes the proof of Proposition 4.5.1.

4.6 Change of scale for fixed time distributions

Write X̄ε and X̄ for the processes defined as in (4.38), but using the speed
measures µ̄ε and the scaling functions Sε. Since µ̄ε ∼ µε and Sε ∼ S, we have
X̄ε ∼ Xε. Similarly, we define the processes Ȳ ε, Ȳ as in (4.44), and Z̄ as in
Definition 4.1.1 using the measures with bars. Evidently, Ȳ ε ∼ Y ε, Ȳ ∼ Y
and Z̄ ∼ Z. The following proposition is a consequence of Propositions 4.2.5
and 4.5.1.

Proposition 4.6.1. Fix t0 > 0. Write ν̄ε
Y,V for the distribution of Ȳ ε(t0) and

ν̄V for the distribution of Z̄(t0) conditionally on V . Then, P̄-a.s we have

ν̄ε
Y,V

v→ ν̄V and ν̄ε
Y,V

pp→ ν̄V as ε→ 0. (4.70)

The proof of the convergence of the fixed time distribution of X̄ε will be
finished if we can compare the limits of X̄ε and Ȳ ε.

Proposition 4.6.2. Fix t0 as in Proposition 4.6.1. Let ν̄ε
X,V denote the dis-

tribution of X̄ε(t0) conditionally on V . Then, P̄-a.s. we have

lim
ε→0

ν̄ε
X,V = lim

ε→0
ν̄ε

Y,V = ν̄V , (4.71)

where the limits are taken in both the vague and the point process sense.

Proof. As an easy consequence of Lemma 4.5.2 we have

εS−1
ε (ε−1y)→ y P̄-a.s. (4.72)

We will again apply Lemma 4.2.4 to prove the convergence. Let f be a con-
tinuous function with bounded support I ⊂ R. By continuity of f and (4.72),
choosing the fixed realisation of Brownian motion W , we have P̄-a.s.

lim
ε→0

f(X̄ε(t0)) = lim
ε→0

f(Ȳ ε(t0)). (4.73)
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A standard application of the dominated convergence theorem yields

lim
ε→0

∫

f dν̄ε
X,V = lim

ε→0

∫

f dν̄ε
Y,V =

∫

f dν̄V . (4.74)

We finally verify Condition 1. Write (xε
i , v

ε
i ), (yε

i , w
ε
i ) for the collections

of atoms of ν̄ε
X,V and ν̄ε

Y,V . By Proposition 4.2.5(ii) we can choose xε
i = εi

and yε
i = εSε(i), setting eventually vε

i , resp. wε
i , equal to zero if there is no

atom at xε
i , resp. yε

i . Using this choice of xε
i and yε

i and the relation (4.45) we
have vε

i = wε
i . Let (zl, ul) be the collection of atoms of ν̄V and jl(ε) be the

sequence of indexes such that (yjl(ε), wjl(ε))→ (zl, ul). Then by (4.72) we have
(xjl(ε), vjl(ε))→ (zl, ul) which completes the proof.

4.7 Proof of Theorem 4.1.2

We first express the quantities that we are interested in using the processes
X̄ε. From the definition of X̃ε, Proposition 4.3.1, and the fact that X̄ε ∼ X̃ε

we get

lim
tw→∞

EP
[

X((1 + θ)tw) = X(tw)|E
]

= lim
ε→0

ĒP̄
[

X̄ε(1 + θ) = X̄ε(1)|V
]

≡ lim
ε→0

Rε(θ) (4.75)

and similarly

lim
tw→∞

E
∑

i∈Z

[

P(X((1 + θ)tw) = i|E,X(tw))
]2

= lim
ε→0

Ē
∑

i∈Z

[

P̄(X̄ε(1 + θ) = iε|V, X̄ε(1))
]2 ≡ lim

ε→0
Rq

ε(θ). (4.76)

We introduce some notation for the sets of atoms of the measures we will
consider. In the following everything depends on the realisation of the Lévy
process V and we will not denote this dependence explicitly. We write

µ̄ε =
∑

i

vε
i δxε

i
and ρ̄ =

∑

i

viδxi
. (4.77)

The atoms of the distribution νε
1 of X̄ε(1) will be denoted by (xε

i , w
ε
i ). Similarly,

(xi, wi) denotes the atoms of the distribution ν1 of Z̄(1). The weights of the
joint distribution of X̄ε(1) and X̄ε(1 + θ) will be denoted by wε

ij ,

wε
ij = P̄

[

(X̄ε(1) = xε
i ) ∩ (X̄ε(1 + θ) = xε

j)|V
]

,

wij = P̄
[

(Z̄(1) = xi) ∩ (Z̄(1 + θ) = xj)|V
]

.
(4.78)
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The last measure we will introduce is the distribution νε
1+θ(·|xε

i ) of X̄ε(1 + θ)
conditioned on X̄ε(1) = xε

i . We denote its atoms by (xε
j , u

ε
ij). Thus,

uε
ij = P̄

[

X̄ε(1 + θ) = xε
j |X̄ε(1) = xε

i , V
]

,

uij = P̄
[

Z̄(1 + θ) = xj |Z̄(1) = xi, V
]

.
(4.79)

Observe that wε
ij = wε

iu
ε
ij and wij = wiuij.

Using this notation we can rewrite (4.75) and (4.76),

Rε(θ) = Ē

[

∑

i

wε
iu

ε
ii

]

and Rq
ε(θ) = Ē

[

∑

i

wε
i

∑

j

(uε
ij)

2

]

, (4.80)

where the expectations are taken over all realisations of V . Obviously we have

R(θ) = Ē

[

∑

i

wiuii

]

and Rq(θ) = Ē

[

∑

i,j

wi(uij)
2

]

. (4.81)

If we prove the P̄-a.s. convergence of the expressions inside the expecta-
tions in (4.80) to the corresponding expressions in (4.81), the proof will follow
easily using the dominated convergence theorem. We want to use the re-
sults of Proposition 4.6.2, namely the point process convergence of νε

1 to ν1

and νε
1+θ(·|xε

ji(ε)
) to ν1+θ(·|xi). Here, as usually, ji(ε) satisfies (xji(ε), vji(ε)) →

(xi, vi) as ε → 0. Note that the point process convergence of νε
1+θ(·|xε

ji(ε)
)

follows from Propositions 4.6.2 and 4.2.5(iv).
In the proof we will need one property of the atoms of different measures

that is connected with Condition 1. From the point process convergence of µ̄ε

we know that for every atom (xl, vl) of ρ̄ there is a function jl(ε) such that
(xε

jl(ε)
, vε

jl(ε)
) converges to (xl, vl). From Proposition 4.2.5(iii) we can see that

for the same function wε
jl(ε)
→ wl, u

ε
jl(ε),jk(ε) → ulk, and thus wε

jl(ε),jk(ε) →
wlk as ε → 0. This observation is essential, because only the point process
convergence of all measures is not sufficient to imply our results.

We prove the convergence only for the quantity R(θ). The proof for Rq(θ)
is entirely similar. Point process convergence, Condition 1, and the observation
of the previous paragraph give

∑

i

wiuii = lim
ε→0

∑

i

wε
ji(ε)

uε
ji(ε),ji(ε)

≤ lim inf
ε→0

∑

i

wε
iu

ε
ii. (4.82)

To show the opposite bound we choose δ > 0, and divide the sum in (4.80)
into sums over three disjoint sets

Aε(δ) = {i : wε
i > δ, uε

ii > δ}
Bε(δ) = {i : uε

ii ≤ δ}
Cε(δ) = {i : wε

i ≤ δ, uε
ii > δ}.

(4.83)
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The sum over Aε(δ) has necessarily finite number of terms. From point
process convergence we have

lim sup
ε→0

∑

i∈Aε(δ)

wε
iu

ε
ii =

∑

i∈A(δ)

wiuii, (4.84)

where A(δ) has the obvious meaning. For the second part we have

lim sup
ε→0

∑

i∈Bε(δ)

wε
iu

ε
ii = δ lim sup

ε→0

∑

i∈Bε(δ)

wε
i ≤ δ, (4.85)

since νε
1 is the probability measure. The last part satisfies

lim sup
ε→0

∑

i∈Cε(δ)

wε
iu

ε
ii ≤ lim sup

ε→0

∑

i∈Cε(δ)

wε
i ≤ 1− lim inf

ε→0

∑

i:wε
i >δ

wε
i . (4.86)

The sum in the last expression has a finite number of terms. Hence

lim sup
ε→0

∑

i∈Cε(δ)

wε
iu

ε
ii ≤ 1−

∑

i:wi>δ

wi, (4.87)

and the last sum goes to 1 as δ → 0, because ν1 is a purely discrete measure.
From (4.84)–(4.87) it is easy to see that

lim sup
ε→0

∑

i

wε
iu

ε
ii ≤

∑

i∈A(δ)

wiuii + δ + (1−
∑

i:wi>δ

wi) (4.88)

and the proof is finished by taking the limit δ → 0.

4.8 Proof of sub-aging in the symmetric case

We start the proof by a technical lemma that will provide the connection
between the rescaled processes at time t = 1 and the process X at some large
time t. Let ε(t) be defined by

ε(t)cε(t)t = 1. (4.89)

Solution to this equation always exists, at least for t large enough, because cε
is continuous nondecreasing function of ε as can be easily seen from (4.49).
Until the end of the proof ε = ε(t) will be connected with t and we will not
denote the dependence explicitly. We will also sometimes write ct for cε(t).

The next lemma defines the slowly varying function L(t) that is used in
Theorem 4.1.3. Note that all slowly varying function that we use are slowly
varying at infinity.
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Lemma 4.8.1. There exists a slowly varying function L(t) such that

ctt
γL(t) = 1. (4.90)

The proof of this lemma is postponed to the end of the section.
The main step in proving Theorem 4.1.3 is the following proposition that

describes the scaling of the distribution of the depth of the site where X stays
at time t. We recall that

γ =
β

1 + β
=

1

1 + α
. (4.91)

Proposition 4.8.2. Let Ft(u) = EP(τ(X(t))/tγL(t) ≤ u|E). Then

lim
t→∞

Ft(u) = EP(ρ(Z(1)) ≤ u|ρ) ≡ F (u) (4.92)

for all points of continuity of F (u).

We use this proposition to prove subaging for a = 0.

Proof of Theorem 4.1.3 in the symetric case. The process X stays at the site
i for an exponentially long time with mean τi. Using the Markov property we
can write

P
[

X(t′) = X(t)∀t′ ∈ [t, t+ θtγL(t)]
]

=

∫ ∞

0

e−θtγL(t)/u dFt

(

u/(tγL(t))
)

=

∫ ∞

0

e−θ/u dFt(u). (4.93)

By the weak convergence stated in Proposition 4.8.2, the last expression con-
verges to

∫

e−θ/udF (u) = Π(θ).

The proof of Theorem 4.1.3 for the asymmetric case is postponed to the
next section because it is relatively complicated and relies on some notation
introduced later in this section.

Proof of Proposition 4.8.2. We follow the similar strategy as in the proof of
aging. Again we start with some notations. We write

µ̄ε(dx) =
∑

i∈Z

cετ
ε
i δiε(dx) and ρ̄(dx) =

∑

i∈Z

viδxi
(dx). (4.94)

Similarly, the distributions of X̄ε(1) and Z̄(1) satisfy

ν̄ε
1(dx) =

∑

i∈Z

wε
i δiε(dx) and ν̄1(dx) =

∑

i∈Z

wiδxi
(dx). (4.95)
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Here again we used the fact that the sets of positions of atoms of ρ̄ and ν̄1 are
equal. We also introduce the distributions of the depth at the time one

πε
1(dx) =

∑

i∈Z

wε
i δcετε

i
(dx) (4.96)

and
π1(dx) =

∑

i∈Z

wiδρ̄(xi)(dx) =
∑

i∈Z

wiδvi
(dx). (4.97)

We claim that

Lemma 4.8.3.

πε
1

v→ π1 and πε
1

pp→ π1 as ε→ 0 P̄-a.s. (4.98)

Proof. As usually we prove the vague convergence and Condition 1. To verify
the second property, let us first observe that for any atom (vl, wl) of π1 there
exists xl such that (xl, vl) is an atom of ρ̄, and (xl, wl) is an atom of ν̄1. From

the point process convergences µε pp→ ρ̄, ν̄ε
1

pp→ ν̄1, and from the direct part of
the Lemma 4.2.4 we have that for any l there exist sequences jl(ε) and kl(ε),
such that (εjl(ε), cετ

ε
jl(ε)

) → (xl, vl) and (εkl(ε), w
ε
kl(ε)

) → (xl, wl) as ε → 0.

Moreover, it can be seen from Proposition 4.2.5(iii) that jl(ε) = kl(ε). Putting
together the last three claims we easily show that (cετ

ε
jl(ε)

, wε
jl(ε)

)→ (vl, wl) as
ε→ 0.

We should now verify the vague convergence. Let f be a nonnegative,
continuous function with compact support. We use Iδ to denote the open
rectangle (−δ−1, δ−1)× (δ, 2). By (4.96) we have

∫

f(x)πε
1(dx) =

∑

i∈Z

wε
i f(cετ

ε
iε)

=
∑

i:(iε,wε
i )∈Iδ

wε
i f(cετ

ε
iε) +

∑

i:(iε,wε
i )/∈Iδ

wε
i f(cετ

ε
iε). (4.99)

From the point process convergence of ν̄ε
1 we know that for all but countably

many δ > 0 and for ε large enough the number of atoms of ν̄ε
1 in Iδ is finite

and is equal to the number of atoms of ν̄1 in Iδ. Moreover, by the first part
of Lemma 4.2.4 we have for any such atom (xl, wl) the sequence of atoms
(εjl(ε), w

ε
jl(ε)

) converging to (xl, wl). By the same reasoning as in the previous

paragraph the sequence cετ
ε
jl(ε)

converges as ε → 0 to ρ̄(xl) = vl. Thus, by
continuity of f we have

lim
ε→0

∑

i:(iε,wε
i )∈Iδ

wε
i f(cετ

ε
iε) =

∑

i:(xi,wi)∈Iδ

wif(vi). (4.100)
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The right hand side of the last equation is bounded by ‖f‖∞ and increases as
δ decreases. Thus, its limit as δ → 0 exist and is equal to

∫

f(x)π1(dx).
The second sum in (4.99) is bounded by

C
∑

i:(iε,wε
i )/∈Iδ

wε
i = C

(

1−
∑

i:(iε,wε
i )∈Iδ

wε
i

)

. (4.101)

Using the same argument as in (4.87) we have

lim
δ→0

lim sup
ε→0

(

1−
∑

i:(iε,wε
i )∈Iδ

wε
i

)

= lim
δ→0

(

1−
∑

i:(xi,wi)∈Iδ

wi

)

= 0, (4.102)

since the finite time distribution of Z̄ is discrete.

We can now finish the proof of Proposition 4.8.2. By definition of Xε(t)
we have

Ft(u) = P[τ(X(t))/tγL(t) ≤ u] = P[τ(ε−1Xε(tεcε))/t
γL(t) ≤ u]. (4.103)

Inserting the definition of µε into the last claim yields

Ft(u) = P[c−1
ε µε(Xε(tεcε))/t

γL(t) ≤ u]. (4.104)

Using tεcε = 1, the equality of the distributions X̄ε ∼ Xε, µ̄ε ∼ µε, and
Lemma 4.8.1, we get

Ft(u) = P̄[µ̄ε(X̄ε(1)) ≤ u]. (4.105)

By definition of πε
1 we have

1− Ft(u) = ĒP̄[µ̄ε(X̄ε(1)) > u|V ] = Ē
[

∑

i:cετε
i >u

wε
i

]

. (4.106)

The point process convergence proved in Lemma 4.8.3 implies that the sum in
the last expectation converges P̄-a.s. for all u such that u 6= vi for all i.

lim
ε→0

∑

i:cετε
i >u

wε
i =

∑

i:vi>u

wi = P̄[ρ̄(Z̄(1)) > u|V ] (4.107)

Using the fact that (ρ, Z) has the same distribution as (ρ̄, Z̄) and applying
dominated convergence theorem it is easy to finish the proof.

Proof of Lemma 4.8.1. One should only prove that L(t) is slowly varying.
Since τ0 is in the domain of attraction of the stable variable with index α,
there exists a slowly varying function L1(t) such that

P[τ0 > t] = t−αL1(t). (4.108)
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From definition (4.49) of cε we get

ε−1P[τ0 > c−1
ε ]→ 1 as ε→ 0. (4.109)

Indeed, it is easy to see that ε−1P[τ0 > c−1
ε ] ≤ 1. Take η > 0, the lower bound

follows from

(1 + 2η)−α = lim
ε→0

P[τ0 >
1+2η
1+η

c−1
ε ]

P[τ0 >
1

1+η
c−1
ε ]
≤ lim inf

ε→0
ε−1P[τ0 > c−1

ε ] (4.110)

since η is arbitrary. From (4.109) and (4.108) we get

ε−1cαεL1(c
−1
ε )→ 1 as ε→ 0. (4.111)

Applying (4.89) we have

ctt
γLγ

1(c
−1
t )→ 1 as t→∞. (4.112)

We want to show that ct = t−γL(t)−1 where L(t) is slowly varying. Choose
k > 0 and define dt = L(t)/L(kt). Take η > 0 small and assume that
lim inft→∞ dt < 1 − 2η. We choose δ > 0 and we consider t large enough
such that ctt

γLγ
1(c

−1
t ) ∈ (1− δ, 1 + δ). This can be done by (4.112). We have

dt =
L(t)

L(kt)
=
ckt

ct
kγ ≥ 1− δ

1 + δ
· L

γ
1(c

−1
t )

Lγ
1(c

−1
kt )

=
1− δ
1 + δ

· Lγ
1(c

−1
t )

Lγ
1(d

−1
t c−1

t kγ)
. (4.113)

Our assumption implies that there exists a sequence tn such that d−1
tn > 1 + η

for all n. Since L1 is slowly varying, we know that for arbitrary θ > 0 there
exists x0 such that for all l > 1+η and x > x0 we have L1(lx) ≤ lθL1(x). This
implies that for n large enough we have

dtn ≥
1− δ
1 + δ

· Lγ
1(c

−1
tn )

d−γθ
tn Lγ

1(c
−1
tn k

γ)
. (4.114)

Taking the limit n → ∞, using that ctn → ∞ and that L1 is slowly varying
we get

lim inf
n→∞

d1+γθ
tn ≥ 1− δ

1 + δ
. (4.115)

For every η we can take δ and θ such that the last equation is in contradiction
with lim inft→∞ dt < 1 − 2η. Thus lim inft→∞ dt ≥ 1. The proof of the upper
bound follows from

dtn ≤
1 + δ

1− δ ·
dγθ

tnL
γ
1(k

−γc−1
ktn

)

Lγ
1(c

−1
ktn

)
. (4.116)

This can be proved if one assumes that lim supt→∞ dt ≥ 1 + 2η and it leads to
a contradiction similarly as in (4.115).
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4.9 Proof of sub-aging in the non-symmetric case

If a > 0, the jump rates depend also on the depths of the neighbouring sites.
As is easy to see from definition of τ ε

i , the depth of the neighbouring sites of
some very deep trap does not converge P̄-a.s. (By very deep trap we mean
here a trap where X has a large chance to stay at time t.) On the other hand,
we expect (see [RMB00]) that the depth of these sites is, at least if tw is large,
almost independent of the diffusion and has the same distribution as E0.

The idea of the proof is to enlarge the probability space Ω̄ and insert in the
neighbourhood of very deep traps additional sites with depths not depending
on V . On this larger probability space we almost recover the a.s. convergence.

We first define the set of sites whose neighbours we will modify. Choose
m > 0 large and η > 0 small. We use Jη

m = Jη
m(V ) to denote the set of deep

traps not far from the origin

Jη
m = {x ∈ [−m,m] : V (x)− V (x−) ≥ η}. (4.117)

To simplify the following definitions we will suppose that ε is small enough
such that the minimal distance of two points in Jη

m ∪ 0 is larger then 2ε. The
set T η

m(ε) will be the set of sites corresponding to Jη
m at the scale ε

T η
m(ε) = {i ∈ Z : (iε, (i+ 1)ε] ∩ Jη

m 6= ∅}. (4.118)

Note that Jη
m and T η

m(ε) are P̄-a.s. finite sets.
Let τ+

i and τ−i be two independent sequences of i.i.d. random variables
defined on Ω̄ with the same distribution as τ0 that are also independent of V .
We now define the new environments τ̂ ε

i . They are essentially the same as τ ε
i

only in the neighbourhood of the sites from T η
m(ε) we insert the new variables

τ+
i and τ−i . The precise definition of τ̂ ε

i follows.
Let Jη

m = {y1, . . . , yn} with yi < yi+1 and yr−1 < 0 < yr. Here we ignore the
zero probability event 0 ∈ Jη

m. Let iεk ∈ T η
m(ε) be such that yk ∈ (iεkε, (i

ε
k +1)ε]

and let īεk = 1 + iεk + 2(k − r). We write T̄ η
m(ε) for {̄iε1, . . . , īεn}. Then

τ̂ ε
i =























τ ε
iεk

if i = īεk
τ+
k if i = īεk + 1

τ−k if i = īεk − 1

τ ε
i−2(k−r) if i ∈ {̄iεk−1 + 2, . . . , īεk − 2}.

(4.119)

Lemma 4.9.1. The sequence τ̂ ε
i has the same distribution as τi.

Proof. The independence of the τ̂ ε
i ’s is a consequence of independence of V

and τ±. It is thus sufficient to show that the distribution of τ̂ ε
j is the same as

that of τ0. Let F be the event that |̄iεk − j| = 1 for some k. Then

P̄(τ̂ ε
j ≤ u) = P̄(τ̂ ε

j ≤ u|F )P̄(F ) + P̄(τ̂ ε
j ≤ u|F c)P̄(F c) (4.120)
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However, P̄(τ̂ ε
j ≤ u|F ) = P̄(τ± ≤ u) = P(τ0 ≤ u) and similarly P̄(τ̂ ε

j ≤ u|F c) =
P(τ0 ≤ u). We have thus

P̄(τ̂ ε
j ≤ u) = P(τ0 ≤ u)(P(F ) + P(F c)) = P(τ0 ≤ u). (4.121)

We define the measures µ̂ε and the scaling functions Ŝε similarly as in (4.55)
and (4.57) but using τ̂ ε

i instead of τ ε
i . Similarly as in Proposition 4.5.1 we have

Lemma 4.9.2. For every fixed realisation of τ+
i and τ−i , P̄-a.s.

εŜε(ε
−1·) ◦ µ̂ε v→ ρ̄ and εŜε(ε

−1·) ◦ µ̂ε pp→ ρ̄ as ε→ 0. (4.122)

Proof. The proof is the same as that of Lemma 4.5.2 and Proposition 4.5.1,
the finite number of additional random variables looses its influence as ε→ 0.
To demonstrate it, we will show here the differences that appear in the proof
of Lemma 4.5.2.

We want to show that εŜε(⌊ε−1y⌋) = ε
∑⌊ε−1y⌋

j=0 r̂ε
j converges to y. Since Jη

m

is finite only the finite number of r̂ε
j ’s are influenced by changing the sequence

of τ ’s. The contribution of this part of the sum goes to zero as ε→ 0. The rest
of the sum can be treated in the same way as in the proof of Lemma 4.5.2.

Further, we define the processes X̂ε(t) as

X̂ε(t) = X(µ̂ε, εŜε(ε
−1·))(t). (4.123)

As follows from Lemma 4.9.1 these processes have the same distribution as
Xε(t) and from Lemma 4.9.2 and Proposition 4.2.5 we know that their fixed
time distributions converge to the distribution of Z̄ at the same time.

The following proposition can be regarded as a stronger version of the
localisation effect (4.8). It claims that we can find a finite set Aε ⊂ Z such that
ε−1Xε(1) ∈ Aε with arbitrarily large probability. The size of Aε is independent
of ε.

Proposition 4.9.3. For every δ > 0 there exist m, η, and ε0 such that for
ε < ε0

P̄
[

P̄(ε−1X̂ε(1) ∈ T̄ η
m(ε)|V, τ+

i , τ
−
i ) > 1− δ

]

> 1− δ. (4.124)

We postpone the proof of this proposition and we first finish the proof of
sub-aging. We consider the function Π(t, t+fa(t, θ)). By its definition we have

Π(t, t+ fa(t, θ)) = E
[

∑

i∈Z

P(X(t) = i|E) exp(−(wi,i+1 + wi,i−1)fa(t, θ))
]

.

(4.125)
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The rates wi,i+1 and wi,i−1 can be expressed using the variables τi

wi,i+1 + wi,i−1 =
τa
i−1 + τa

i+1

τ 1−a
i

[

E(exp(−2aβE0))

2

]1−2a

. (4.126)

We use K to denote the constant in the brackets in the last expression.

Let ε be such that εcεt = 1 similarly as in the proof of Proposition 4.8.2.
From Lemma 4.9.1, it follows that (4.126) can be rewritten using the measures
with hats,

Π(t, t+ fa(t, θ))

= Ēτ±ĒV

[

∑

i∈Z

ŵε
i exp

(

− fa(t, θ)K
(τ̂ ε

i+1)
a + (τ̂ ε

i−1)
a

(τ̂ ε
i )1−a

)]

, (4.127)

where (x̂ε
i , ŵ

ε
i ) is defined similarly as in (4.95) and ĒV and Ēτ± are the expec-

tations over all realisations of V , resp. τ±. Let δ > 0 and take m, η and ε0 as
in Proposition 4.9.3. We consider only ε < ε0.

We divide the sum in the last expression into two parts. The first one over
i ∈ T̄ η

m(ε) and the second one over the rest. The second part is not important.
Indeed,

Ēτ±ĒV

[

∑

i∈Z\T̄ η
m(ε)

ŵε
i exp

(

− fa(t, θ)K
(τ̂ ε

i+1)
a + (τ̂ ε

i−1)
a

(τ̂ ε
i )1−a

)]

≤ Ēτ±ĒV

[

∑

i∈Z\T̄ η
m(ε)

ŵε
i

]

≤ 2δ (4.128)

as follows from Proposition 4.9.3. Let us look at the limit of the first part. We
have

lim
ε→0

∑

i∈T̄ η
m(ε)

ŵε
i exp

(

− fa(t, θ)K
(τ ε

i+1)
a + (τ ε

i−1)
a

(τ ε
i )1−a

)

=

n
∑

j=1

ŵ(yj) exp
(

−Kθtγ(1−a)L(t)1−a
(τ+

j )a + (τ−j )a

(c−1
ε ρ̄(yj))1−a

)

, (4.129)

where ŵ(yj) is the weight of the atom of distribution of Z̄(1) at yj. Here we
used the fact that the values of τ̂ for the neighbours of T̄ η

m(ε) do not depend
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on ε. Applying Lemma 4.8.1, we get from the last two claims

lim sup
tw→∞

Π(t,t+ fa(t, θ))

≤ ĒV Ēτ±

[

n
∑

j=1

ŵ(yj) exp
(

−Kθ (τ+
j )a + (τ−j )a

ρ̄(yj)1−a

)]

+ 2δ,

lim inf
tw→∞

Π(t,t+ fa(t, θ))

≥ ĒV Ēτ±

[

n
∑

j=1

ŵ(yj) exp
(

−Kθ (τ+
j )a + (τ−j )a

ρ̄(yj)1−a

)]

.

(4.130)

The expectation over τ± is easy to calculate since the distribution of τ±i is
same as the distribution of exp(βE0)E(exp(−2aβE0))/2. Thus K(τ+

i )a has
the same distribution as

2a−1 exp(aβE0)
(

E(exp(−2aβE0))
)1−a ≡ Ta. (4.131)

If we use ga(λ) = E(e−λTa) to denote the Laplace transform of Ta and add inside
the sum the remaining atoms (making again an error of order at most 2δ), we
get

lim
tw→∞

Π(t, t+ fa(t, θ)) = ĒV

[

∑

j

ŵjg
2
a(θρ̄(x̂j)

a−1)
]

± 4δ. (4.132)

Since δ was arbitrary we have

Π(θ) =

∫ ∞

0

g2
a(θu

a−1)dF (u), (4.133)

which finishes the proof of sub-aging in the asymmetric situation. We still
have to show Proposition 4.9.3

Proof of Proposition 4.9.3. The claim follows from the existence of η and m
such that

P̄
[

P̄(Z̄(1) ∈ Jη
m|V ) ≥ 1− δ/2

]

≥ 1− δ/2, (4.134)

and from the P̄-a.s. point process convergence of the distribution of X̂ε(1) to
that of Z̄(1). Namely, for P̄-a.e. realisation of V it follows from Proposition
4.2.5(iii) that there is ε(V ) > 0 such that for ε < ε(V )

∣

∣P̄(Z̄(1) ∈ Jη
m|V )− P̄(X̂ε(1) ∈ T̄ η

m(ε)|V )
∣

∣ ≤ δ/2. (4.135)

We then take ε0 such that P̄(ε(V ) > ε0) > 1− δ/2.
We should still verify (4.134). It is equivalent to

P̄[P̄(Z̄(1) /∈ Jη
m|V ) ≤ δ/2] ≥ 1− δ/2. (4.136)
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The last claim can be easily verified if we show

P̄[Z̄(1) /∈ Jη
m] = Ē[P̄(Z̄(1) /∈ Jη

m|V )] ≤ δ2/4. (4.137)

Indeed, assume that (4.136) is not true, i.e.

P̄[P̄(Z̄(1) /∈ Jη
m|V ) > δ/2] > δ/2. (4.138)

Then clearly

Ē[P̄(Z̄(1) /∈ Jη
m|V )] > δ2/4, (4.139)

in contradiction with (4.137).
We establish claim (4.137) using two lemmas.

Lemma 4.9.4. Let η(t) = t1/(1+α) and m(t) = tα/(1+α). Then

P̄(Z̄(1) ∈ Jη
m) = P̄(Z̄(t) ∈ Jη(t)

m(t)). (4.140)

Lemma 4.9.5. For every δ′ there exist m′ and η′ such that

∫ 1

0

P̄(Z̄(t) ∈ Jη′

m′) dt ≥ 1− δ′. (4.141)

We first finish the proof of Proposition 4.9.3. The Lemma 4.9.5 ensures
the existence of t ∈ (0, 1) such that P̄(Z(t) ∈ Jη′

m′) ≥ 1− δ′. The claim (4.137)
then follows from Lemma 4.9.4, choosing δ′ = δ2/4, m = t−α/(1+α)m′, and
η = t−1/(1+α)η′.

Proof of Lemma 4.9.4. The pair

(Wλ(t), Vλ(x)) ≡
(

λW (λ−2t), λ1/αV (λ−1x)
)

(4.142)

has the same distribution as (W (t), V (x)). The measure ρ̄λ associated to Vλ

can be written as

ρ̄λ =
∑

xi

(Vλ(xi)− Vλ(xi−))δxi
= λ1/α

∑

yi

(V (yi)− V (yi−))δλyi
. (4.143)

We thus have

φλ(t) ≡
∫

ℓλ(t, y)ρ̄λ(dy) =

∫

λℓ(λ−2t, λ−1y)ρ̄λ(dy)

=
∑

yi

λℓ(λ−2t, yi)λ
1/α(V (yi)− V (yi−)) = λ(α+1)/αφ(λ−2t) (4.144)
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and therefore its generalised inverse satisfies ψλ(t) = λ2ψ(λ−(α+1)/αt). The
rescaled singular diffusion defined by Z̄λ = Wλ(ψλ(t)) that has the same dis-
tribution as Z̄ thus satisfies

Z̄λ(t) = Wλ(ψλ(t)) = λZ̄(λ−(α+1)/αt). (4.145)

Clearly, the triplet (Wλ, Vλ, Z̄λ) has the same distribution as (W,V, Z̄) too. We
thus have

P̄(Z̄(1) ∈ Jη
m(V )) = P̄(Z̄λ(1) ∈ Jη

m(Vλ)). (4.146)

The set Jη
m(Vλ) satisfies Jη

m(Vλ) = λJηλ−1/α

mλ−1 (V ) as can be easily verified from
the scaling of V or from (4.143) and thus

P̄(Z̄(1) ∈ Jη
m(V )) = P̄(λZ̄(λ−(α+1)/α) ∈ λJηλ−1/α

mλ−1 (V ))

= P̄(Z̄(λ−(α+1)/α) ∈ Jηλ−1/α

mλ−1 (V )).
(4.147)

The proof is finished taking λ satisfying λ−(α+1)/α = t.

Proof of Lemma 4.9.5. The claim of the lemma is equivalent with

∫ 1

0

P̄(Z̄(t) /∈ Jη′

m′) dt ≤ δ′. (4.148)

Let m be large enough such that

P̄(Z̄ leaves [−m,m] before time 1) < δ′/2. (4.149)

We use σ to denote the first time Z̄ leaves [−m,m]. Then we have

∫ 1

0

P̄(Z̄(t) /∈ Jη′

m′) dt ≤
∫ σ

0

P̄(Z̄(t) /∈ Jη′

m′) dt+ P̄(σ < 1)

≤
∫ σ

0

P̄(Z̄(t) /∈ Jη′

m′) dt+ δ′/2.

(4.150)

We should bound the integral in the last expression by δ′/2. We establish this
bound by proving

P̄

[
∫ σ

0

P̄(Z̄(t) /∈ Jη′

m′ |V ) dt ≥ δ′/4

]

≤ δ′/4. (4.151)

The integral inside the brackets can be written as
∫ σ

0

P̄(Z̄(t) /∈ Jη′

m′ |V ) dt =
∑

xi∈[−m,m]
vi<η

Gm(0, xi)vi, (4.152)
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where as usually (xi, vi) is the collection of atoms of ρ̄ and Gm(x, y) is the
Green’s function of the standard Brownian motion killed on exit from [−m,m].
There exists a constant k depending only on m such that G(0, x) ≤ k for all
x ∈ [−m,m]. We thus have

P̄

[
∫ σ

0

P̄(Z̄(t) /∈ Jη′

m′ |V ) dt ≥ δ′/4

]

≤ P̄

[

k
∑

xi∈[−m,m]
vi<η

vi ≥ δ′/4

]

. (4.153)

The sum in the last equation has the same distribution as the Lévy process
V without jumps larger then η at the time 2m. One can thus easily choose η
small enough, such that the last probability is smaller then δ′/4.
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5. AGING IN TWO-DIMENSIONAL BOUCHAUD’S MODEL

Gérard Ben Arous, Jiř́ı Černý, Thomas Mountford

5.1 Introduction

Bouchaud’s trap model [Bou92] is a model that was proposed in the physics
literature to study dynamical properties of complex physical systems like for
example the spin glasses (see [BCKM98] for survey, [RMB01] for recent numeric
results). It is well known that the relaxation to the equilibrium of these systems
is very slow below a certain temperature, but their dynamics has also other
interesting features. They can be observed choosing a convenient correlation
function F (tw, tw + t) that depends on the behaviour of the system during the
time interval [tw, tw + t]. The value tw represents the time that passed between
the preparation of the experiment and the start of measurements, the value t
is the duration of the measurements. It was observed experimentally that for
some such functions a nontrivial limit

lim
tw→∞

F (tw, tw + f(tw)) (5.1)

exists with f being an increasing function. Such behaviour is referred as aging.
More precisely, one speaks usually about aging if f(tw) = θtw with θ > 0. If
f(tw) = o(tw) one speaks about subaging. The classical example of such a
function is f(tw) = tγw with 0 < γ < 1, but other possibilities can be relevant
for different models as we will see later in this paper. The choice of a correlation
function F is crucial. The function f strongly depends on this choice.

Bouchaud proposed the following model. Let G = (V, E) be a connected
graph. To every vertex x of this graph is associated a random variable Ex.
These variables are usually chosen i.i.d. with the exponential distribution.
Bouchaud’s model is a continuous time, nearest neighbours random walk on
G. The jump rates are given by

wxy = ν exp
[

− β((1− a)Ex − aEy)
]

if x ∼ y, (5.2)

and zero otherwise. The parameter β denotes as usually the inverse temper-
ature, ν fixes the time scale and is irrelevant in our situation. The value of a
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tunes the influence of the energy of the neighbouring sites on the dynamics.
The value −Ex can be regarded as the energy of state x.

Let us describe roughly the physical meaning of this model. The vertices
of the graph represent a subset of all states of some complex physical system.
Usually, the states with exceptionally low energy are chosen. This justifies
the choice of Ex being exponential, because it is a distribution of extremes.
The states with very low energy are important for the dynamics of the system
because the time spent inside of them is large. States with high energy have no
particular representation in the model since the time spent there is negligible.
The set of edges of the graph represents the pairs of low energy states that are
in some sense close from the dynamical point of view, for example for the spin
glass models one can obtain one from the other by flipping a limited number of
spins. Clearly the choice of the graph G influences strongly the properties and
also the physical relevance of the model. For example, the complete graph is a
good ansatz for the Random Energy Model. In this case the rigorous analysis
of the model is rather straightforward. Bouchaud’s trap model with G = Z
was studied in [BČ02], where the reader can find also more detailed description
of the role of parameter a.

We consider here a special case of Bouchaud’s model on Z2. We first define
our simplified model and then we comment its relation with the original one.
Let τ = {τx}x∈Z2 be a collection of i.i.d. positive random variables with a
law in the domain of the attraction of an α-stable law with 0 < α < 1. For
simplicity we assume

lim
u→∞

uαP(τ0 ≥ u) = 1. (5.3)

We study the process X(t) that stays at the site x ∈ Z2 an exponentially
distributed time with mean τx and then it jumps with the equal probability
to one of the four neighbouring sites. Formally, let Xd(i), i = 0, 1, . . . , denote
the discrete time simple random walk on Z2 started at origin, and let ei be a
collection of i.i.d. exponential random variables with mean one. We use S(n)
to denote the “time change” of the simple random walk

S(n) =

n−1
∑

i=0

eiτXd(i). (5.4)

Then X(t) = Xd(j) if S(j) ≤ t < S(j + 1).
The process is trapped at the site x a random time that is proportional to

the value of τx, that is why we call this value the depth of the trap at site i.

The process X(t), as we have defined, corresponds to Bouchaud’s model
with a = 0, β = 1/α, Ex being e.g. exponential with mean one, τx = exp(βEx),
and ν = 1/4.
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As in [BČ02], we consider two two-point functions to study the aging prop-
erties of Bouchaud’s model:

R(tw, tw + t) = P[X(tw + t) = X(tw)|τ ], (5.5)

which is the probability that the process is at to the same site at time tw + t
as it was at time tw, and

Π(tw, tw + t) = P[X(t′) = X(tw)∀t′ ∈ [tw, tw + t]|τ ], (5.6)

which is the probability that the process does not jump between the times tw
and t+ tw. Unlike as in [BČ02] we study here the so called quenched two-point
functions. As usually, this means that we do not take the average over all
realisations of the environment. The functions R and Π depends thus on τ ,
but we will not denote this dependence explicitly.

We prove the aging behaviour for the function R.

Theorem 5.1.1. There exists a function R(θ) independent of τ such that for
P-a.e. realisation of the environment τ

lim
tw→∞

R(tw, tw + θtw) = R(θ). (5.7)

Moreover, the function R(θ) can be explicitly calculated (see Proposition 5.7.1)
and it satisfies

lim
θ→0

R(θ) = 1 and lim
θ→∞

R(θ) = 0. (5.8)

The subaging result is contained in the following theorem.

Theorem 5.1.2. There exists a function Π(θ) independent of τ such that for
P-a.e. realisation of the environment τ

lim
tw→∞

Π

(

tw, tw + θ
tw

log tw

)

= Π(θ). (5.9)

The function Π(θ) can be again made explicit (see Proposition 5.8.2) and it
satisfies the same relations (5.8) as R(θ).

The results of both theorems can be described heuristically in the following
way. After time tw the system is typically in a trap whose depth is of order
tw/ log tw (as can be seen from Theorem 5.1.2). After passing a time of that
order in the trap the process X makes excursions from it and returns there of
order log tw times. Then X leaves the neighbourhood of this trap and continues
to explore the lattice.
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We describe here the strategy that will be used to prove both the theorems.
Let n ∈ N. We consider the process X(t) only before the exit from the disk
D(n) with the area m2nn1−α around the origin. The constant m will be chosen
later in order that the walk can stay a sufficiently long time inside D(n). We
are interested mainly in the time that the walk spends in traps of the depth
larger than ε2n/α/n (such traps will be referred to as deep traps). In the disk
D(n) there are approximately mn of such traps. Since the probability of hitting
a particular point in D(n), that is sufficiently far from the walk’s initial point,
before the exit from D(n) is of order n−1, the walk has a reasonable chance
to hit at least one deep trap. The constant ε will be chosen small enough to
ensure that the walk spends negligible proportion of time in shallower traps.

We cut the trajectory of the process X into short parts. Every part is
finished when X exits for the first time the disk of area 2nnβ around the initial
point of the part. At this moment a new part is started. Clearly, we should
take β < 1−α. For every such part we look at the time that the walk spends in
the traps which we have specified in the previous paragraph. It will be proved
that, with overwhelming probability, the walk hits at most one such trap in
every part. Moreover, the same trap is almost never hit again in the next
parts before the exit from D(n). To the i-th part of the trajectory we associate
a random variable si that we call score of that part, and that is roughly the
time spent by X in the deep trap that was hit during this part (the score will
be defined in Section 5.2). It will be proved that for n sufficiently large the
random variables si are essentially independent and the well rescaled trajectory
of the sum

∑

si converges to a pure jump, increasing Lévy process. It will be
also shown that this sum is a good approximation for the well rescaled time
change S(n).

The proof of both theorems relies on the fact that the events that we are
interested in, that is the probabilities of staying a long time at the same place,
mainly occur if well rescaled values of times tw and t+ tw falls into one jump
of the Lévy process, or more precisely if the intersection of the range of the
Lévy process with the rescaled interval [tw, t+ tw] is empty.

The theorems are proved in Sections 5.7 and 5.8 where the reader can also
find the explicit expressions for functions R(θ) and Π(θ). The proof of the
convergence of well rescaled sums of scores occupies Sections 5.2–5.6.

5.2 The coarse-graining of X(t)

We introduce some notations needed later. We use Dx(m), and Bx(m) to
denote the disk, resp. the box, with area m around the site x. If x is omitted
the disk (box) is centred around the origin. Both these objects are understood
as subsets of Z2. In the following we will very often use the claim that the disk
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D(m) contains m sites from Z2, although it is not precisely true. An error we
introduce by this consideration is negligible for m large enough.

Let n ∈ N large. We consider the process X(t) before the first exit from
the disk D(n) ≡ D(m2nn1−α). We write

Λd(n) = inf{i ∈ N : Xd(i) /∈ D(n)},
Λ(n) = inf{t ∈ R : X(t) /∈ D(n)} (5.10)

for the exit times of discrete, resp. continuous, time process from D(n). We
will often skip the dependence on n in our notations.

We use TM
ε (n) to denote the set

TM
ε (n) =

{

x ∈ D(n) :
ε2n/α

n
≤ τx <

M2n/α

n

}

. (5.11)

If M or ε are omitted, it is understood M =∞, resp. ε = 0. The constants ε
and M will be chosen later. However, we always suppose that ε ≪ 1 ≪ M .
We call the traps from T ε shallow traps, TM

ε is the set of deep traps, and TM

is the set of very deep traps.
We write E(n) for the set of sites that are sufficiently far from the set

TM
ε (n),

E(n) = D(n) \
⋃

y∈T M
ε (n)

Dy(2
nn−κ). (5.12)

The constant κ = κ(α) can be taken arbitrarily large, but will be fixed while
n → ∞. The value κ = 5/(1 − α) is sufficient for our purposes. The role of
the set E(n) will be clarified later.

Further, we introduce a function L(a) satisfying

P[τ0 ≥ u] = u−αL(u). (5.13)

From (5.3) we know that lima→∞ L(a) = 1. It is also not difficult to see that
L(a) is bounded.

We write χ(A) for the indicator function of the set A. We use the letters
C, c to denote positive constants that have no particular importance. The
value of these constants can change during computations. On the other hand,
the letter K is reserved for constants with particular meaning.

We define now the coarse-graining of the trajectory of the process X. Let
β < 1− α. We set jn

0 = 0, and then we define recursively

jn
i = min{k > jn

i−1 : Xd(k) /∈ DXd(jn
i−1)

(2nnβ)}, (5.14)

with the convention that the minimum of an empty set is equal to infinity. We
use xn

i to denote the starting points of the parts of trajectory, xn
i = Xd(j

n
i ).
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The part of the trajectory of Xd between the times j, k is denoted by Xd[j, k),
i.e. Xd[j, k) = {Xd(l) : j ≤ l < k}. We will now define the score sn

i of the part
Xd[j

n
i , j

n
i+1). Let λ1 be the first time when Xd hits a deep trap after the start

of this part,
λ1 = min{k ≥ jn

i : Xd(k) ∈ TM
ε }. (5.15)

Let y = Xd(λ1) be the first visited deep trap. Further, let λ2 be the exit time
from the disk Dy(2

nn−κ),

λ2 = min{k > λ1 : Xd(k) /∈ Dy(2
nn−κ)}. (5.16)

The last time that we need is

λ3 = min
({

k > λ1 : Xd(k) ∈ TM
ε \ y

}

∪ {k ≥ λ2 : Xd(k) ∈ TM
ε }

)

. (5.17)

It is the first time after λ1 when Xd hits a deep trap, but we do not consider
the successive hits of the trap y before the time λ2.

If λ1 < λ2 ≤ jn
i+1 ≤ λ3, j

n
i+1 ≤ Λd, and y is farther then

√
π−12nn−κ from

the border of Dxn
i
(2nnβ), we define the score by

sn
i =

λ2
∑

k=λ1

ekτyχ(Xd(k) = y). (5.18)

The last condition assures that the movement of X inside Dy(2
nn−κ) is not

influenced by the border of Dxn
i
(2nnβ). If λ1 ≥ jn

i+1 and jn
i+1 ≤ Λd, we set

sn
i = 0. In both previous cases the score is simply the time spent in the

first visited deep trap. In all other cases we set sn
i = ∞. This value has

no particular meaning, it only marks the parts of trajectory where something
“unusual” happens. By unusual we mean here that

(a) Xd[j
n
i , j

n
i+1) contains two deep traps, and so λ3 < jn

i+1

(b) Xd exits D(n) before jn
i+1, and so Λd < jn

i+1.

(c) Xd returns to the first deep trap after exiting a disk of area 2nn−κ around
it, i.e. again λ3 < jn

i+1

(d) Disk Dy(2
nn−κ) intersects the complement of Dxn

i
(2nnβ), i.e. X hits a

deep trap that is too close to the border of Dxn
i
(2nnβ).

We will study the behaviour of the trajectory of the process

Y n(t) =
1

2n/α

⌊tn1−α−β⌋
∑

i=0

sn
i . (5.19)
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The value of this process becomes infinite if any of the possibilities from the
previous paragraph happen. Therefore, we will redefine Y n. Let J1(n) be the
index of the first part of trajectory where sn

i is infinite, J1(n) = min{i : sn
i =

∞}. For technical reasons we introduce another three bad events. Let

J2(n) = min{i : xn
i+1 /∈ E(n)}, (5.20)

that means that the end of the J2-th part of the trajectory is too close to some
deep trap. The reason why we introduce this time is that when X starts a part
of the trajectory too close to some deep trap, it has a big chance of hitting
this trap, and thus the value of the score is strongly influenced by the depth
of this trap.

For similar reasons we introduce

J3(n) = min
{

i : dist(xn
i ,D(n)c) ≤

√
π−12nnβ

}

. (5.21)

That means that the part J3 is the first part that starts too close to the border
of D(n) and X can therefore exit from the large disk during it.

Further, let

J4(n) = min{i : Xd[0, j
n
i ) ∩ TM

ε ∩Xd[j
n
i , j

n
i+1) 6= ∅}, (5.22)

which means that Xd returns during part J4 to some deep trap visited in
previous parts of the trajectory. Let J(n) = min{J1(n), . . . , J4(n)}. The value
of J is the index of the fist part of the trajectory where at least one of the
following “bad” possibilities happens

(i) Xd visits two different deep traps

(ii) Xd can exit D(n)

(iii) Xd returns to some deep trap y (possibly visited in previous parts) after
exiting Dy(2

nn−κ)

(iv) the end of this part of trajectory is too close to some deep trap.

(v) Xd hits a deep trap that is too close to the border of Dxn
i
(2nnβ).

Note that (iii) includes (c) from the previous list, (ii) contains (d), and (i), (v)
is same as (a), (d).

Let now s̃n
i be a suitably chosen collection of i.i.d. random variables whose

distribution will be defined later (see proof of Proposition 5.7.1). We set

s̄n
i =

{

sn
i if i < J(n),

s̃n
i otherwise.

(5.23)
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We redefine the process Y n by

Y n(t) =
1

2n/α

⌊tn1−α−β⌋
∑

i=0

s̄n
i . (5.24)

We want to compare this process with the well rescaled time change S(n),
namely with

S̄n(t) =
1

2n/α
S(jn

⌊tn1−α−β⌋). (5.25)

To this end we should control several quantities. First, we should estimate the
time spent in the shallow traps, that is in T ε (Section 5.3). Second, we need to
control the probability that Xd hits TM before Λ, because we did not include
the very deep traps into the definition of the score (Section 5.4). Finally, we
need to be sure that the value of J is large enough, otherwise the process Y n

has no relevance for our model (Section 5.5).
If all these condition are satisfied, that means that Y n is a good approxima-

tion of S̄n at least at the start of the trajectory, we should study the behaviour
of the sequence Y n. We will show that it converges to certain Lévy process
(Section 5.6).

5.3 The shallow traps

As we already noted in the previous section, we want to show that the pro-
portion of time that X spends in the shallow traps is negligible. It will be
shown later that the time that X needs to leave disk D(n) is of order 2n/α. We
thus need to prove that the time spent in T ε can be made arbitrarily small
with respect to 2n/α. This is the result of the following lemma, whose prove
occupies the rest of this section.

Lemma 5.3.1. There exists K1 independent of ε such that for P-a.e. random
environment τ and for n large enough

E
[

Λd−1
∑

i=0

eiτXd(i)χ{Xd(i) ∈ T ε}
∣

∣

∣
τ
]

≤ K1ε
1−α2n/α. (5.26)

To prove this lemma we first describe the distribution of the shallow traps
in the disk D(n). We divide the shallow traps into several groups. Let i0(n)

be an integer satisfying 1 ≤ ε2−i0(n) 2n/α

n
< 2. For any i ∈ {1, . . . , i0(n)} we

define, similarly as in (5.11),

T ε2−i+1

ε2−i =
{

x ∈ D(n) : ε2−i 2
n/α

n
≤ τx < ε2−i+12n/α

n

}

. (5.27)
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Let C be a large positive constant. We use H1 = H1(n, C, ε) to denote the
event

H1(n, C, ε) =
{

τ :
∣

∣T ε2−i+1

ε2−i

∣

∣ ≤ Cnε−α2iα, ∀i ∈ {1, . . . , i0(n)}
}

. (5.28)

We show that H1 occurs with an overwhelming probability.

Lemma 5.3.2. There exists K2 independent of ε such that for n large enough
and for some positive constants C and c.

P[H1(n,K2, ε)] ≥ 1− Cn exp(−cn). (5.29)

The proof is postponed.

Convention. At this place it is convenient to introduce one convention. Dur-
ing the following parts of this paper we will need different properties of the
environment that we will denote Hi, i = 1, 2, . . . For all these properties we
will prove a result that allows an application of Borel-Cantelli lemma. When
we prove such result we will suppose that these properties are verified. We
thus ignore a set of “unusual” environments whose probability is zero .

Proof of Lemma 5.3.1. The proof is divided into two parts. We first bound
the time spent in very shallow traps. Let ξ be large enough such that

(1− ξ)(1− α) + 1 < 0 (5.30)

We define the set S of very shallow traps by

S =
{

x ∈ D(n) : τx ≤ 2n/αn−ξ ≪ ε2n/α/n
}

, (5.31)

Let GD(n)(·, ·) denote the Green’s function of the simple random walk in the
disk D(n). Then we have

E
[

Λd−1
∑

j=0

ejτXd(j)χ{Xd(j) ∈ S}
∣

∣

∣
τ
]

=
∑

x∈D(n)

GD(n)(0, x)τ(x)χ{x ∈ S}, (5.32)

The Green’s function can be bounded by (see (5.235) in Appendix 5.A)

GD(n)(0, x) ≤ cn for all x ∈ D(n). (5.33)

We thus have

E
[

Λd−1
∑

j=0

ejτXd(j)χ{Xd(j) ∈ S}
∣

∣

∣
τ
]

≤ cn
∑

x∈D(n)

τ(x)χ{x ∈ S}. (5.34)
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Let i1(n) be an integer satisfying

2−1+n/αn−ξ ≤ 2−i1(n)ε
2n/α

n
≤ 2n/αn−ξ. (5.35)

It is easy to verify that i1(n) ∼ (ξ−1) log2 n. The expression (5.34) is bounded
from above by

cn
∑

x∈D(n)

τ(x)χ{τ(x) ≤ 2}+ cn

i0(n)
∑

i=i1(n)

∑

x∈D(n)

τ(x)χ{x ∈ T ε2−i+1

ε2−i }. (5.36)

By Lemma 5.3.2 and (5.30) this can be bounded by

≤ 2cnm2nn1−α + Cn

i0(n)
∑

i=i1(n)

ε2−i+12n/α

n
· nε−α2iα

≤ Cnε1−α2n/α

i0(n)
∑

i=i1(n)

2i(α−1) + o(2n/α)

≤ Cε1−α2n/αn1+(1−ξ)(1−α) + o(2n/α) = o(2n/α).

(5.37)

This finishes the first part.
In the second part we bound the time spent in T ε \ S. We treat separately

the time spent in T ε2−i+1

ε2−i for i ∈ 1, . . . , i1(n), where i1(n) is defined as above.
Let K ′ be a large positive constant and let A(n, i) be the event

A(n, i) =
{

∑

x∈T ε2−i+1

ε2−i

GD(n)(0, x)τ(x) ≥ K ′2n/αε1−α2−i(1−α)
}

. (5.38)

From the definition of T ε2−i+1

ε2−i we have

P[A(n, i)] ≤ P
[

2
∑

x∈T ε2−i+1

ε2−i

GD(n)(0, x) ≥ K ′nε−α2αi
]

. (5.39)

By Lemma 5.3.2, there are at most K2nε
−α2iα sites in T ε2−i+1

ε2−i P-a.s. for large
n. For i = i1(n) this number is of order n1+α(ξ−1), for all others i’s it is smaller.

Let yi, i = 1, . . . , R, be a collection of uniformly, independently chosen
points in D(n). By an easy combinatorial argument it is possible to prove that
if R is o(2n/2n(1−α)/2), then the probability that two of them are at the same
place tends to zero. Since this is evidently satisfied for the number of sites in
any of T ε2−i+1

ε2−i , we can bound the sum in (5.39) by the sum over the random
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collection yi, i = 1, . . . , K2nε
−α2iα. For some small c and for n large enough

we thus have

P[A(n, i)] ≤ (1 + c)P
[

2

K2nε−α2iα
∑

i=0

GD(n)(0, yi) ≥ K ′nε−α2αi
]

. (5.40)

It is known that there exist constants λ and C not depending on n such
that (see Lemma 5.A.2 for proof of this claim)

E
[

exp
(

λGD(n)(0, y1)
)]

≤ C. (5.41)

By standard argument we can thus choose K ′ not depending on i such that

P[A(n, i)] ≤ c exp(−c′nε−α2iα). (5.42)

Since i1(n) ≤ n/α, we get by summation

P
[

i1(n)
⋃

i=1

A(n, i)
]

≤ cn exp(−c′nε−α), (5.43)

and thus for n large enough none of A(n, i) occurs P-a.s. However, if it is the
case, we have (using also the result of the first part of the proof)

E
[

Λd−1
∑

j=0

ejτXd(j)χ(Xd(j) ∈ T ε)
∣

∣

∣
τ
]

≤
i1(n)
∑

i=0

K ′2n/αε1−α2−i(1−α) + o(2n/α) ≤ K12
n/αε1−α. (5.44)

This finishes the proof.

It remains to show Lemma 5.3.2.

Proof of Lemma 5.3.2. We first study the size of T ε2−i+1

ε2−i for some fixed index

i. The probability pn,i that a site in D is in T ε2−i+1

ε2−i is

pn,i = ε−αn
α

2n
2iα

[

L
(

ε2−i 2
n/α

n

)

−
(1

2

)α

L
(

ε2−i+12n/α

n

)]

. (5.45)

Since L is bounded, the expression in the brackets can be bounded from above
uniformly in i by some constant depending only on the function L. Hence,

pn,i ≤ cε−αn
α

2n
2iα. (5.46)
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Applying exponential Markov bound we get for λ > 0

P
[
∣

∣T ε2−i+1

ε2−i

∣

∣ ≥ K2nε
−α2iα

]

≤ exp(−λK2nε
−α2iα)E

[

exp
(

λ
∣

∣T ε2−i+1

ε2−i

∣

∣

)]

= exp(−λK2nε
−α2iα)

[

(1− pn,i) + pn,ie
λ
]m2nn1−α

≤ exp
[

nε−α2iα(−K2λ+mceλ)
]

.

(5.47)

In the last inequality we used bound (5.46) and the fact that (1 + 1/n)n ≤ e.
If K2 is chosen large enough, the expression in the parentheses is negative and
thus the required probability decreases exponentially. The probability of Hc

1

satisfies

P[Hc
1] = P

[

i0(n)
⋃

i=0

(
∣

∣T ε2−i+1

ε2−i

∣

∣ ≥ K2nε
−α2iα

)]

. (5.48)

Hence, it is bounded by

P
[

i0(n)
⋃

i=0

(
∣

∣T ε2−i+1

ε2−i

∣

∣ ≥ K2nε
−α2iα

)]

≤
i0(n)
∑

i=0

exp
{

nε−α2iα(−K2λ+mceλ)
}

≤ i0(n) exp
{

nε−α(−K2λ+mceλ)
}

.

(5.49)

Since i0(n) ≤ n/α, the proof is finished.

5.4 Very deep traps

In this section we estimate the probability of hitting a very deep trap.

Lemma 5.4.1. For every δ > 0 and m there exists M such that for n large
enough and for P-a.e. environment τ

P
[

X(t) hits TM(n) before Λ(n)|τ
]

≤ δ. (5.50)

Proof. The standard large deviation argument gives

P[|TM(n)| > Cnm/Mα] ≤ C ′ exp(−cnm/Mα) (5.51)

for some constants C, C ′ and c. We can thus take P-a.s. n large enough such
that |TM(n)| ≤ Cnm/Mα. Let A be an uniformly chosen random subset of
D(n) with Cnm/Mα elements. Then

P
[

P[X hits TM before Λ|τ ] > δ
]

≤ P
[

P[X hits A before Λ|A] > δ
]

. (5.52)
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Further, let {yi}, i = 1, . . . , Cnm/Mα be a collection of independently, uni-
formly chosen random points in D(n). Similarly as in the previous section we
can replace A by this collection. The expression (5.52) is then bounded by

≤ (1 + c)P
[

Cnm/Mα
∑

i=1

P[X hits yi before Λ|yi] ≥ δ
]

(5.53)

for some small positive c. The sum in the brackets is a sum of i.i.d. random
variables and we use again the exponential Markov inequality to bound it,

≤ (1 + c) exp(−δλn)E
[

exp
(

λnP[X hits yi before Λ|yi]
)]Cnm/Mα

. (5.54)

The inequality (5.237) from Appendix 5.A applied on the disk D(n) gives

E
[

exp
(

− (n log 2/2 + o(n))P[X hits y1 before Λ]
)]

≤ C. (5.55)

And thus, taking λn = log
√
π−1m2nn1−α,

P
[

P[X hits TM before Λ|τ ] > δ
]

≤ exp
{

− δcn+ c′mn/Mα + o(n)
}

. (5.56)

The lemma then follows by taking M large enough and applying Borel-Cantelli
argument.

5.5 J is large enough

To justify the approximation of S̄n by Y n we should now prove that the index
of the first bad part J is large enough. More precisely, we should show that
one can choose κ and m such that, with large probability, the index J of the
first bad part of the trajectory of X is sufficiently large for our purposes.

Lemma 5.5.1. For any δ, k, and P-a.e. τ there exist m and κ not depending
on ε and M such that for n large enough

P
[

J(n)nα+β−1 ≥ k|τ
]

≥ 1− δ. (5.57)

To prove this lemma we should verify that all events described in Section 5.2
happen with low probability. This is the goal of all following technical lemmas.
The proof of Lemma 5.5.1 can be found at the end of this section.

Event (i). The most important part of this section is to show that X does
not hit two deep traps during one part of the trajectory. The following lemma
is a little bit more precise than is needed to bound J , however, we will need
this more precise result later. We use pM

ε to denote the factor ε−α −M−α.
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Lemma 5.5.2. Let

Vx0(n) =
∑

y∈T M
ε

Px0

[

Xd hits y before exiting Dx0(2
nnβ)|τ

]

, (5.58)

where Px0 denotes the law of the simple random walk Xd started at x0. Then
for any δ and P-a.e. τ there is n0 such that for all x0 ∈ E(n) (see (5.12) for
definition of E(n)) and for all n > n0

K(1− δ)pM
ε

n1−α−β
≤ Vx0(n) ≤ K(1 + δ)pM

ε

n1−α−β
(5.59)

with K = (log 2)−1.

To prove this lemma we should describe the distribution of the deep traps
inside D(n). This description is contained in Lemmas 5.5.3 and 5.5.4.

First, we will show that the deep traps are distributed almost homoge-
neously around the disk. Let ν < β < 1 − α and let H2 = H2(n, δ, ε,M)
be the set of configurations of the environment satisfying the “homogeneity”
condition:

H2 =
{

τ :
∣

∣TM
ε ∩Bx(2

nnν)
∣

∣ ∈
[

(1− δ)pM
ε n

ν+α, (1 + δ)pM
ε n

ν+α
]

for all x such that Bx(2
nnν) ⊂ D(n).

} (5.60)

Lemma 5.5.3. For any ε, M , and δ there exist positive constants C and c
such that for n large enough

P[H2] ≥ 1− Cn1−α−νδ−2 exp(−cnν+α). (5.61)

Proof. We divide the complement of H2 into two parts. First, we treat the
case when there is a region in D where there are not enough of deep traps. Let
A be the event that there is a square of area 2nnν in D(n) where there are less
than (1− δ)pM

ε n
ν+α sites from TM

ε (n),

A = {∃x ∈ D :
∣

∣TM
ε ∪ Bx(2

nnν)
∣

∣ < (1− δ)pM
ε n

ν+α, Dx(2
nnν) ⊂ D}. (5.62)

We use G to denote the grid ⌊2n/2nν/2δ/5⌋Z2. Every square of area 2nnν

contains at least one square of area 2nnν(1−δ/2) with the centre in G. Hence,
if A is true, then there is a square of area 2nnν(1 − δ/2) which has centre
x ∈ G, and which contains less than (1− δ)pM

ε n
ν+α sites. We use Ax to denote

the last event. We have

P[A] ≤
∑

x

P[Ax] = C ′δ−2n1−α−νP[Ax], (5.63)
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where the sum runs over all x ∈ G such that Bx((1− δ/2)2nnν) ⊂ D. We used
the obvious fact that P[Ax] does not depend on x. The probability of Ax can
be bounded using the standard method. Take η > 0. For n large enough, the
probability p that a site is in TM

ε (n) is larger than (1− η)pM
ε 2−nnα. For λ > 0

we have

P[Ax] ≤ exp(λ(1− δ)nν+αpM
ε )

[

(1− p) + e−λp
]2nnν(1−δ/2)

≤ exp(λ(1− δ)nν+αpM
ε )

[

1 + (e−λ − 1)
(1− η)nαpM

ε

2n

]2nnν(1− δ
2
)

.
(5.64)

If n is large enough, the last expression is bounded by

P[Ax] ≤ exp
[

nν+αpM
ε

(

λ(1− δ) + (e−λ − 1)(1− η)2(1− δ/2)
)]

. (5.65)

It is not difficult to show that for any δ there exist η and λ such that the
exponent is negative. Hence, we have

P[A] ≤ C ′n1−α−νδ−2 exp(−c′nν+α). (5.66)

In the second part of the proof we exclude the possibility that there are
places in D where the deep traps are too dense. Let B be the event that there is
a square of area 2nnν intersecting D(n) where is more than (1+δ)ε−αnν+α sites
from TM

ε (n). The probability of B can be bounded exactly in the same way as
the probability of A, one should only look at squares with area 2nnν(1 + δ/2)
and centres in G. We thus have

P[H2(n)c] ≤ P[A ∪B] ≤ Cn1−α−νδ−2 exp(−cnν+α). (5.67)

This finishes the proof.

The lemma we have just proved is not precise enough to bound the prob-
ability of hitting traps that are closer than

√
2nnν to the starting point. The

following lemma will serve us for that bound. Again, it describes some sort of
homogeneity of the environment

We consider the events H3(i) = H3(i, n, ε,M),

H3(i) =
{

∃x ∈ D(n) :
∣

∣Bx(2
n+in−κ)∩TM

ε

∣

∣ ≤ 4 log2 n(1∨ 2inα−κε−α)
}

, (5.68)

where a ∨ b denotes the maximum of a, b. We define H3 by

H3 =

∞
⋂

i=−1

H3(i). (5.69)

Observe that 2n+in−κ ≪ 2nnν for fixed i and n large enough. So, we study
here much smaller squares than in the previous lemma. Hence, the description
of the homogeneity is more precise in this direction. On the other hand, we
prove only the upper bound on the number of the deep traps in these squares
and this bound is also “weaker” than the previous bound.
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Lemma 5.5.4. There exist a constant C such that

P[H3] ≥ 1− Cn−3. (5.70)

Proof. Fix some i and consider the lattice Gi = Z2
√

2n+in−κ. If there is x
such that |Bx(2

n+in−κ) ∩ TM
ε | ≥ 4 log2 n(1 ∨ 2inα−κε−α), then there is a point

y ∈ Gi such that By(4 · 2n+in−κ) contains more than 4 log2 n(1 ∨ 2inα−κε−α)
sites from TM

ε . The number of squares with area 4 · 2n+in−κ and centres in Gi

that intersect D(n) is bounded by Cn1−α+κ2−i.

Consider now one such square. The probability that it contains too many
sites from TM

ε can be bounded by standard argument

P
[

|B(4 · 2n+in−κ) ∩ TM
ε | ≥ 4 log2 n(1 ∨ 2inα−κε−α)

]

≤ c exp
(

− λ4 log2 n(1 ∨ 2inα−κε−α) + 4pM
ε (eλ − 1)2inα−κε−α

)

. (5.71)

Since α−κ < 0, we can choose λ such that for n large enough the last expression
is bounded by (1/2)log2 n. Summation over i and over all squares that intersect
D(n) gives us

P[Hc
6] ≤

∞
∑

i=−1

C2−in1−α+κ(1/2)log2 n ≤ Cn−3. (5.72)

This completes the proof.

We now have all ingredients to prove Lemma 5.5.2.

Proof of Lemma 5.5.2. We can suppose that x0 is the origin. We use ξ to
denote the exit time from D(2nnβ). Let β ′ be a constant satisfying ν < β ′ < β.
We divide the sum V0(n) into two parts. First, we sum over all deep traps that
are far enough from the origin. Precisely, we consider the deep traps that are
in D(2nnβ) \D(2nnβ′

). Let I1 denotes the sum over such traps. We use I2 to
denote the sum over the remaining deep traps.

To show the upper bound on I1, we cover the set D(2nnβ) \ D(2nnβ′
) by

squares of area 2nnν and centres in
√

2nnνZ2. Let x1, . . . , xR denote the set
of centres of such squares that intersect D(2nnβ) \ D(2nnβ′

). Since ν < β ′,
the size of each such square is negligible with respect to its distance to the
origin. All deep traps in such square have thus almost the same chance to
be hit. We use expression (5.234) from Appendix 5.A to estimate probability
that X hits some point before exiting from D(2nnβ). Let rn be the radius of
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this disk, rn =
√
π−12nnβ.

I1 ≤
R

∑

i=1

∑

yj∈Bxi (2
nnν )

y∈TM
ε

(

1− log |yj|
log rn

+O(n−2)
)

=
R

∑

i=1

∣

∣Bxi
(2nnν) ∩ TM

ε

∣

∣

(

1− log |xi|
log rn

+O(n−1+(ν−β′)/2)
)

, (5.73)

where we use the estimate

log |yj|
log rn

− log |xi|
log rn

= O(n−1+(ν−β′)/2) (5.74)

that is valid for any yj ∈ Bxi
(2nnν).

From Lemma 5.5.3 we know that for n large enough |Bxi
(2nnν) ∩ TM

ε | ≤
nν+αpM

ε (1 + δ/2) and thus

I1 ≤
R

∑

i=1

nν+αpM
ε (1 + δ/2)

(

1− log |xi|
log rn

+O(n−1+(ν−β′)/2)
)

. (5.75)

We now replace the summation by integration making again an error of order
O(n−1+(ν−β′)/2). I1 is thus bounded from above by

∫

D(2nnβ)\D(2nnβ′)

nν+αpM
ε

2nnν

(

1 +
δ

2

)(

1− log |x|
log rn

+O(n−1+(ν−β′)/2)
)

dx. (5.76)

The integration gives

I1 ≤
nα+β−1pM

ε

log 2

(

1 +
δ

2

)

(1 + o(1)) ≤ nα+β−1pM
ε

log 2

(

1 +
3δ

4

)

(5.77)

for n large enough. This finishes the proof of the upper bound for I1. The
proof of the lower bound is analogous. After a very similar calculation we get

I1 ≥
nα+β−1pM

ε

log 2

(

1− 3δ

4

)

. (5.78)

We should now estimate the sum I2 over all sites x ∈ TM
ε ∩ (D(2nnβ′

) \
D(2nn−κ)). The disk D(2nn−κ) can be excluded since by the assumptions
of the lemma there are no deep traps in this disk. We cover the domain
by objects composed by eight squares of area 2n+in−κ composing together
the square of nine times larger area with the middle square cut off. The
centre of these object is the origin. The parameter i takes values in the set
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{−1, 0, 1, . . . , (β ′ + κ) log2 n}. We use this covering because if the trap is too
close to origin, we should know more precisely its position to estimate its
hitting probability. Our covering becomes clearly finer when the origin is
approached.

Any point inside the i-th object from the previous paragraph has distance
from origin at least

√
2n+in−κ/2. In each of the eight squares there is, by

Lemma 5.5.4, at most 4 log2 n(1∨2inα−κε−α) sites from TM
ε . By formula (5.234)

for the hitting probability of a point in D(2nnβ) we have

I2 ≤ 8

(β′+κ) log2 n
∑

i=−1

[

1− log(
√

2n+in−κ/2)

log rn
+O

(2−n−inκ

log rn

)

+O(log−2 rn)

]

· 4 log2 n(1 ∨ 2inα−κε−α).

(5.79)

The expression in the brackets can be easily bounded by Cn−1 logn with some
large constant C. Hence,

I2 ≤ C

(β′+κ) log2 n
∑

i=−1

logn

n
log2 n(1 ∨ 2inα−κε−α). (5.80)

Since the expression inside of the summation is increasing in i, the last display
can be trivially estimated by (β ′ + κ) log2 n times the last term. This gives

I2 ≤ Cnα+β′−1 log4 n≪ nα+β−1pM
ε

log 2

(

1 +
δ

4

)

. (5.81)

Putting together (5.77), (5.78), and (5.81) we get

nα+β−1pM
ε

log 2
(1− δ) ≤ I1 ≤ V0(n) = I1 + I2 ≤

nα+β−1pM
ε

log 2
(1 + δ). (5.82)

This finishes the proof of Lemma 5.5.2.

The following lemma is an easy consequence of Lemma 5.5.2. It is the
actual estimate of the probability of hitting of a deep trap.

Lemma 5.5.5. For any δ > 0 and P-a.e. τ , there exists n0 such that for
n > n0 and for all x ∈ E(n), the probability that the simple random walk
started at x hits exactly one site from TM

ε (n) before exiting Dx(2
nnβ) is in

interval
(

K(1− δ)pM
ε n

α+β+1,K(1 + δ)pM
ε n

α+β+1
)

. (5.83)

The probability that it hits more than one deep trap is bounded by

P[X hits at least two sites from TM
ε ] ≤ Cn2(α+β−1)(pM

ε )2 (5.84)

for some positive constant C.
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Proof. Let TM
ε ∩Dx(2

nnβ) = {x1, . . . , xL}. Assume that some point xi was hit
by X before the exit from D(2nnβ). We would like to apply the strong Markov
property together with Lemma 5.5.2 at the moment of the first visit of xi. To
this end we should prove that there is no other deep trap in Dxi

(2nn−κ).
Let H4 = H4(n, ε) be the event

H4(n, ε) =
{

τ : min{|x− y| : x, y ∈ Tε(n)} ≥ 2
√
π−12nn−κ

}

. (5.85)

The constant 2 before the square root is not necessary for the current applica-
tion, but it will be used later.

Lemma 5.5.6. There exists constant C = C(ε,m) such that

P[H4] ≥ 1− Cn1+α−κ. (5.86)

Proof. Let B(x) be the event

B(x) =
{

x ∈ Tε(n) ∧ ∃y ∈ Tε(n), |y − x| ≤ 2
√
π−12nn−κ

}

. (5.87)

Then

P[B(x)] ≤ C
n2α−κ

2n
ε−2α. (5.88)

and the result follows by summation over all x ∈ D(n).

We apply now Lemma 5.5.2 on Dxi
(4 · 2nnβ). We should make two com-

ments to its application. First, the site xi is not strictly speaking in E(n)
because xi ∈ TM

ε (n). However, we are not interested in the successive returns
to xi and we can thus ignore this fact. Note also the appearance of the addi-
tional factor 4 in the area of the disk. We did not prove Lemma 5.5.2 with this
factor. However, the proof can be easily modified to establish similar claim as
(5.59) with this additional constant. Its appearance changes only the constant
K and not the asymptotic behaviour. We thus have

∑

j 6=i

P[X hits xj |X hit xi] ≤ Cnα+β−1pM
ε . (5.89)

The Bonferroni inequalities give

P[X hits TM
ε ] ≤

∑

i

P[X hits xi] ≤ K(1 + δ)pM
ε n

α+β−1

P[X hits TM
ε ] ≥

∑

i

P[X hits xi]−
1

2

∑

i

∑

j 6=i

P[X hits xi and xj ]

≥ K(1− δ)pM
ε n

α+β−1 − C(pM
ε )2n2(α+β−1) ≥ K(1− 2δ)pM

ε n
α+β−1

(5.90)
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for n large enough. Similarly we get

P[X hits at least two points from TM
ε ] ≤ C(pM

ε )2n2(α+β−1). (5.91)

This finishes the proof of Lemma 5.5.5.

Event (iv). To find a lower bound for J , we should further verify that
the probability that a part of the trajectory ends too close to some deep trap
is small.

Lemma 5.5.7. For P-a.e. τ , the probability that the simple random walk
started at arbitrary x ∈ D(n) exits Dx(2

nnβ) at some point that is in D(n)\E(n)
is smaller than Cn2−κ/2−β/2.

Proof. We start again with the description of the properties of the environ-
ment. Let rn be the radius of the disk D(2nnβ). We use Ax(2

nnβ) to denote
the annular ring with the centre x, the inner radius rn −

√
π−12nn−κ, and the

outer radius rn +
√
π−12nn−κ. Let H5 = H5(n, ε,M) be the event

H5 =
{

τ : |TM
ε (n) ∩Ax(2

nnβ)| ≤ n2 for all x ∈ D(n)
}

. (5.92)

Lemma 5.5.8. For n large there exist constants C and c such that

P[H5] ≥ 1− C2nn1−α exp(−cn2). (5.93)

Proof. There is less than C2nnβ/2−κ/2 points in the annulus Ax(2
nnβ). The

probability that a trap is in TM
ε (n) is of order pM

ε 2nn−α. The standard appli-
cation of Markov inequality gives

P
[

|Ax(2
nnν) ∩ TM

ε (n)| > n2
]

≤ exp(−c(ε,M)n2). (5.94)

The result follows by summation over all x ∈ D(n).

We can now finish the proof of Lemma 5.5.7. We use the fact that prob-
ability of exiting the disk of radius R in a particular point at its border is
O(1/R) (see [Law91] Lemma 1.7.4). From Lemma 5.5.8 we know that there
is less than n2 deep traps in annulus Ax(2

nnβ). This implies that there is at
most cn2

√
2nn−κ points on the border of Dx(2

nnβ) that are close to some deep
trap. The required probability is thus bounded from above by

C
√

2−nn−βn2
√

2nn−κ = Cn2−κ/2−β/2. (5.95)

This completes the proof.

Event (v). The next lemma excludes the possibility of hitting a deep trap
that is too close to the border of disk with area 2nnβ around the starting point.
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Lemma 5.5.9. For any x ∈ D, the probability that the random walk started at
x hits a deep trap in Ax(2

nnβ) before the exit from Dx(2
nnβ) is smaller than

Cn2−β/2−κ/2.

Proof. We need to estimate the probability that we hit some point y that is
in the distance smaller than

√
π−12nn−κ from the border of Dx(2

nnβ). We
use (5.235) to estimate this probability. The advantage of (5.235) against
(5.234) is that the error terms are much smaller. Since for any disk D centred
at x

GD(x, y) = Px[X hits y before exit from D]GD(y, y) (5.96)

and GD(y, y) ≥ 1, we know that Px(X hits y) ≤ GD(x, y). According to
Lemma 5.5.8 there is at most n2 deep traps in Ax(2

nnβ). We thus have

Px[X hits TM
ε ∩Ax(2

nnβ) before exiting Dx(2
nnβ)]

≤ 2n2

π

[

log
√
π−12nnβ − log

(

√
π−12nnβ(1− n−β/2−κ/2)

)

+O(2−n/2)
]

≤ − cn2 log(1− n−β/2−κ/2) ≤ Cn2−β/2−κ/2.

(5.97)

This finishes the proof.

Event (iii). Finally, we need to show that X almost never returns to a
deep trap after exiting a disk of area 2nn−κ around it. We do not need to
consider the traps that are closer than

√
π−12nn−κ to the border of D because

hitting such trap is due to conditions (ii) and (v) from Section 5.2 the bad
event.

Lemma 5.5.10. There exists a constant C such that for any x satisfying
Dx(2

nn−κ) ∩ D(n)c = ∅, the probability that X returns to x before Λ after
exiting disk Dx(2

nn−κ) is smaller than Cn−1 logn.

Proof. Let pret denotes the required probability and let ξ be the first time when
X exits Dx(2

nn−κ). Obviously, ξ < Λ. By Markov property

GD(x, x) =

Λ
∑

i=0

Px[Xd(i) = x] =

ξ
∑

i=0

Px[Xd(i) = x] +

Λ
∑

i=ξ+1

Px[Xd(i) = x]

= GD(2nn−κ)(0, 0) + pretGD(x, x).

(5.98)

Hence,

pret = 1− GD(2nn−κ)(0, 0)

GD(x, x)
≤ 1− GD(2nn−κ)(0, 0)

G2D(0, 0)
, (5.99)
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where 2D denotes two times larger disk than D. Using the expression (5.236)
we get

pret ≤ 1− log(2nn−κ) +O(1)

log(2 · 2nn1−α) +O(1)
≤ Cn−1 log n. (5.100)

This finishes the proof.

Proof of Lemma 5.5.1. We have now all ingredients to prove Lemma 5.5.1. We
should prove that the probability that some of the events (i)–(v) from Section
5.2 happen during first Cn1−α−β parts can be made very small. We will use
J(i), . . . , J(v) to denote the first part where (i), . . . , resp. (v) occurs.

The simplest condition is (ii). This condition requires that X cannot exit
D during the good part of the trajectory. That means that starting point of
a part of the trajectory satisfying (ii) should be in the annular ring with the
outer radius

√
π−1m2nn1−α (which is the radius of D) and the inner radius√

π−1m2nn1−α −
√
π−12nnβ . The sequence of starting points xn

i is a random
walk on Z2. Every step of this walk has length approximately

√
π−12nnβ and

its direction is almost uniformly chosen. It follows from standard properties of
random walks that the law of J(ii)n

α+β−1m−1/2 converges as n → ∞ to some
distribution not depending on m. It is thus possible to fix m large enough such
that

P[J(ii)n
α+β−1 ≥ k|τ ] ≥ 1− δ/4. (5.101)

From the same reason we can choose K > k such that

P[J(ii)n
α+β−1 ≤ K|τ ] ≥ 1− δ/4. (5.102)

Hence, outside a set of probability δ/2 the number of parts before J(ii) is in
interval (kn1−α−β , Kn1−α−β). We use A to denote this event.

Conditionally on A, we will show that

P
[

min(J(i), J(iii), J(iv), J(v)) ≤ J(ii)

∣

∣τ , A
]

→ 0 as n→∞. (5.103)

The claim of the lemma is then an easy consequence of this fact and the pre-
vious paragraph. Observe that (5.103) means that in the majority of cases the
first bad event that happens is the possibility of exit from D. The probability
of all other events is negligible.

We start with condition (iv). According to it, the part is bad if its end is
not in E(n). Lemma 5.5.7 states that the probability that this happens during
a particular part of trajectory is of order n2−κ/2−β/2. Since the number of
parts before J(ii) is bounded by Kn1−α−β , the probability that (iv) happens is
bounded by Kn3−α−β/2−κ/2. However, κ can be chosen large enough to assure
that this bound converges to 0. We thus have

P[J(iv) < J(ii)|τ , A]→ 0. (5.104)
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Using a very similar reasoning and Lemma 5.5.9 we get exactly the same
estimate for condition (v). Hence,

P[J(v) < J(ii)|τ , A]→ 0. (5.105)

Condition (i) requires that X does not visit two deep traps during one part
of the trajectory. We use B to denote the event A ∩ {J(iv) > J(ii)}. We show

P[J(i) < J(ii)|B, τ ]→ 0. (5.106)

Since we assume that J(iv) ≥ J(ii), we can apply Lemma 5.5.5. It claims that
probability of hitting two deep traps during one part is of order n2(α+β−1).
By the same argument as before we can bound the probability in (5.106) by
Knα+β−1 and it tends to 0 as n→∞.

The last condition (iii) demands that X does not return to a deep trap after
exiting the disk of area 2nn−κ around it. For one particular trap probability
of such event can be bounded by cn−1 log n by Lemma 5.5.10. According to
Lemma 5.5.2, the probability of visiting a deep trap during one part of the
trajectory is of order nα+β−1. Let N denotes the number of visited deep traps
before Λ. Conditionally onB, it is not difficult to show using Markov inequality
that

P[N ≥ n1/2|B, τ ] ≤ Cn−1/2. (5.107)

We have thus

P[J(iii) < J(ii)|B, τ ]

≤ P[J(iii) < J(ii)|B, τ , N ≤ n1/2]P[N ≤ n1/2|B, τ ] + P[N ≥ n1/2|B, τ ]

≤ cn−1/2 log n+ Cn−1/2 → 0 as n→∞.
(5.108)

The claim (5.103) that follows easily from (5.104)–(5.108). This finishes the
proof of Lemma 5.5.1.

5.6 Properties of the score

In this section we will prove the convergence of the sequence of processes Y n

to a Lévy process. Recall that Y n was defined as a well rescaled sum of scores.
Hence, we should first study the properties of the score.

The score of the i-th part of the trajectory depends on the history only
through its starting point xn

i . We thus associate to every point x ∈ E(n)
the random variable sx, which has the same distribution as the part of the
trajectory of X that is started at x. We can ignore the points in D(n) \ E(n)
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because we do not consider the parts of trajectory started in this set (see
definition of J). We have got already some information which can help us to
describe the distribution of the random variable sx. According to Lemma 5.5.5,
the probability of hitting two deep traps in the disk Dx(2

nnβ) is of order
n2(α+β−1), and the probability of hitting one deep trap is with high precision
KpM

ε n
α+β−1. Otherwise X does not hit any deep trap. In the last case sx = 0

(if none from (i)–(v) of Section 5.2 happen).
We want now to study more precisely the distribution of sx conditionally

on sx < ∞. To achieve it we should gain more information about the depth
of the trap that X hits as the first. The idea behind the proof is that as n
increases the density of deep traps becomes lower, and the hitting measure of
TM

ε charges more and more sites. The distribution of the depth of the first
visited trap should be thus close to the original distribution of the depth of
the traps conditioned on being between ε2n/α/n and M2n/α/n.

To prove this heuristics we divide the set of deep traps to several parts and
we estimate the probability of hitting each of them. Let h(x) be a function
satisfying

h(x) ≥ (log x)−1, lim
x→∞

h(x) = 0, (5.109)

and
L(2n/αn−1x)− 1 = o(h(n)) for all x ≥ ε. (5.110)

Such function exists because limx→∞L(x) = 1. Let zn(i) satisfy ε = zn(0) <
zn(1) < · · · < zn(R) = M and zn(i + 1) − zn(i) ∈ (h(n), 2h(n)) for all
i ∈ {0, . . .R− 1}.

We now estimate the probability of hitting a trap in T
zn(i+1)
zn(i) . We use pn

i to
denote

pn
i = zn(i)−α − zn(i+ 1)−α. (5.111)

Lemma 5.6.1. For any δ > 0 there exists n0 such that for all n > n0, for all
x ∈ E(n), and for all i = {0, . . . , R−1} the probability that the simple random

walk started at x hits a trap in T
zn(i+1)
zn(i) before the exit from Dx(2

nnβ) is in the
interval

[

K(1− δ)nα+β−1pn
i ,K(1 + δ)nα+β−1pn

i

]

. (5.112)

Proof. The proof is very similar to the proof of Lemma 5.5.2. We should
first improve the bounds on the homogeneity of the environment that we have
proved in Lemma 5.5.3.

Let H6 = H6(n, δ, ε,M) be the event that for every square Bx(2
nnν) in

D(n) and for every i ∈ {0, . . .R−1} the number of sites in T
zn(i+1)
zn(i) ∩Bx(2

nnν)
is in the interval

[

(1− δ)nα+νpn
i , (1 + δ)nα+νpn

i

]

. (5.113)

We prove that H6 occurs P-a.s. for n large enough.
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Lemma 5.6.2. For any δ there exist constants c and C such that for n large
enough

P[H6] ≥ 1− C log(n)n1−α−νδ−2 exp
(

− cnν+αh(n)
)

. (5.114)

Using this lemma it is not difficult to finish the proof of 5.6.1. We will
not give the detailed reasoning, because the proof follows the same line as the
proof of Lemma 5.5.2. The only change is that the previous lemma should be
used instead of Lemma 5.5.3.

Proof of Lemma 5.6.2. To show that H6 occurs P-a.s. for n large enough we
will need one technical lemma that estimates the probability that a trap is in
T

zn(i+1)
zn(i) .

Lemma 5.6.3. For any η > 0 there exist n0 such that for all n ≥ n0 and all
i = 0, . . . , R− 1

P
[

0 ∈ T zn(i+1)
zn(i)

]

∈
(

(1− η)n
α

2n
pn

i , (1 + η)
nα

2n
pn

i

)

. (5.115)

Proof. Let g(x) = L(x)− 1. Then by (5.13) we have

P
[

0 ∈ T zn(i+1)
zn(i)

]

= P
[

τ0 ∈
[

zn(i)
2n/α

n
, zn(i+ 1)

2n/α

n

)]

=
nα

2n

[

pn
i +

g(2n/αn−1zn(i))

zn(i)α
− g(2n/αn−1zn(i+ 1))

zn(i+ 1)α

]

. (5.116)

We should thus show that

g(2n/αn−1zn(i))

zn(i)α
− g(2n/αn−1zn(i+ 1))

zn(i+ 1)α
= o(pn

i ). (5.117)

However, this is obviously true since

pn
i = (zn(i))−α − (zn(i+ 1))−α ≥ ch(n) (5.118)

for some c not depending on i and n, and g(2n/αn−1zn
j ) = o(h(n)) by (5.110).

The remaining part of the proof of Lemma 5.6.2 is analogous to the proof
of Lemma 5.5.3. We only explain the appearance of the additional factors
log(n) and h(n) that are in (5.114) but not in (5.61). The logarithm before
the exponential is due to the summation over all possible i and (5.109). The
factor h(n) inside the exponent comes from Lemma 5.6.3 which replaces the
bound on p before (5.64) and the existence of constants c, C such that

ch(n) ≤ 1

zn(i)α
− 1

zn(i+ 1)α
≤ Ch(n). (5.119)

This finishes the proof.
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Using Lemma 5.6.1 we can now describe the behaviour of variables sx.
We are interested only in the distribution of sx conditionally on sx < ∞,
because if sx = ∞, we do not include it into the definition of Y n and we
use at its place an artificial random variable s̃n

i . Due to condition (ii) from
Section 5.2, all good parts of the trajectory starts at sites that are in the
distance larger than

√
π−12nnβ from the border of D(n). That is why we

introduce E0(n) = {x ∈ E(n) : Dx(2
nnβ) ∩ D(n)c = ∅}. The random variables

sx then satisfy

Lemma 5.6.4. For P-a.e. random environment τ

lim
n→∞

max
x∈E0(n)

1− E[exp(− λsx

2n/α )|sx <∞, τ ]

nα+β−1
= F (λ),

lim
n→∞

min
x∈E0(n)

1− E[exp(− λsx

2n/α )|sx <∞, τ ]

nα+β−1
= F (λ),

(5.120)

with

F (λ) = F (λ; ε,M, α) = K
(

pM
ε −

∫ M

ε

α

1 +K′λz
· 1

zα+1
dz

)

(5.121)

and K′ = π−1 log 2.

Proof. If the process X hits deep trap y in Dx(2
nnβ) and nothing unusual

happens, then the random variable sx is a sum of a geometrically distributed
number of exponential random variables with mean τy. The mean of the ge-
ometrical distribution is easy to calculate since it is equal to GD(2nn−κ)(0, 0).
By (5.236) it equals

GD(2nn−κ)(0, 0) =
2

π
log
√
π−12nn−κ +O(1) =

n

π
log 2 +O(logn). (5.122)

The geometrically long sum of exponential variables is again exponentially
distributed. Hence, the score sx is in this case an exponential random variable
with mean τy(n log 2/π+O(logn)). This implies that conditionally on hitting
a trap with the depth τy the Laplace transform of sx/2

n/α equals

E
[

exp
(

− λsx

2n/α

)
∣

∣

∣
τy

]

=
1

1 + λτy2−n/α(n log 2/π +O(logn))
. (5.123)

By Lemmas 5.5.2, 5.5.7, and 5.5.9 we know that if κ is large enough,
P[sx = ∞] = O(n2(α+β−1)). Since this probability is much smaller than any
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other probability that will be used in the following computation, the condi-
tioning on sx <∞ has almost no effect. Actually,

E
[

exp
(

− λsx

2n/α

)
∣

∣

∣
sx <∞, τ

]

= P[sx <∞|τ ]−1E
[

exp
(

− λsx

2n/α

)

χ{sx <∞}
∣

∣

∣
τ
]

= E
[

exp
(

− λsx

2n/α

)
∣

∣

∣
τ
]

(

1 +O(n2(α+β−1))
)

.

(5.124)

We now use Lemmas 5.5.5, 5.6.1, and expression (5.123) to estimate the
Laplace transform. We start with a lower bound. Choose δ > 0. Then for n
large enough

E
[

exp
(

− λsx

2n/α

)
∣

∣

∣
τ
]

≥
(

1− (1 + δ)KpM
ε n

α+β−1
)

+Knα+β−1
R

∑

i=1

1− δ
1 + λ zn(i)

2n/α
2n/α

n
n
π

log 2 + o(1)

( 1

(zn
i−1)

α
− 1

(zn(i))α

)

. (5.125)

The last expression can be bounded from bellow by

1−Knα+β−1

(

pM
ε −

∫ M

ε

α

1 +K′λz

1

zα+1
dz

)

− δCnα+β−1pM
ε , (5.126)

with C being a constant not depending on δ. The last expression together
with (5.124) give

lim sup
n→∞

max
x∈E0(n)

1− E[exp(− λsx

2n/α )|sx <∞, τ ]

nα+β−1

≤ K
(

pM
ε −

∫ M

ε

α

1 +K′λz

1

zα+1
dz

)

+ CδpM
ε . (5.127)

Since δ can be taken arbitrarily small, we have finished the proof of the upper
bound for the first expression in (5.120). The proof of the lower bound for the
second expression in (5.120) is completely similar.

We can finally show the convergence of the sequence Y n to a Lévy process.
The following proposition will be used later to prove aging.

Proposition 5.6.5. For P-a.e. realisation of the environment, the sequence
of processes Y n(t) converges weakly in the Skorokhod topology on D([0,∞)) to
the Lévy process Y (t) with Lévy measure

ρ(dx) =
αK
K′

∫ M

ε

1

zα+2
exp

(

− x

K′z

)

dz dx. (5.128)
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Proof. We first prove the weak convergence of finite dimensional distributions.
Let 0 = t0 < t1 < · · · < tℓ. We will show the convergence of Laplace trans-
forms. By definition of Y n

E
[

exp
(

−
ℓ

∑

i=1

λi

(

Y n(ti)− Y n(ti−1)
)

)]

= E
[

ℓ
∏

i=1

∏

j∈B(n,i)

exp
(

− λi

2n/α
sn

j

)]

,

(5.129)
where B(n, i) = {⌊n1−α−βti−1⌋+ 1, . . . , ⌊n1−α−βti⌋}.

If j < J , then the random variables sn
j have the same distribution as sx,

otherwise they are equal to s̃n
j . Since the variables s̃n

j are independent of
everything we can write

= E
[

ℓ
∏

i=1

∏

j∈B(n,i)
j<J

exp
(

− λi

2n/α
sn

j

)]

E
[

ℓ
∏

i=1

∏

j∈B(n,i)
j≥J

exp
(

− λi

2n/α
s̃n

j

)]

. (5.130)

At this place it is necessary to define the distribution of s̃n
j . We require

that s̃n
i satisfies the same relation as sx in the limit, that is

E
[

exp
(

− λ

2n/α
s̃n

j

)]

= 1− F (λ)nα+β−1. (5.131)

We have obviously chosen the s̃n
j ’s in the way that the second part of (5.130)

does not pose any problems. We should thus control only the first part.

Let y = {y0, . . . , yJ} ∈ E(n)J . We use xn to denote the sequence xn
0 , . . . , x

n
J

of starting points of the parts of the trajectory. We have

E
[

ℓ
∏

i=1

∏

j∈B(n,i)
j<J

exp
(

− λi

2n/α
sn

j

)]

=
∑

y

P[xn = y]E
[

ℓ
∏

i=1

∏

j∈B(n,i)
j<J

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
xn = y

]

. (5.132)

Only the last term of the product depends on yJ . We can thus sum over
all possible values of the endpoint of the last part. Let x′

n, resp. y′, denote
the sequences xn and y without the last element. We get

=
∑

y′

P[x′
n = y′]E

[

ℓ
∏

i=1

∏

j∈B(n,i)
j<J

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
x′

n = y′
]

. (5.133)
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Conditionally on the value xn
J−1, the random variable sn

J−1 is independent of
the rest. The expectation in the last formula can be thus written as

E
[

ℓ
∏

i=1

∏

j∈B(n,i)
j<J−1

exp
(

− λi

2n/α
sn

j

)
∣

∣

∣
x′

n = y′
]

E
[

exp
(

− λk

2n/α
sxn

J−1

)
∣

∣

∣
sxn

J−1
<∞

]

,

(5.134)
where the index k satisfies J − 1 ∈ B(n, k). According to Lemma 5.6.4, the
second expectation can be bounded from above by

1− (1− δ)F (λk)n
α+β−1 (5.135)

if n is large enough.
We can now repeat the same manipulation with the last but one value of

j, etc. At the end we get

E
[

exp
(

−
ℓ

∑

i=1

λi

(

Y n(ti)− Y n(ti−1)
)

)]

≤
ℓ

∏

i=1

(

1− (1− δ)F (λi)n
α+β−1

)⌊n1−α−β(ti−ti−1)⌋
. (5.136)

Taking the limits we obtain

lim sup
n→∞

E
[

exp
(

−
ℓ

∑

i=1

λi

(

Y n(ti)− Y n(ti−1)
)

)]

≤ exp
[

−
ℓ

∑

i=1

(1− δ)F (λi)(ti − ti−1)
]

. (5.137)

In the same way we obtain upper bound. Since δ was arbitrary we have

lim
n→∞

E
[

exp
(

−
ℓ

∑

i=1

λi

(

Y n(ti)− Y n(ti−1)
)

)]

= exp
[

−
ℓ

∑

i=1

F (λi)(ti − ti−1)
]

. (5.138)

The corresponding Laplace transform of Y (t) is easy to calculate. We have

E
[

exp
(

−
ℓ

∑

i=1

λi

(

Y (ti)− Y (ti−1)
)

)]

= exp
[

−
ℓ

∑

i=1

Ψ(λi)(ti − ti−1)
]

, (5.139)
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where Ψ(λ) is the Laplace exponent of Y . By Lévy-Khintchine formula it is
equal to

Ψ(λ) =

∫ ∞

0

(1− e−λx)ρ(dx). (5.140)

An easy integration gives the same result as (5.138).
To prove the weak convergence it remains to verify that the sequence Yn is

tight. We use Theorem 16.8 from [Bil99]. We should show that for any N and
δ1, δ2 there exist a, n0, and η such that

(i) P[ sup
t∈[0,N ]

|Yn(t)| ≥ a] < δ1 for all n > n0

(ii) P[w(Y n, η, N) ≥ δ2] < δ1 for all n > n0,

where

w(f, η,N) = inf
{ti}

max
0<i≤r

sup{|f(s)− f(t)| : s, t ∈ [ti−1, ti)} (5.141)

and the infimum runs over all finite collections {ti} such that 0 < ti− ti−1 < η,
t0 = 0, and tr = N .

Proof of (i) Since Y n are increasing, (i) is equivalent to the tightness
of the sequence Y n(N). From convergence of finite dimensional distribu-
tion we know that the Laplace transforms of Y n(N) converge to LY (N)(λ) =
E[exp(−λY (N))]. It is sufficient to verify that this Laplace transform satisfies
limλ→0 LY (N)(λ) = 1. However, LY (N) is continuous and

LY (N)(0) = exp(−NF (0)) = exp
[

−NK
(

pM
ε −

∫ M

ε

α

zα+1
dz

)]

= 1. (5.142)

Proof of (ii) According to Lemma 5.5.5, the expected number of jumps of
Y n in the interval [0, N ] can be bounded by some constant C not depending
on n. Markov inequality then gives the existence of some C ′ such that the
probability that the number of jumps of Y n exceeds C ′ is smaller than δ1/2
for all n large enough. If the number of jumps is finite, we can take {ti}
being the superset of the set of all jumps. The process Y n is then constant on
any interval [ti−1, ti) and thus w(Y n, η, N) = 0. This completes the proof of
Proposition 5.6.5.

5.7 Proof of aging

We prove here the following proposition that is the more precise version of
Theorem 5.1.1.
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Proposition 5.7.1. For P-a.e. realisation of the environment τ and for every
0 < θ <∞

lim
t→∞

R(t, t+ θt) =

∫ 1/1+θ

0

sinαπ

π
uα−1(1− u)−α du ≡ R(θ). (5.143)

An easy calculation gives

Corollary 5.7.2. The function R(θ) satisfies

lim
θ→0

R(θ) = 1 and lim
θ→∞

R(θ) = 0. (5.144)

Proof. I. We introduce some additional notation. Let Z(t) = Z(t; ε,M) be
the Lévy process with the Lévy measure

ρ′(dx) =
αK
K′

(

∫ ε

0

+

∫ ∞

M

) 1

zα+2
exp

(

− x

K′z

)

dz dx. (5.145)

We define the new family of processes,

Ỹ n(t) = Y n(t) + Z(t) and Ỹ (t) = Y (t) + Z(t). (5.146)

The advantage of this new class is that the Lévy measure of Ỹ satisfies

ρ(dx) + ρ′(dx) =
αK
K′

∫ ∞

0

1

zα+2
exp

(

− x

K′z

)

dz dx

=
α2Γ(α)K(K′)α

xα+1
dx,

(5.147)

and thus Ỹ is an α-stable subordinator. As an easy consequence of the previous
section, the sequence Ỹ n converges weakly to Ỹ . Let Rn = R(Ỹ n), R = R(Ỹ )
denote the range of Ỹ n, resp. of Ỹ .

Fix θ > 0. Let δ1, δ2 > 0 small. We will now fix the values of M , m, ε and
n as functions of t and δ1, δ2. First, let n(t) be an integer satisfying

1 ≤ t

2n(t)/α
< 21/α. (5.148)

Obviously, n(t) → ∞ as t →∞. In this section n = n(t) is always connected
with t using (5.148). We use s = s(t) to denote the rescaled value of t,
s = t2−n(t)/α. By (5.148) s satisfies 1 ≤ s < 21/α. In the same way we rescale
the value (1 + θ)t. The process Ỹ n that we will use to approximate the time
change S̄n should be thus relevant until the level (1 + θ)s < (1 + θ)21/α. Let
t0 be such that

P[Ỹ (t0) < (1 + θ)21/α] < δ1. (5.149)
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By the weak convergence of Ỹ n to Ỹ we can take t (and so n) large enough
such that

P[Ỹ n(t)(t0) ≥ (1 + θ)21/α] > 1− 2δ1. (5.150)

There are J(n) relevant parts of the trajectory of the process X. For every
time unit we need n1−α−β parts. So, we should choose m in the way that

P[J(n)nα+β−1 ≥ t0] > 1− δ1. (5.151)

By Lemma 5.5.1, this can be done independently of ε and M . Let A1 be the
event

{

Ỹ n(t0) ≥ (1+θ)s and J(n) ≥ t0n
1−α−β

}

. Then, by (5.150) and (5.151),

P[A1] ≥ 1− 3δ1. (5.152)

We can now fix the values of ε and M . Later, we want to work with
the processes Ỹ n instead of Y n. We should thus guarantee that the artificial
addition of process Z is not relevant. We take ε1 and M1, such that

P[Z(t0; ε1,M1) > δ2] < δ1. (5.153)

We want also safely ignore the error introduced by the very deep and the
shallow traps. By Lemma 5.4.1, we can take M2 such that

P[X(t) hits TM2 before Λn] < δ1. (5.154)

Further, by Lemma 5.3.1, we know that there is a constant K1, such that

E
[ 1

2n/α
· time spent in T ε

∣

∣

∣
τ
]

≤ K1ε
1−α, (5.155)

and thus

P
[ 1

2n/α
· time spent in T ε > δ2

∣

∣

∣
τ
]

≤ δ−1
2 ε1−αK1. (5.156)

Let us take ε2 such that δ−1
2 ε1−α

2 K1 < δ1. The constants ε and M are then
defined by

ε = min(ε1, ε2) and M = max(M1,M2). (5.157)

This choice of constants ensures that the distance between the rescaled
time change S̄n and the process Ỹ n is small. Precisely, let

A2 =
{

|S̄n(t)− Ỹ n(t)| ≤ 2δ2 ∀t ≤ t0
}

. (5.158)

Then our choice of constants gives

P
[

A2|A1

]

≥ 1− 3δ1. (5.159)
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Let A = A1∩A2. Then from (5.152) and (5.159) follows that for t large enough

P[A] ≥ 1− 6δ1. (5.160)

II. Later we will take the limit n → ∞ for fixed value of s ∈ [1, 21/α]
instead of taking the limit t → ∞. We will show that the limit n → ∞ does
not depend on s. To be able to show the existence of the limit t → ∞ we
will need the uniformity of convergence in s. To establish it we will use the
following auxiliary lemma.

Lemma 5.7.3. Let Pu(s, Y ) = P
[

[s, s+ u]∩R(Y ) 6= ∅
]

for Y being Ỹ n or Ỹ .

Then for any u < θ21/α

lim
n→∞

Pu(s, Ỹ
n) = Pu(s, Ỹ ) (5.161)

uniformly for s ∈ [1, θ21/α].

Proof. Since

Pu(s, Y ) = E
[

χ
{

[s, s+ u] ∩R(Y ) 6= ∅
}]

, (5.162)

we will first show that the functional Y → χ
{

[s, s + u] ∩ R(Y ) 6= ∅
}

is con-

tinuous in Skorokhod topology on D([0,∞)) at almost all sample points of Ỹ .
The pointwise convergence in (5.161) then follows from weak convergence of
Ỹ n (using e.g. Corolary 2, page 447 of [GS69]). The above functional is dis-
continuous at Y ∈ D([0,∞)) only if s or s + u are boundary points of R(Y ).
However, P[{s, s+ u} ∩ ∂R(Ỹ ) 6= ∅] = 0 since Ỹ is a stable subordinator.

To show the uniform convergence, we will first verify sort of equicontinuity
property of Pu(s, Ỹ

n). Choose η > 0 small. Let s1, s2 ∈ [1, θ21/α] such that
0 < s2 − s1 < η. Then,

∣

∣Pu(s1, Ỹ
n)− Pu(s2, Ỹ

n)
∣

∣ ≤ Pη(s1, Ỹ
n) + Pη(s2 + u, Ỹ n). (5.163)

Take now 1 = t0 < t1 < · · · < tR = θ21+1/α such that ti+1 − ti ∈ [η/2, η]. By
pointwise convergence it is possible to take n0, such that for n ≥ n0 and for all
i ∈ {0, . . .R},

∣

∣P2η(ti, Ỹ
n)−P2η(ti, Ỹ )

∣

∣ ≤ η. Since Ỹ is a stable subordinator,

the probability Pη(t, Ỹ ) can be bounded from above, uniformly for all t ∈
[1, θ21+1/α] by some constant h(η) satisfying h(η) → 0 as η → 0. We have
thus for n large enough P2η(ti, Ỹ

n) ≤ η + h(η). Since any interval [s, s + η]
is contained in some of [ti, ti + 2η], we can bound (5.163) by 2η + 2h(η) for
n ≥ n0.

The uniform convergence then follows by the following reasoning. Take
η > 0 and ti as in the previous paragraph. From pointwise convergence we
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know that there exist n1, such that for n ≥ n1

∣

∣Pu(ti, Ỹ
n) − Pu(ti, Ỹ )

∣

∣ ≤ η.
Then for any s ∈ [ti, ti+1],

|Pu(s, Ỹ
n)−Pu(s, Ỹ )| ≤ |Pu(s, Ỹ

n)−Pu(ti, Ỹ
n)|

+ |Pu(ti, Ỹ
n)−Pu(ti, Ỹ )|+ |Pu(ti, Ỹ )− Pu(s, Ỹ )|. (5.164)

For n ≥ n0 ∨ n1 we can bound the first term by 2η + 2h(η) as follows from
the previous paragraph. The second term is smaller than η, and the third is
smaller than 2h(η). The uniform convergence follows.

III. We now study the event G(t) =
{

X(t) = X((1 + θ)t)
}

for t large. To
simplify the reasoning we suppose for the moment that the event A occurs.
We divide the probability space into three disjoint parts,

E1(n, s) =
{

dist(s,Rn) ≤ 2δ2 or dist((1 + θ)s,Rn) ≤ 2δ2
}

,

E2(n, s) =
{

dist(s,Rn) > 2δ2, dist((1 + θ)s,Rn) > 2δ2 and
(

s, (1 + θ)s
)

∩Rn 6= ∅
}

,

E3(n, s) =
{

dist(s,Rn) > 2δ2, dist
(

(1 + θ)s,Rn

)

> 2δ2 and

(s, (1 + θ)s) ∩Rn = ∅
}

.

(5.165)

This division has the following reason. Any of the intervals that do not intersect
Rn corresponds to a time period that X spent in Dy(2

nn−κ) around some deep
trap y. The points of the range correspond to times when the walk did not
meet any deep trap for a long time. However, both these claims should be
taken only with precision 2δ2 because of definition of A2.

The requested probability equals

P[G(t)] =

3
∑

i=1

P[G(t)|Ei(n, s)]P[Ei(n, s)]. (5.166)

We should thus estimate all quantities in last display. When E1 occurs, at
least one of the values s, (1 + θ)s is too close to Rn. Hence, we cannot know
precisely what happens with the process X in this situation. However, the
probability of E1 is very small. Indeed,

P[E1] ≤ P[dist(s,Rn) ≤ 2δ2] + P[dist((1 + θ)s,Rn) ≤ 2δ2]. (5.167)

If n is large, we can bound the first term in the last expression by

P[dist(s,Rn) ≤ 2δ2] ≤ δ1 + 1− P[R∩ [s− 2δ2, s+ 2δ2] = ∅]. (5.168)
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The constant δ1 comes from the approximation ofRn byR and by Lemma 5.7.3
can be chosen independent of s. Since Ỹ is a stable subordinator, the prob-
ability P[R ∩ [s − 2δ2, s + 2δ2] = ∅] can be evaluated using formulas from
Lemma 5.B.1,

P[dist(s,Rn) ≤ 2δ2] ≤ δ1 + 1− P[g(s+ 2δ2) < s− 2δ2]

= δ1 + 1−
∫

s−2δ2
s+2δ2

0

sinαπ

π
uα−1(1− u)−α du ≤ Cδ1 + C ′δ1−α

2 (5.169)

for some constants C, C ′ independent of s. In the same way we can estimate
the second probability from (5.167). We have thus

P[E1] ≤ Cδ1 + C ′δ1−α
2 . (5.170)

If A is true, then the realisation of E2 means thatX(t) is in disk Dy1(2
nn−κ)

and X
(

(1 + θ)t
)

is in Dy2(2
nn−κ) for some y1, y2 ∈ TM

ε . By definition of J we
have necessarily y1 6= y2, and thus by Lemma 5.5.6

P[G(t) ∩ E2(n, s) ∩ A] = 0. (5.171)

Hence,

P[G(t)|E2(n, s)] =
P[G ∩ E2 ∩ A] + P[G ∩ E2 ∩Ac]

P[E2]
≤ 6δ1

P[E2]
. (5.172)

The denominator P [E2] increases to Pθs(s, Ỹ
n) as δ2 decreases. Since

Pθs(s, Ỹ
n) ≥ Pθ(s, Ỹ )− δ1 (5.173)

for n large enough, there exists a constant C depending only on θ, such that

P [G(t)|E2(n, s)] ≤ Cδ1. (5.174)

The most interesting event is E3. The probability of E3 can be calculated
in the similar manner as the probability of E1. For n large enough

P[E3(n, s)] = P
[

R∩ [s− 2δ2, (1 + θ)s+ 2δ2] = ∅
]

± δ1

=

∫ 1/1+θ

0

sinαπ

π
uα−1(1− u)−α du± (Cδ1 + C ′δ2). (5.175)

The constants C and C ′ can be chosen again independent of s. Note also that
the main term does not depend on s.

We will now estimate the probability P[G(t)|E3(n, s)∩A]. If E3∩A occurs,
then X stays during the time interval [t, (1+θ)t] in the disk Dy(2

nn−κ) around
y ∈ TM

ε . At the end of this section we will show
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Lemma 5.7.4. If X stays during [t, (1 + θ)t] in the disk Dy(2
nn−κ) around

y ∈ TM
ε , then for P-a.e. τ

lim
t→∞

P
[

X(t) = y
∣

∣E3(n(t), s(t)) ∩ A
]

= lim
t→∞

P
[

X((1 + θ)t) = y
∣

∣E3(n(t), s(t)) ∩ A
]

= 1. (5.176)

We use this lemma to finish the proof of Proposition 5.7.1. For t large
enough we have

P[G(t)|E3(n, s)] =
P[G|E3 ∩A]P[E3 ∩ A] + P[G ∩ E3 ∩Ac]

P[E3]

=
(1− o(1))

(

P[E3]± 6δ1
)

± 6δ1

P[E3]
= 1± Cδ1.

(5.177)

Putting (5.170), (5.174), (5.175), and (5.177) into (5.166) we get

P[G(t)] ≤ Cδ1 + C ′δ1−α
2 + P[E3(n, s)]. (5.178)

Similarly, we obtain the lower bound

P[G(t)] ≥ (1− Cδ1)P [E3(n, s)]− Cδ1 − C ′δ1−α
2 . (5.179)

Since the expression (5.175) for E3 and also the constants in error terms do
not depend on s, and since δ1 and δ2 can be taken arbitrarily small, we have

lim
t→∞

P[G(t)] =

∫ 1/1+θ

0

sinαπ

π
uα−1(1− u)−α du. (5.180)

This finishes the proof.

IV. It remains to show Lemma 5.7.4

Proof of Lemma 5.7.4. Let us introduce some notation to describe the move-
ment of X inside D ≡ Dy(2

nn−κ). Let t1 be the time of the first arrival of X
to y. After t1 X stays in y an exponential time U0 with mean τy, then it leaves
y, makes an excursion not leaving D that takes the time V1, returns to y, stays
there U1, etc. The number of such excursion is geometrically distributed with
mean of order n. After the last visit of y, X leaves y at the time t2 and then
it leaves the disk.

We first bound the expected duration of one excursion. It is easy to
prove that in the neighbourhood of y there are only traps shallower than
εn−5/(1−α)2n/α/n. Indeed, as in the proof of Lemma 5.5.6, let

B(y) =
{

y ∈ TM
ε , ∃x ∈ D, τx ≥ εn− 5

1−α
2n/α

n

}

. (5.181)
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Then,

P[B(y)] ≤ C2nn−κn
2αn

5α
1−α

22n
. (5.182)

The summation over all sites in D(n) gives

P
[

⋃

y∈(n)

B(y)
]

≤ Cn1+α−κn
5α

1−α (5.183)

and the claim follows by Borel-Cantelli lemma taking κ large enough.
Next, we estimate the expected number of visits of z ∈ D \ {y} during one

excursion that does not leave the disk. In is known fact that the expected
number of visits of z ∈ Z2 by the simple random walk during one excursion
from the origin is equal to one. So,

1 = E[# visits of z]

= E[# visits of z|Xd does not leave D]P[Xd does not leave D]

+ E[# visits of z|Xd leaves D]P[Xd leaves D].

(5.184)

It follows that for n large enough

E[# of visits of z|Xd does not leave D]

≤
(

P[excursion does not leave the disk]
)−1

≤ (1−GD(2nn−κ)(0, 0)−1)−1 ≤ 1 + C/n ≤ 2.

(5.185)

The expected duration of one excursion thus satisfies

E[Vi] ≤ 2
∑

z∈D\{y}

τz ≤ 2
∑

z∈D(n)

τzχ{τz ≤ n−5/(1−α)ε2n/α/n}. (5.186)

The last sum can be bounded using Lemma 5.3.2. Let i2(n) be such that
2−i2(n) ≤ n−5/(1−α) ≤ 2−i2(n)+1. Then,

E[Vi] ≤ 2
∑

z∈D

τzχ{τz ≤ 2}+ 2

i0(n)
∑

i=i2(n)

∑

z∈T ε2−i+1

ε2−i

τz

≤ 4 · 2nn1−α + 2

i0(n)
∑

i=i2(n)

ε
2n/α

n
2−i+1

∣

∣T ε2−i+1

ε2−i

∣

∣

≤ 4 · 2nn1−α + C2n/α

i0(n)
∑

i=i2(n)

2−(1−α)i ≤ C2n/αn−5.

(5.187)
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Since the expected number of excursions is O(n), the mean of the total time
spent by X during the excursions can be bounded by

E
[

∑

Vi

]

≤ C2n/αn−4. (5.188)

Recall that t1 and t2 denote the first, resp. last time when X(t) was in y.
Conditionally on E3 ∩ A we have t1 < t < t2. We treat separately two cases.
Suppose first that t2 − t ≤ n−22n/α. Since X(t2−) = y, we can write

P[X(t) = y] ≥ exp
(

− t2 − t
τy

)

≥ exp
(

− 2n/αn−2

ε2n/αn−1

)

≥ 1− C/εn. (5.189)

On the other hand, if t2 − t ≥ n−22n/α, we have by Fubini theorem

E
[

∑

Vi

]

= E
[

∫ t2

t1

χ{X(u) 6= y}du
]

=

∫ t2

t1

P[X(u) 6= y]du. (5.190)

From (5.188) and (5.190) it is easy to see that there exist u ∈ [t, t + n−22n/α]
such that

P[X(u) 6= y] ≤ Cn−2. (5.191)

Let us now define the process X ′ that is coupled with X. It has the same
trajectory as X, at all sites it stays the same time with the exception of the
first visit of y. Let the duration of the first visit satisfies U ′

0 = U0 + (u − t).
That means that if X(t) 6= y, then also X ′(u) 6= y. Probability that X stays
at y the additional time u− t can be bounded from bellow by

exp
(

− u− t
τy

)

≥ exp
(

− 2n/αn−2

ε2n/αn−1

)

≥ 1− C ′/εn. (5.192)

Hence,
Cn−2 ≥ P[X(u) 6= y] ≥ (1− C ′/εn)P[X(t) 6= y] (5.193)

and thus
P[X(t) 6= y] ≤ Cn−2. (5.194)

The proof then follows from (5.189) and (5.194).

5.8 Proof of subaging

In this section we prove the subaging behaviour of the function Π(tw, tw + t).
Recall that this function has been defined as the probability that X does not
jump between tw and tw + t. If we know that at time tw the process X is in
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a trap y with depth τy, then this probability is easy to obtain. The Markov
property gives

P
[

X(t′) = X(t) ∀t′ ∈ [tw, tw + t]
∣

∣τX(tw)

]

= exp
(

− t

τX(tw)

)

. (5.195)

We should thus gain an information about the depth τX(tw). We would like

to deduce its distribution from the behaviour of processes Ỹ n and Ỹ , because
these are the only objects we really control. It should be obvious that the
depth of the trap where X is at time tw depends on the size of the jump of Ỹ n

that intersects the level tw/2
n/α. Hence, to find an expression for the function

Π(tw, tw + t) we should control two basic objects. First, the distribution of
the size of the jump that intersect certain level, and second, the conditional
distribution of τX(tw) knowing the size of this jump.

We start by controlling the size of the jump. Let ℓn = ℓn(s) be the size of
the jump of Ỹ n that intersect the level s,

ℓn(s) = inf{x ∈ Rn : x > s} − sup{x ∈ Rn : x ≤ s}, (5.196)

and let ℓ = ℓ(s) be the same size for the limiting process Ỹ . We use µn
s , resp. µs

to denote the distributions of ℓn(s) and ℓ(s).

Lemma 5.8.1. The sequence µn
s converges weakly uniformly in s ∈ [1, 21/α]

to µs, that is for every bounded continuous function g

∫

g(ℓ)µn
s (dℓ)

n→∞−−−→
∫

g(ℓ)µs(dℓ) uniformly in s ∈ [1, 21/α]. (5.197)

Proof. The proof is very similar to the proof of Lemma 5.7.3. The pointwise
convergence follows from the P-a.s. continuity of the functional Y → inf{x ∈
R(Y ) : x > s} − sup{x ∈ R(Y ) : x ≤ s} in the Skorokhod topology on
D([0,∞)). Take now η > 0. Let s1, s2 ∈ [1, 21/α], 0 < s2 − s1 < η. Then,

∣

∣

∣

∣

∫

g(ℓ)µn
s2

(dℓ)−
∫

g(ℓ)µn
s1

(dℓ)

∣

∣

∣

∣

≤ ‖g‖∞P[Rn ∩ [s1, s2] 6= ∅] = ‖g‖∞Pη(s1, Ỹ
n). (5.198)

As follows from Lemma 5.7.3, the value of Pη(s1, Ỹ
n) converges uniformly to

Pη(s1, Ỹ ). Further, Pη(s1, Ỹ ) ≤ h(η) for some h(η) independent of s satisfying
h(η) → 0 as η → 0. Therefore, we can bound (5.198) for n large enough by
‖g‖∞(η + h(η)). The uniform convergence then follows by the same reasoning
as in the proof of Lemma 5.7.3.
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As a consequence of the scaling invariance of Ỹ (recall that Ỹ is a stable
subordinator) we get the following relation between the measures µs,

µs([a, b]) = µ1([a/s, b/s]) (5.199)

for any interval [a, b] ⊂ (0,∞).

The control of τX(tw) knowing the size of the jump is more complicated. It
occupies the majority of the proof of the following proposition that is a refined
version of Theorem 5.1.2.

Proposition 5.8.2. For P-a.e. realisation of the environment τ ,

lim
t→∞

Π
(

t, t+
θt

log t

)

=

∫ ∞

0

( ℓπ

ℓπ + θα

)1+α

µ1(dℓ) ≡ Π(θ). (5.200)

By an easy application of dominated convergence theorem we get

Corollary 5.8.3. The function Π(θ) satisfies

lim
θ→0

Π(θ) = 1 and lim
θ→∞

Π(θ) = 0. (5.201)

Proof of Proposition 5.8.2. We proceed similarly as in the proof of aging. We
take n(t) as in (5.148) and we define s = s(t) = t/2n(t)/α. Next, we choose δ1
and δ2, and we set the constants ε, M and m in the same manner as before.
We thus know that the process Ỹ n is a good approximation of the rescaled
time change S̄n. That means that P[A] = P[A1 ∩ A2] ≥ 1 − Cδ1 with A1, A2

defined as in the previous section. For the following discussion we will suppose
that A occurs and we take account of the remaining part of the probability
space at the end of the proof.

As we have already noted, it is necessary to obtain the conditional distri-
bution of τX(t) knowing ℓn(s). Similarly as in the proof of aging not much
can be done if the distance between s and Rn is smaller than 2δ2, because
the approximation is not sufficiently precise. However, the probability of this
bad case can be bounded by Cδ1 + C ′δ1−α

2 uniformly in s in the same way as
in (5.170).

Let E = E(n, s) denote the event dist(s,Rn) > 2δ2. If E occurs, then
the situation is more favourable. We know that X was at time t inside a
disk Dy(2

nn−κ) around some deep trap y = y(n, s). Moreover, similarly as in
Lemma 5.7.4, we can show

P[X(t) = y(n, s)|E(n, s)]→ 1 as t→∞. (5.202)

The last expression allows us to compute the conditional distribution of
τy(n,s) knowing ℓn(s) instead of the distribution of τX(t). As we have already
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discussed in the proof of Lemma 5.6.4, the size ℓ of the jump that is the result
of the visit of y satisfies

2n/αℓ = τy

ξ
∑

i=1

e′i, (5.203)

where ξ is a geometrically distributed random variable with mean

GD(2nn−κ)(0, 0) = n log 2/π + o(n) = K′n+ o(n), (5.204)

and e′i are i.i.d., exponential random variables with mean one. It is convenient
to introduce the rescaled depth of trap, σx = τxn/2

n/α. Equation (5.203) then
becomes

ℓ =
σy

n

ξ
∑

i=1

e′i. (5.205)

As can be seen from Lemma 5.6.1, the distribution νn of σy converges weakly
to the distribution ν,

ν(dx) =
α

ε−α −M−α
· 1

xα+1
dx for ε ≤ x ≤M. (5.206)

The random variable n−1
∑ξ

i=1 e
′
i is an exponential random variable with mean

K′+o(1). Let fn denote its density, and let f denote the density of the limiting
distribution,

f(x) = exp
(

− x/K′
)

/K′. (5.207)

We use F n
ℓ to denote the distribution function of σy(n,s) conditionally on

ℓn(s) = ℓ,
F n

ℓ (a) = P[σy(n,s) ≤ a|ℓn(s) = ℓ]. (5.208)

Lemma 5.8.4. The function F n
ℓ can be written as

F n
ℓ (a) =

∫ a

ε
1
x
fn( ℓ

x
)νn(dx)

∫ M

ε
1
x
fn( ℓ

x
)νn(dx)

. (5.209)

Proof. We should verify that for any event B that is measurable with respect
to the σ-algebra generated by the random variable ℓn(s)

∫

B

χ{σy ≤ a}dP =

∫

B

F n
ℓ (a) dP. (5.210)

It is sufficient to verify the last expression for an event B that has the form
{ℓn(s) ∈ I} for some interval I ⊂ [0,∞). The left hand side of (5.210) can be
then written as

∫

B

χ{σy ≤ a}dP =

∫ a

ε

∫

I/x

fn(z) dz νn(dx). (5.211)
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To compute the right hand side we should first find the distribution of ℓn(s)

P[ℓn(s) ≤ u] =

∫ M

ε

∫ u/x

0

fn(z) dz νn(dx). (5.212)

The right hand side of (5.210) then equals

∫

I

∫ a

ε
1
x
fn( ℓ

x
)νn(dx)

∫ M

ε
1
x
fn( ℓ

x
)νn(dx)

d
(

∫ M

ε

∫ ℓ/x

0

fn(z)dz νn(dx)
)

=

∫

I

∫ a

ε
1
x
fn( ℓ

x
)νn(dx)

∫ M

ε
1
x
fn( ℓ

x
)νn(dx)

(

∫ M

ε

1

x
fn(ℓ/x) νn(dx)

)

dℓ. (5.213)

Making the substitution z = ℓ/x and changing the order of integration it is
easy to get the same expression as in (5.211). This finishes the proof.

As an consequence of the previous lemma we get

Lemma 5.8.5. For any bounded continuous function g

∫

g(a)dF n
ℓ (a)

n→∞−−−→
∫

g(a)dFℓ(a), (5.214)

where

Fℓ(a) =

∫ a

ε
z−α−2 exp(ℓ/K′z)dz

∫ M

ε
z−α−2 exp(ℓ/K′z)dz

. (5.215)

Moreover, if K ⊂ (0,∞) compact and g has bounded first derivative, then the
convergence is uniform in ℓ ∈ K.

Proof. First we show that the sequence F n
ℓ (a) converges to Fℓ(a) for any a ∈

[ε,M ]. We will verify separately the convergence of the nominator and the
denominator in (5.209). For the nominator we have

∣

∣

∣

∣

∫ a

ε

1

x
fn

( ℓ

x

)

dνn −
∫ a

ε

1

x
f
( ℓ

x

)

dν

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ a

ε

1

x

(

fn

( ℓ

x

)

− f
( ℓ

x

))

dνn

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ a

ε

1

x
f
( ℓ

x

)

dνn −
∫ a

ε

1

x
f
( ℓ

x

)

dν

∣

∣

∣

∣

.

(5.216)

The second difference converges to zero, because νn converges weakly to ν. The
first term goes to zero too, because νn have compact support [ε,M ] and the
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sequence fn converges to f uniformly on this interval. The proof of the con-
vergence of the denominator can be done in the same manner. By substitution
from (5.206) and (5.207) we can obtain the expression (5.215),

∫ a

ε

1

x
f
( ℓ

x

)

ν(dx) =

∫ a

ε

z−α−2 exp(ℓ/K′z) dz, (5.217)

and similarly for the denominator.

To show the uniform convergence note that by integration by parts

∫ M

ε

g(a)dF n
ℓ (a)−

∫ M

ε

g(a)dFℓ(a) ≤ ‖g′‖∞
∫ M

ε

(

Fℓ(a)− F n
ℓ (a)

)

da. (5.218)

We should thus prove that F n
ℓ converges uniformly in ℓ. We will show that

for all a ∈ [ε,M ] and any K the family F n
ℓ (a) is uniformly equicontinuous in

ℓ ∈ K. It will then together with the pointwise convergence imply the uniform
convergence.

Take η > 0, ℓ1, ℓ2 ∈ K, 0 < ℓ2− ℓ1 ≤ η. Let Jn
ℓ (a) denote

∫ a

ε
1
x
fn( ℓ

x
)νn(dx).

Then,

∣

∣F n
ℓ1

(a)− F n
ℓ2

(a)
∣

∣ =

∣

∣

∣

∣

Jn
ℓ1

(a)Jn
ℓ2

(M)− Jn
ℓ1

(M)Jn
ℓ2

(a)

Jn
ℓ1

(M)Jn
ℓ2

(M)

∣

∣

∣

∣

. (5.219)

The denominator is decreasing in ℓ1 and ℓ2 and it can be bounded from bellow
by some constant depending only on K. From the uniform equicontinuity of
fn then follows that the nominator can be bounded from above by some h(η)
satisfying h(η)→ 0 as η → 0. Moreover, for n large enough h(η) can be chosen
to be dependent only on K. This proves uniform equicontinuity.

We have now all ingredients to finish the proof of Proposition 5.8.2. Let
G = G(t) denote the event

G =
{

X(t′) = X(t) ∀t′ ∈ [t, t+ θt/ log t]
}

. (5.220)

Then,

P[G] =

∫ ∞

0

P[G|ℓn(s) = ℓ]µn
s (dℓ)

=

∫ ∞

0

P[G|ℓ ∩ (A ∩ E)]
(

1− P
[

(A ∩E)c|ℓ
])

µn
s (dℓ)

+

∫ ∞

0

P[G|ℓ ∩ (A ∩E)c]P[(A ∩ E)c|ℓ]µn
s (dℓ).

(5.221)
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The second integral can be bounded by P[(A∩E)c] ≤ Cδ1 +C ′δ1−α
2 . The first

one can be bounded from above by

∫ ∞

0

P[G|ℓ ∩ (A ∩E)]µn
s (dℓ) ≡ I(t) (5.222)

and from bellow by I(t) − Cδ1 − C ′δ1−α
2 . We should thus compute the value

of I(t). Using (5.195) we get

I(t) =

∫ ∞

0

∫ M

ε

exp
(

− θtn

a2n/α log t

)

dF n
ℓ (a)µn

s (dℓ). (5.223)

Taking t = s2n/α we get

I(s2n/α) =

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2 + cn−1 log s

)

dF n
ℓ (a)µn

s (dℓ). (5.224)

We show that

lim
n→∞

I(s2n/α) =

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2

)

dFℓ(a)µs(dℓ) ≡ I∞(s). (5.225)

Moreover, this convergence is uniform in s ∈ [1, 21/α]. Indeed,

∣

∣I(s2n/α)− I∞(s)
∣

∣ ≤

≤
∫ ∞

0

∫ M

ε

∣

∣

∣

∣

exp
( −θsα
a log 2 + o(n−1)

)

− exp
(−θsα
a log 2

)

∣

∣

∣

∣

dF n
ℓ (a)µn

s (dℓ)

+

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2

)

∣

∣dF n
ℓ (a)− dFℓ(a)

∣

∣µn
s (dℓ)

+

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2

)

dFℓ(a)
∣

∣µn
s (dℓ)− µs(dℓ)

∣

∣.

(5.226)

The first term converges to 0 due to the uniform convergence of exponentials
inside of the integral. Using Lemma 5.8.5 and the tightness of sequence µn (see
Lemma 5.8.1), it is possible to prove the convergence to 0 of the second term.
The convergence of third term follows from Lemma 5.8.1 and continuity of the
integrand. Note, that all these convergences can be proved to be uniform in s.

Inserting (5.215) into (5.225) we get

I∞(s) =

∫ ∞

0

∫ M

ε

exp
(

− θsα

a log 2

) a−α−2 exp(−ℓ/K′a) da
∫ M

ε
z−α−2 exp(ℓ/K′z) dz

µs(dℓ). (5.227)
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For any c > 0 the integral
∫ ∞

0
exp(−c/z)z−α−2 dz = c−α−1Γ(α+ 1). We intro-

duce the following notation. Let

gc(ε,M) =
1

Γ(α + 1)

(

∫ ε

0

+

∫ ∞

M

)

e−c/zz−α−2 dz, (5.228)

and

d1 =
θsα

log 2
+

ℓ

K′
and d2 =

ℓ

K′
. (5.229)

Then

I∞(s) =

∫ ∞

0

d−α−1
1 − gd1(ε,M)

d−α−1
2 − gd2(ε,M)

µs(dℓ). (5.230)

The difference between I∞(s) and J(s) ≡
∫ ∞

0
(d2/d1)

1+αµs(dℓ) is small for ε
small and M large. To see it consider

lim
ε→0

M→∞

I∞(s)

= lim
ε→0

M→∞

[
∫

d−α−1
1

d−α−1
2 − gd2(ε,M)

µs(dℓ)−
∫

gd1(ε,M)

d−α−1
2 − gd2(ε,M)

µs(dℓ)

]

.

(5.231)

Both terms converge due to the monotone convergence theorem, first one to
J(s) and second to 0 uniformly in s. From the scaling relation (5.199) we get
that J(s) actually does not depend on s. It equals

J(1) =

∫ ∞

0

( ℓπ

ℓπ + θα

)1+α

µ1(dℓ). (5.232)

Since ε→ 0 and M →∞ when δ1, δ2 → 0, there exists a function h(δ1, δ2)
such that h(δ1, δ2) → 0 as δ1, δ2 → 0 satisfying |I∞(s) − J(1)| ≤ h(δ1, δ2)
for all s. By (5.225), (5.231), the bounds in the paragraph after (5.221), and
the last paragraph we get that for n larger than some n(δ1, δ2) and for any
s ∈ [1, 21/α]

P[G(s2n/α)] = J(1)±
(

Cδ1 + C ′δ1−α
2 + h(δ1, δ2)

)

. (5.233)

Since δ1 and δ2 can be taken arbitrarily small, the proof is finished.

Appendix 5.A Some properties of the simple random walk

We summarise here some known properties of Green’s function and hitting
probabilities of the simple random walk on Z2 that is killed when it exits the
disk D with radius r. Let ξ denote the exit time from this disk.
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The most important formula that we use repeatedly is

P[X hits x before ξ] = 1− log |x|
log r

+O
( |x|−2

log r

)

+O(log−2 r). (5.234)

The proof of it can be found for example in Lawler [Law91], Proposition 1.6.7.
We use also a similar expansion for the Green’s function,

GD(0, x) =
2

π
(log r − log |x|) +O(|x|−2) +O(r−1). (5.235)

For GD(0, 0) there is the following formula ([Law91], Theorem 1.6.6)

GD(0, 0) =
2

π
log r + k +O(r−1). (5.236)

As an easy consequence of formula (5.234) we get following lemma:

Lemma 5.A.1. Let y be an uniformly chosen point in D. Then there exists
constant C independent of r such that

E
[

exp
(

log rP[X hits y before ξ]
)]

≤ C. (5.237)

Proof. Let a be a positive constant and let Da denotes the disk with radius a.
Then by (5.234) we have

E
[

exp
(

log rP[X hits y before ξ]
)]

≤ 1

πr2

∑

y∈Da

exp(log r) +
1

πr2

∑

D\Da

exp
(

log rP[X hits y before ξ]
)

≤ C

r
+

1

πr2

∑

y∈D\Da

exp{log r − log |y|+O(|y|−2) +O(log−1 r)}

≤ C

r
+

1

πr2

∑

y∈D\Da

Cr

y
≤ C.

(5.238)

This finishes the proof.

Similarly we get

Lemma 5.A.2. There exist λ > 0 and C independent of r such that

E[exp(λGD(0, y))] ≤ C. (5.239)
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Appendix 5.B Some properties of stable subordinators

Let Y be a stable subordinator with the Lévy measure

π(dx) = kx−α−1χ{x ≥ 0} dx, k > 0. (5.240)

We use R = R(Y ) to denote the range of this process. Let U(dx) denote its
potential measure that is defined by

U(A) =

∫ ∞

0

P(Y (t) ∈ A) dt for any A ∈ B(R). (5.241)

For every x > 0, let
g(x) = sup{y ∈ R : y ≤ x}, (5.242)

and let
d(x) = inf{y ∈ R : y ≥ x}. (5.243)

Then it follows from Bertoin [Ber96], Theorems III.2, III.6, and the discussion
following the second theorem that

Lemma 5.B.1. (i) For each fixed x ≥ 0 and every 0 ≤ y ≤ x < z, we have

P(g(x) ∈ dy, d(x) ∈ dz) = U(dy)π(dz − y). (5.244)

(ii) For every x > 0 the random variable x−1g(x) has the distribution

sα−1(1− s)−α

Γ(α)Γ(1− α)
ds =

sinαπ

π
sα−1(1− s)−αds (0 < s < 1). (5.245)
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6. AGING FOR BOUCHAUD’S MODEL FOR DIMENSION
LARGER THAN TWO

6.1 Introduction

We prove here the aging behaviour of Bouchaud’s model on Zd, d ≥ 3. We can
apply here a very similar method as we have used to prove the aging in the
two-dimensional case. In general, the proof becomes slightly simpler because
the random walk is transient if d ≥ 3, and, moreover, all interesting quantities
(like Green’s function, hitting probabilities, etc.) depends only polynomially
on the radius of the ball that we use as the relevant part of the environment.
There is no need for logarithmic corrections and all expressions become slightly
simpler.

On the other hand, there is one additional difficulty. It comes from the
fact that the volume of d-dimensional ball is much larger than the volume of
two-dimensional ball with the same radius. That means that somewhere in
this large volume can exist regions where some of the conditions H1, H2, etc.
that we used to describe the environment are violated. However, since the
trajectory of the random walk occupies only a very small part of the volume
of the ball, it can be proved that the probability that the random walk visits
such “not usual” places is very small.

We will prove very similar results about aging as in d = 2. We use the same
two-point functions as before. Namely, let R(tw, tw + t) be the probability that
X is at the same site at both times t, t + tw, and let Π(tw, tw + t) be the
probability that X does not jump between this two times. The first two-point
function has exactly the same behaviour as in dimensions one and two. The
scale for the second one is changed because in d ≥ 3 random walk returns to
any site only finitely many times (it was of order log n after n steps in d = 2).
Therefore, the successive returns have no importance for scaling. That means
that the good scale for the two-point function Π(tw, tw + t) is the same as for
R(tw, tw+t). On the other hand, it is evident that the successive returns should
influence the value of the limiting functions R(θ) and Π(θ) whose existence is
proved in the following theorem.

Theorem 6.1.1. There exist functions R(θ) and Π(θ) independent of τ , such
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that for P-a.e. realisation of the environment τ

lim
tw→∞

R(tw, tw + θtw) = R(θ),

lim
tw→∞

Π(tw, tw + θtw) = Π(θ).
(6.1)

The functions R(θ) and Π(θ) can be explicitly calculated (see Sections 6.6
and 6.7) and they satisfy

lim
θ→0

R(θ) = lim
θ→0

Π(θ) = 1 and lim
θ→∞

R(θ) = lim
θ→∞

Π(θ) = 0. (6.2)

The complete proof of this theorem would be quite long and boring. We
prefer here to describe roughly the strategy of the proof and its differences
with respect to the two-dimensional case. We will show only the lemmas
whose proofs depended on the fact that we have worked on the two-dimensional
lattice, and we will comment briefly the parts that need only cosmetic changes.
The understanding of the proof for d = 2 is necessary for reading the following
pages.

We start with the coarse-graining construction and the definition of bad
events. We change slightly the notation, we use Dx(m), Bx(m) to denote the
ball (cube) with centre x and radius (edge length) m. The relevant part of the
environment will be this time the ball

D(n) = D(m2n). (6.3)

We cut the trajectory using the balls with radius 2nβ, β < 1. Formally, let
jn
0 = 0 and let for i = 1, 2, . . .

jn
i = min

{

k ≥ jn
i−1 : Xd(k) /∈ DXd(jn

i−1)(2
nβ)

}

. (6.4)

We write xn
i = Xd(j

n
i ) for the starting points of the parts of the trajectory.

There is another important distance in the proof for d = 2. It specifies the
close neighbourhood of traps, where the successive returns are not considered
as bad and all contribute to one jump of the Lévy process Y n. We choose
here 2nγ, γ < β, as this distance. The constants β, γ cannot take an arbitrary
value, their precise values will be specified in Section 6.4.

The most important role is again played by traps that have the depth in
some properly chosen interval. We use TM

ε (n) to denote the set of deep traps,

TM
ε (n) =

{

x ∈ D(n) : ε22n/α ≤ τx < M22n/α
}

, (6.5)

where as before we suppose ε ≪ 1 ≪ M . If x ∈ TM , then it is referred to as
the very deep trap, if x ∈ T ε, then it is the shallow trap. We also introduce
the set of “external” sites

E(n) =
{

x ∈ D(n) : dist(x, TM
ε ) ≥ 2nγ

}

. (6.6)
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It is now possible to define which parts of the trajectory will be considered
as bad. The part between xn

i and xn
i+1 is called bad if

(i) X can exit D(n), that is dist
(

xn
i ,D(n)c

)

≤ 2nβ.

(ii) X hits more than two deep traps during this part of the trajectory, that
is

∣

∣Xd[j
n
i , j

n
i+1) ∩ TM

ε

∣

∣ ≥ 2.

(iii) X returns during this part to some deep trap y after exiting the ball
Dy(2

nγ) around it.

(iv) The endpoint xn
i+1 of this part is closer than 2nγ to some deep trap, that

is xn
i+1 /∈ E(n).

(v) X hits a deep trap that is closer than 2nγ to the border of Dxn
i
(2nβ).

These five bad events are simple rephrasing of the corresponding events
from d = 2. We should add one additional bad event that comes from the fact
that in dimension larger than three the deep traps are not distant. (Actually,
it can be proved that for d large enough there exist two deep traps that are
neighbours in Zd, however, it will be not important for the future discussion.)
We introduce the set of bad (deep) traps,

B(n) =
{

x ∈ TM
ε : ∃y ∈ Dx(2

nγ), τy ≥ n−5/(1−α)ε22n/α
}

. (6.7)

That means that a deep trap is bad if it has some “quite deep” site in its
neighbourhood. The last condition for the bad part of the trajectory is

(vi) X hits a bad trap, that is X[jn
i , j

n
i+1) ∩ B(n) 6= ∅.

For every part X[jn
i , j

n
i+1) we define the score

sn
i =

{

∑jn
i+1

k=jn
i
ekτXd(k)χ{Xd(k) ∈ TM

ε } if the part is good,

∞ if the part is bad.
(6.8)

As in d = 2 we define an auxiliary sequence of i.i.d. random variables s̃n
i , whose

distribution will be specified later (see Section 6.5). Let J(n) be the index of
the first bad part of the trajectory. We set

s̄n
i =

{

sn
i if i < J,

s̃n
i if i ≥ J.

(6.9)

Then we define the score process by

Y n(t) =
1

22n/α

⌊t22n(1−β)⌋
∑

i=0

s̄n
i . (6.10)
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The processes Y n will be used as an approximation of rescaled time change
process

S̄n(t) =
1

22n/α

jn

⌊t22n(1−β)⌋
∑

i=0

eiτXd(i). (6.11)

In Sections 6.2, 6.3, and 6.4 we will prove that this approximation is rea-
sonable. Namely, in Section 6.2 we show that the time that is spent in the
shallow traps is negligible with respect to the time spent in the deep traps.
In Section 6.3 we bound the probability of hitting a very deep trap. Finally,
in Section 6.4 we prove that we can choose m large to ensure that J is large
enough.

Further, we prove the convergence of Y n to a certain Lévy process (Sec-
tion 6.5). This convergence will be then used to prove aging in the same way
as in d = 2 (Sections 6.6 and 6.7).

6.2 The shallow traps

We should prove that the time spent in the shallow traps is negligible with
respect to expected time spent in D(n). Since Xd needs approximately 22n

steps to leave D(n) and every site in D(n) is visited only finitely many times,
the order of time spend by X in D(n) is close to the order of the sum of 22n

α-stable variables, that is X spends in D(n) time that grows like 22n/α. Recall
that Λd denotes the exit time of Xd from D. We will prove

Lemma 6.2.1. There exists constant K1 independent of ε such that for P-a.e.
realisation of environment τ and for n large enough

E
[

Λd−1
∑

i=0

eiτXd(i)χ{Xd(i) ∈ T ε}
∣

∣

∣
τ
]

≤ K1ε
1−α22n/α. (6.12)

Proof. In the two-dimensional case the proof of this lemma was separated into
two parts—the description of the environment and the actual proof. Here we
choose a little bit different approach where both parts are mixed together. We
start with the upper bound on the time spend in really very shallow traps,
that is in traps with τx ≤ 1.

E
[

Λd−1
∑

i=0

eiτXd(i)χ{τXd(i) ≤ 1}
∣

∣

∣
τ
]

=
∑

x∈D

τxGD(0, x)χ{τx ≤ 1}

≤
∑

x∈D

GD(0, x) = E(Λd) = O(22n)≪ 22n/α. (6.13)
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Next, we divide the remaining part of T ε into disjoint sets T ε2−i+1

ε2−i , with
i ∈ {1, . . . , imax}, where imax is an integer satisfying

1/2 ≤ 2−imaxε22n/α < 1. (6.14)

The probability that a fixed site x is in T ε2−i+1

ε2−i can be bounded by

pn,i ≡ P
[

x ∈ T ε2−i+1

ε2−i

]

= ε−α2−2n2iα
[

L(ε22n/α−i)− 2−αL(ε22n/α−i+1)
]

≤ cε−α2−2n2iα,

(6.15)

since L is a bounded function.
For any fixed i ∈ {1, . . . , imax} and K ′ large we can write

P
[

E
[

Λd−1
∑

i=0

eiτXd(i)χ
{

Xd(i) ∈ T ε2−i+1

ε2−i

}

∣

∣

∣
τ
]

≥ K ′ε1−α2i(α−1)22n/α
]

= P
[

∑

x∈D

GD(0, x)τxχ
{

x ∈ T ε2−i+1

ε2−i

}

≥ K ′ε1−α2i(α−1)22n/α
]

≤ P
[

∑

x∈D

GD(0, x)χ
{

x ∈ T ε2−i+1

ε2−i

}

≥ K ′ε−α2iα−1
]

.

(6.16)

Using Markov inequality (with λn > 0) this can be bounded by

≤ exp(−λnK
′ε−α2iα−1)

∏

x∈D

[

(1− pn,i) + pn,ie
λnGD(0,x)

]

≤ exp(−λnK
′ε−α2iα−1)

∏

x∈D

[

1 + c2iα−2nε−α
(

eλnGD(0,x) − 1
)]

.
(6.17)

We should find an upper bound on the logarithm of the product in the last
equation. Since x ≥ log(1 + x), we have

log
∏

x∈D

[

1 + c2iα−2nε−α
(

eλnGD(0,x) − 1
)]

≤
∑

x∈D

c2iα−2nε−α
(

eλnGD(0,x) − 1
)

. (6.18)

Let λn = nGD(0, 0)−1. We divide the last sum into two parts. First, we
will sum over the sites that are close to the origin, |x| ≤ n2/(d−2). Since
GD(0, x) ≤ GD(0, 0), we have

∑

x∈D(n2/(d−2))

c2iα−2nε−α
(

eλnGD(0,x) − 1
)

≤ Cn2d/(d−2)2iα−2nε−αeλnGD(0,0) ≤ Cn2d/(d−2)2iα−2nε−αen. (6.19)
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The last expression tends to 0 as n→∞.
In the second part of the sum we cannot simply replaceGD(0, x) byGD(0, 0).

We use the following formula for the Green’s function (see (6.127) in Appendix)

GD(n)(0, x) = ad

(

|x|2−d − n2−d
)

+O
(

|x|1−d
)

, (6.20)

with ad being a constant depending only on dimension. It follows that for any
x ∈ D(n) \D(n2/(d−2)) we have GD(0, x) ≤ cn−2. Therefore, the argument of
the exponential in (6.18) is smaller than c′n−1. Using the fact that ex−1 ≤ 2x
for x sufficiently close to 0 we get

eλnGD(0,x) − 1 ≤ cnGD(0, x) (6.21)

and thus

∑

x∈D\D(n2/(d−2))

c2iα−2nε−α
(

eλnGD(0,x) − 1
)

≤
∑

x∈D\D(n2/(d−2))

Cn2iαε−α2−2nGD(0, x) ≤ C2iαε−αn, (6.22)

where we again used the fact that
∑

x∈D
GD(0, x) = O(22n). From (6.19) and

(6.22) it follows that the expression in (6.17) can be bounded from above by

exp(−K ′cnε−α2iα) exp(Cnε−α2iα). (6.23)

Therefore, it is possible to choose K ′ large enough such that this bound de-
creases exponentially with n for all i ∈ {0, . . . , imax}.

Summation over all possible values of i gives

P
[

imax
⋃

i=0

(

E
[

Λd−1
∑

i=0

eiτXd(i)χ(Xd(i) ∈ T ε2−i+1

ε2−i )
∣

∣

∣
τ
]

≥ K ′ε1−α2i(α−1)22n/α
)]

≤ cn exp(−c′n). (6.24)

By Borel-Cantelli argument we obtain

E
[

Λd−1
∑

i=0

eiτXd(i)χ(Xd(i) ∈ T ε2−i+1

ε2−i )
∣

∣

∣
τ
]

≤ K ′ε1−α2i(α−1)22n/α (6.25)

P-a.s. for all i and for n large enough. Combining together (6.13) and (6.25)
we get easily the claim of the lemma.
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6.3 The very deep traps

Similarly as in d = 2, we show that the very deep traps can be safely ignored.

Lemma 6.3.1. For every δ and m there exist M such that for n large enough
and of P-a.e. τ

P
[

X hits TM(n) before Λ(n)|τ
]

≤ δ. (6.26)

Proof. We use Borel-Cantelli argument to prove the lemma. Since

P
[

P[X hits TM(n) before Λ(n)|τ ] ≥ δ
]

≤ e−λnδE
[

exp
{

λnP[X hits TM (n) before Λ(n)|τ ]
}]

, (6.27)

we should bound the last expectation. We will use a very similar argument as
in the previous proof.

log E
[

exp
{

λnP[X hits TM(n) before Λ(n)|τ ]
}]

≤ log E
[

exp
{

λn

∑

x∈D

P[X hits x before Λ]χ(x ∈ TM)
}]

. (6.28)

Since P[x ∈ TM ] ≤ cM−α2−2n, we get

≤
∑

x∈D

log
{

1 + cM−α2−2n
(

exp{λnP[X hits x before Λ]} − 1
)}

≤
∑

x∈D

cM−α2−2n
{

exp(λnP[X hits x before Λ])− 1
}

.
(6.29)

Let λn = n. We again divide the sum into two parts. For |x| ≤ n2/(d−2) we use
P[X hits x before Λ] ≤ 1. Hence,

∑

x∈D(n2/(d−2))

cM−α2−2n
{

exp(λnP[X hits x before Λ])− 1
}

≤ cn2d/(d−2)2−2nen (6.30)

and this decreases to 0 as n→∞.
For |x| ≥ n2/(d−2) we use the following simple bound on the hitting prob-

ability of a point in D(n). Its proof can be found in Appendix 6.A, Proposi-
tion 6.A.2.

P
[

Xd hits x before D(n)c
]

≤ ad

(

|x|2−d − n2−d
)

+O
(

|x|1−d
)

. (6.31)

By the last formula the argument of the exponential in (6.28) is smaller than
cn−1 and thus

exp
(

λnP[X hits x before Λ]
)

− 1 ≤ cn|x|2−d (6.32)
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for some large c. We have thus

∑

x∈D\D(n2/(d−2))

cM−α2−2n
{

exp(λnP[X hits x before Λ])− 1
}

≤ cM−α2−2nn
∑

x∈D\D(n2/(d−2))

|y|2−d ≤ cM−αn. (6.33)

Inserting (6.30) and (6.33) into (6.27) we get

P
[

P[X hits TM(n) before Λ(n)|τ ] ≥ δ
]

≤ c exp(−nδ + c′M−αn). (6.34)

The proof is finished by taking M large enough.

6.4 J is large enough

We show here that the index of the first bad part of the trajectory is large
enough. Since we need that the process Y n(t) is relevant for our model (in the
sense that it reflects the real time change) up to some constant time level t0
that will be specified later, it is necessary that there is at least t02

2n(1−β) good
parts.

Lemma 6.4.1. For any δ, k, and for P-a.e. τ there exist constants m, γ, and
β not depending on ε and M such that

P[J(n) ≥ k22n(1−β)|τ ] ≥ 1− δ. (6.35)

Proof. We should show that the probability that any of events (i)–(vi) occurs
during the first k22n(1−β) parts is very small. Actually, we prove that in the
majority of cases it is event (i)—the possibility of exit from D(n)—that occurs
as the first. All other events occur with probabilities that are negligible with
respect to the probability of (i).

We use J(i), . . . , J(vi) to denote the indices of the first part where (i), . . . ,
(vi) occur. By the same reasoning as in d = 2, we first choose m large enough
such that

P[J(i) ≥ k22n(1−β)|τ ] ≥ 1− δ/4. (6.36)

Further, there exists a constant K satisfying

P[J(i) ≤ K22n(1−β)|τ ] ≥ 1− δ/4. (6.37)

Therefore, the event A =
{

J(i) ∈ [k22n(1−β), K22n(1−β)]
}

has the probability
that is larger than 1− δ/2.
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Conditionally on A, we will prove that it is possible to choose β and γ in
the way that, for P-a.e. τ ,

P
[

min{J(ii), . . . , J(vi)} ≤ J(i)

∣

∣A, τ
]

→ 0 as n→∞. (6.38)

To achieve this we should prove that probability that any of (ii)–(vi) occurs
during one part of the trajectory is much smaller than 22n(β−1). This is the
result of Lemmas 6.4.2–6.4.8. We will use the following values of the constants
γ and β,

γ =
1

d
and β = 1− 1

3d
. (6.39)

Event (iv). We first bound the probability of (iv)—exiting a part outside
E(n)—because the next lemmas rely on the fact that the parts starts in E . We
treat separately the origin since it is the starting point of the first part.

Lemma 6.4.2. For P-a.e. τ and for n large enough 0 ∈ E(n).

Proof.

P[0 /∈ E(n)] = P[∃x : x ∈ TM
ε ∩D(2nγ)] ≤ c2ndγ2−2nε−α. (6.40)

Since γ = 1/d the lemma follows by Borel-Cantelli argument.

The principal part of the estimation of the probability of (iv) is

Lemma 6.4.3. Let P1(n, x) be the probability that the simple random walk
started at x exits Dx(2

nβ) at some site that is not in E . Then for P-a.e. τ and
for every x ∈ D, P1(n, x) ≤ C2n(γd−2).

Proof. Let Ax(n) denotes the annulus

Ax(n) = Dx(2
nβ + 2nγ) \Dx(2

nβ − 2nγ). (6.41)

We first show that P-a.s. for K2 large enough

|Ax ∩ TM
ε | ≤ K22

n(β(d−1)+γ−2) for all x ∈ D. (6.42)

Indeed, since the number of the sites in Ax is bounded by |Ax| ≤ c′2n(β(d−1)+γ),
we have

P
[

|Ax ∩ TM
ε | ≥ K22

n(β(d−1)+γ−2)
]

≤ exp
(

− λK22
n(β(d−1)+γ−2)

){

1 + c2−2nε−α(eλ − 1)
}c′2n(β(d−1)+γ)

≤ exp
{

2n(β(d−1)+γ−2)[−λK2 + c(eλ − 1)]
}

.

(6.43)
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An easy calculation gives that β(d − 1) + γ − 2 ≥ 0 if d ≥ 3 for our choice of
constants. The fact (6.42) then follows by Borel-Cantelli argument.

If (6.42) is true, then there is at most cK22
n(β(d−1)+γ−2)2nγ(d−1) points on

the border of Dx(2
nβ) that are not in E . The probability that X exits Dx(2

nβ)
in any of such points is O(2−nβ(d−1)) (see [Law91] Lemma 1.7.4). Hence,

Px

[

X exits Dx(2
nβ) in E c

]

≤ cK22
n(β(d−1)+γ−2)2nγ(d−1)2−nβ(d−1) ≤ C2n(γd−2). (6.44)

This finishes the proof.

Event (v). Next, we bound the probability that (v) happens.

Lemma 6.4.4. Let P2(n, x) be the probability that the simple random walk
started at x hits a deep trap in Dx(2

nβ) ∩ Ax(n) before exiting Dx(2
nβ). Then

for P-a.e. τ and for all x ∈ D, P2(n, x) ≤ C2n(β+γ−2).

Proof. According to (6.42) there is P-a.s. at most K22
n(β(d−1)+γ−2) deep traps

in Dx(2
nβ) ∩ Ax(n). The probability that the walk hits one particular such

trap y is by (6.129) from Appendix 6.A bounded from above by c|x − y|2−d.
There exists constant C such that for all y ∈ Ax(n), |x − y|2−d ≤ C2nβ(2−d).
The required probability is then bounded by

CK22
n(β(d−1)+γ−2)2nβ(2−d) = C2n(β+γ−2). (6.45)

This completes the proof.

Events (ii) and (vi). The next preparatory lemma will serve to bound
(ii)—hitting of two deep traps in one part—and also in some sense to bound
(vi). It is more precise than is needed here, but this more precise result will
be used later.

Lemma 6.4.5. Let

Vx(n) =
∑

y∈T M
ε

Px

[

Xd hits y before exiting Dx(2
nβ)|τ

]

. (6.46)

Then for any δ and P-a.e. τ there exists n0 such that for n ≥ n0 and for all
x ∈ E(n)

(1− δ)KpM
ε 22n(β−1) ≤ Vx(n) ≤ (1 + δ)KpM

ε 22n(β−1) (6.47)

for some constant K depending only on the dimension.
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Proof. We follow a similar procedure as in the proof of Lemma 5.5.2 in the
two-dimensional case. Without lost of generality we can suppose that x is the
origin. First, we define another constant ν,

γ < ν = 1− 2/(3d) < β. (6.48)

We divide the sum in (6.46) into three parts. We use Σ1 to denote the sum over
y ∈ TM

ε ∪(D(2nβ−2nν+1)\B(2nν)), Σ2 to denote the sum over y ∈ TM
ε ∩B(2nν),

and Σ3 to denote the sum over y ∈ TM
ε ∩(D(2nβ)\D(2nβ−2nν+1)). The reason

why we introduce the third sum is the error term in (6.130), which is too large
for the traps that are too close to the border of D(2nβ).

As in d = 2 the main contribution comes from Σ1, so we treat it first. We
cover the ball D(2nβ) by cubes whose edge-length is 2nν . Let pM

ε = ε−α−M−α.
It is not difficult to show that P-a.s.

∣

∣Bx(2
nν) ∩ TM

ε

∣

∣ ∈
(

(1− δ)2ndνpM
ε 2−2n, (1 + δ)2ndνpM

ε 2−2n
)

(6.49)

for all x ∈ D. Indeed, let

Fx =
{

|Bx(2
nν) ∩ TM

ε | ≥ (1 + δ)2ndνpM
ε 2−2n

}

. (6.50)

Then for any small η and for n large enough

P[Fx] ≤ exp
(

− λ(1 + δ)2n(dν−2)pM
ε

){

1 + (eλ − 1)(1 + η)pM
ε 2−2n

}2ndν

≤ exp
{

2n(dν−2)pM
ε [−λ(1 + δ) + (eλ − 1)(1 + η)]

}

.
(6.51)

Since for any δ one can choose λ and η small enough such that the exponent
in the last expression is negative, we have

P[Fx] ≤ exp(−c2n(dν−2)) (6.52)

for n large enough. Summation over all x gives

P
[

⋃

x

Fx

]

≤ 2nd exp
(

− c2n(dν−2)
)

. (6.53)

Since dν−2 > 0, the upper bound for (6.49) is finished. The proof of the lower
bound is completely analogous.

We can now actually estimate Σ1. Let G = 2nνZd and let

H =
{

x ∈ G \ {0} : Bx(2
nν) ∩D(2nβ − 2nν+1) 6= ∅

}

. (6.54)
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We use D to denote D
(

2nβ − 2nν+1
)

\ B
(

2nν
)

. Using estimation (6.130) from
Appendix 6.A we get

Σ1 ≤
∑

y∈T M
ε ∩D

ad

{

|y|2−d − 2nβ(2−d) +O(|y|1−d)
}(

1 +O(2nβ − |y|)2−d
)

≤
∑

x∈H

∑

y∈T M
ε

y∈Bx(2nν )

ad

{

|y|2−d − 2nβ(2−d) +O(|y|1−d)
}(

1 +O(2nβ − |y|)2−d
)

.
(6.55)

For any y ∈ Bx(2
nν), x ∈ H ,

∣

∣|y|2−d − |x|2−d
∣

∣ ≤ c2nν|x|1−d, (6.56)

By the last fact and (6.49) the sum Σ1 can be bounded by

Σ1 ≤
∑

x∈H

(1 + δ)2ndνpM
ε 2−2nad

{

|x|2−d − 2nβ(2−d) + c2nν|x|1−d
}

+R, (6.57)

where

R =
∑

x∈H

∑

y∈T M
ε

y∈Bx(2nν)

ad

{

|y|2−d − 2nβ(2−d) +O(|y|1−d)
}

O(2nβ − |y|)2−d. (6.58)

Every site y from the last summation satisfies |y| ≤ 2nβ − 2nν . Therefore,
O(2nβ − |y|)2−d = O(2nν)2−d. Hence, the error term R is much smaller than
the sum in (6.57).

We now estimate the sum in (6.57). Replacing the summation by integra-
tion and making again an error of order 2nν|x|1−d we get

Σ1 ≤ (1 + δ)pM
ε 2−2n

∫

D

ad

{

|x|2−d − 2nβ(2−d) + c2nν|x|1−d
}

dx+R

≤ (1 + δ)KpM
ε 22n(β−1)(1 + o(1)).

(6.59)

The constant K can be explicitly calculated, K = adωd/2 − 1/d, with ωd

being the surface of d-dimensional unit sphere.
The lower bound for Σ1 can be obtained in the same way. It is actually

much simpler, because the lower bound (6.128) on hitting probability is less
complicated than the upper bound (6.130). Therefore, there is no complication
with the error term R. We get

Σ1 ≥ (1− 2δ)KpM
ε 22n(β−1). (6.60)

We should still bound Σ2 and Σ3. To estimate Σ2 we need a finer de-
scription of the homogeneity of the environment. Let imax be the smallest
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integer satisfying 2nγ+i ≥ 2nν , i.e. imax ∼ n(ν − γ). Then for P-a.e. τ , for all
i ∈ {−1, 0, . . . , imax}, and for all x ∈ D

∣

∣Bx(2
nγ+i) ∩ TM

ε

∣

∣ ≤ n5
(

1 ∨ 2ndγ+id2−2n
)

. (6.61)

To see this, we first fix i ∈ {−1, . . . , imax}. Then for any x ∈ D we have

P
[

|Bx(2
nγ+i) ∩ TM

ε | ≥ (1 ∨ 2ndγ+id2−2n)n5
]

≤ exp
(

− λn5(1 ∨ 2ndγ+id2−2n)
){

1 + c(eλ − 1)ε−α2−2n
}2ndγ+id

≤ C exp(−cλn5).

(6.62)

By summation over all x and i we get the upper bound cn2nde−λn5
for the

probability of the complement of the event in (6.61). Therefore, (6.61) is true
P-a.s. for n large enough.

To bound Σ2 we cover the cube B(2nν) be the same system of objects as
in d = 2. By (6.129) from Appendix 6.A and by (6.61) we get

Σ2 ≤ C

n(ν−γ)
∑

i=−1

n5
(

1 ∨ 2ndγ+id2−2n
)

2(γn+i)(2−d)

≤ C

n(ν−γ)
∑

i=−1

n5(2(γn+i)(2−d) ∨ 22nγ+2i−2n). (6.63)

The fist term in the parentheses is decreasing in i and the second one is in-
creasing. Hence, the sum can be bounded by Cn6(2γn(2−d)∨22n(ν−1)). However,
both terms 2γn(2−d) and 22n(ν−1) are much smaller than 22n(β−1) for our choice
of constants. This means that Σ2 ≪ Σ1.

It remains to estimate the sum Σ3, that is the sum over y satisfying
y ∈ TM

ε ∩ (D(2nβ) \ D(2nβ − 2nν+1)). However, this sum can be bounded
in a similar way as the probability of hitting a deep trap in annulus Ax(n) was
bounded in Lemma 6.4.4. Following the same reasoning (with γ replaced by
ν) we get Σ3 ≤ C2n(β+ν−2) ≪ 22n(β−1). That means again Σ3 ≪ Σ1. This
completes the proof.

Before finishing the bound on the probability of hitting two deep traps in
one part, we should proof another lemma. It will serve not only to bound the
probability of (ii), but it also bounds the probability of (vi). Recall that B(n)
denotes the set of bad deep traps (see (6.7)).

Lemma 6.4.6. Let

Wx(n) =
∑

y∈B(n)

Px[Xd hits y before exiting Dx(2
nβ)|τ ]. (6.64)
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Then for P-a.e. τ and for all x ∈ E(n)

Wx(n) = o(22n(β−1)). (6.65)

Proof. The proof is very similar to the previous one. We divide the sum into
three parts in the same way as before, we keep the notation Σ1,. . . , Σ3 for the
parts of the sum. Since B(n) ⊂ TM

ε , it follows from the previous proof that Σ2

and Σ3 are o(22n(β−1)). Hence, it remains to bound from above the sum Σ1.
This bound will be result of the same calculation as before if we show that

∣

∣Bx(2
nν) ∩ B(n)

∣

∣ = o
(
∣

∣Bx(2
nν) ∩ TM

ε (n)
∣

∣

)

= o
(

2n(dν−2)
)

(6.66)

for all x ∈ D (compare it with (6.49)). We will show that
∣

∣Bx(2
nν) ∩ B(n)

∣

∣ ≤ 2ndνn5α/(1−α)+22n(γd−4)2nd(1−ν) ≡ f(n). (6.67)

This bound is clearly not the optimal one, but it is sufficient for our purposes
since the right-hand side of the last expression is clearly o(2n(dν−2)) as can be
easily seen from

dν + γd− 4 + d(1− ν) = dν − 3 + 2/3 < dν − 2. (6.68)

To show (6.67) we use the standard strategy. Let G denote the grid 2nνZd.
Then, |G ∩ D| ≤ c2nd(1−ν). We use A to denote the event that there exists a
cube with edge-length 2nν containing more than f(n) bad sites. If A is true,
then there is also a cube with edge-length 2 · 2nν centred on G that contains
more than f(n) bad sites. Therefore,

P[A] ≤
∑

x∈G∩D

P
[

|Bx(2
nν+1) ∩ B| ≥ f(n)

]

≤ C2nd(1−ν)P
[

|B(2nν+1) ∩ B| ≥ f(n)
]

. (6.69)

Using the definition of B it is not difficult to show that

P[x ∈ B] ≤ cε−2α2n(γd−4)n5α/(1−α). (6.70)

Therefore, we have by Markov inequality

P
[

|B(2nν+1) ∩ B| ≥ f(n)
]

≤ f(n)−1E
[

∑

x∈B(2nν+1)

χ{x ∈ B}
]

≤ Cε−2αn−22−nd(1−ν). (6.71)

Putting this into (6.69) we obtain

P[A] ≤ Cn−2. (6.72)

Therefore, (6.67) follows by Borel-Cantelli argument, and the proof of the
lemma is completed.
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We use the previous two lemmas to show

Lemma 6.4.7. For P-a.e τ and for all x ∈ E , the probability that the sim-
ple random walk started at x visits two deep traps before exiting Dx(2

nβ) is
o(22n(β−1)).

Proof. We have

Px

[

Xd hits two deep traps
]

≤ P
[

Xd hits a second deep trap
∣

∣Xd hits TM
ε \ B

]

Px

[

Xd hits TM
ε \ B

]

+ P
[

Xd hits a second deep trap
∣

∣Xd hits B
]

Px

[

Xd hits B
]

. (6.73)

By Lemma 6.4.5,

Px

[

Xd hits TM
ε \ B

]

= O
(

22n(1−β)
)

. (6.74)

Similarly, by Lemma 6.4.6,

Px

[

Xd hits B
]

= o
(

22n(1−β)
)

. (6.75)

If the fist deep trap is not bad, we can apply strong Markov property similarly
as in d = 2 to show

P
[

Xd hits second deep trap
∣

∣Xd hits TM
ε \ B

]

= O
(

22n(1−β)
)

. (6.76)

Inserting (6.74)–(6.76) into (6.73) it is easy to finish the proof.

Event (iv). The last bad event that we should treat is (iii)—the possibility
of the return to a deep trap x after exiting the ball Dx(2

nγ) around it.

Lemma 6.4.8. Let x ∈ D satisfies dist(x,Dc) ≥ 2nγ. We use pret(x) to denote
the probability that the simple random started at x that have exited Dx(2

nγ)
returns to x before Λd. Then this probability satisfies pret(x) ≤ C2nγ(2−d).

Proof. Since

GD(x, x) = GDx(2nγ )(x, x) + pret(x)GD(x, x), (6.77)

we have

pret(x) = 1− GD(2nγ )(0, 0)

GD(x, x)
≤ 1− GD(2nγ )(0, 0)

GD(2m2n)(0, 0)
≤ C2nγ(2−d) (6.78)

by (6.126) from Appendix 6.A.
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We can now finish the proof of (6.38), and consequently also the proof of
Lemma 6.4.1. By Lemma 6.4.3 we have

P[J(iv) < J(i)|A, τ ]

≤
K22n(1−β)

∑

i=0

P
[

(iv) is true for X[jn
i , j

n
i+1)

]

≤ C22n(1−β)2n(γd−2) (6.79)

and it converges to 0 as n → ∞ for our choice of constants. A very similar
calculation and Lemma 6.4.4 give

P[J(v) < J(i)|A, τ ] ≤ C22n(1−β)2n(γd−2) → 0 as n→∞. (6.80)

Further, we suppose that 0 ∈ E which is possible because of Lemma 6.4.2. We
use B to denote A ∩ (J(iv) ≥ J(i)). Using Lemma 6.4.6 we get

P[J(vi) < J(i)|B, τ ] ≤
K22n(1−β)

∑

i=0

Wxn
i
(n)→ 0 as n→∞, (6.81)

and similarly, by Lemma 6.4.7,

P[J(ii) < J(i)|B, τ ]→ 0 as n→∞. (6.82)

It remains to estimate the probability of (iii). We first bound the number N
of visited deep traps before Λ. Lemma 6.4.5 together with Markov inequality
give

P[N ≥ n1/2|B, τ ] ≤ Cn−1/2. (6.83)

Further,

P[J(iii) < J(i)|B, τ ]

≤ P[J(iii) < J(i)|N < n1/2, B, τ ]P[N < n1/2|B, τ ] + P[N ≥ n1/2|B, τ ]. (6.84)

However, from Lemma 6.4.8 it follows that

P[J(iii) < J(i)|N < n1/2, B, τ ] ≤ Cn1/22nγ(2−d), (6.85)

and so

P[J(iii) < J(i)|B, τ ] ≤ Cn1/22nγ(2−d) + n−1/2 → 0. (6.86)

The claim (6.38) follows then from (6.79)–(6.86).
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6.5 Properties of the score

As in the proof for d = 2, we define the family of random variables sx indexed
by vertices of Zd. The random variable sx has the same distribution as the
score of the part of X that is started at x. Since all good parts of trajectory
start in E(n) and, more over, in the distance larger than 2nβ from D(n)c, we
are interested only in x ∈ E0(n), where the set E0(n) is defined by

E0(n) =
{

x ∈ E(n) : dist
(

x,D(n)c
)

≥ 2nβ
}

. (6.87)

To study the distribution of the variables sx we apply the same strategy as
in d = 2. Let h(x) be a function satisfying

h(x) ≥ 1/n, lim
x→∞

h(x) = 0, (6.88)

and
|L(22n/αx)− 1| = o(h(n)) for all x ≥ ε. (6.89)

Further, let zn(i) be a sequence satisfying ε = zn(0) < zn(1) < · · · < zn(R) =
M , and zn(i+ 1) − zn(i) ∈ (h(n), 2h(n)) for all i ∈ {0, . . . , R − 1}. Let pn

i

denote the factor

pn
i =

1

zn(i)α
− 1

zn(i+ 1)α
. (6.90)

Lemma 6.5.1. Let Px(n, i) be the probability that the simple random walk

started at x hits the set T
zn(i+1)
zn(i) before exiting from Dx(2

nβ). Then for any

δ > 0 and P-a.e. τ there is n0 such that for all n ≥ n0, for all x ∈ E0(n), and
for all i ∈ {0, . . . , R− 1}

Px(n, i) ∈
(

K(1− δ)22n(β−1)pn
i ,K(1 + δ)22n(β−1)pn

i

)

. (6.91)

Proof. We will need the following technical claim

Lemma 6.5.2. For any δ > 0 there exists n0, such that for n ≥ n0

P
[

0 ∈ T zn(i+1)
zn(i)

]

∈
(

(1− δ)2−2npn
i , (1 + δ)2−2npn

i

)

. (6.92)

Proof. Let g(x) = L(x)− 1. Then we have

pn
i = 2−2n

[( 1

zn(i)α
− 1

zn(i+ 1)α

)

+
g
(

22n/αzn(i)
)

zn(i)α
− g

(

22n/αzn(i+ 1)
)

zn(i+ 1)α

]

. (6.93)

We should thus show that

g
(

22n/αzn(i)
)

zn(i)α
− g

(

22n/αzn(i+ 1)
)

zn(i+ 1)α
= o

( 1

zn(i)α
− 1

zn(i+ 1)α

)

. (6.94)

However, this is obviously true since zn(i)−α − zn(i+ 1)−α ≍ h(n), and, as
follows from (6.89), g

(

22n/αzn(i)
)

= o(h(n)).



138 6. Aging for Bouchaud’s model for dimension larger than two

Using the previous lemma we show

Lemma 6.5.3. For all x ∈ D and for all i ∈ {0, . . . , R− 1}
∣

∣Bx(2
nν) ∩ T zn(i+1)

zn(i)

∣

∣ ∈
(

(1− δ)2n(dν−2)pn
i , (1 + δ)2n(dν−2)pn

i

)

. (6.95)

Proof. It is easy to show this claim using the same reasoning as in the proof
of (6.49). Two additional observation are necessary. First, pn

i 2n(dν−2) ≥
cn−12n(dν−2) → ∞ as n → ∞ as follows from (6.88). The modified version
of inequality (6.51) is thus suitable for an application of the Borel-Cantelli
lemma. Second, the additional summation over i does not create any problem
since R ≤ Cn for come constant C depending only on ε and M .

We can now finish the proof of Lemma 6.5.1. We use Vx,i(n) to denote

Vx,i(n) =
∑

y∈T
zn(i+1)
zn(i)

Px

[

Xd hits y before exiting Dx(2
nβ)

∣

∣τ
]

. (6.96)

The same procedure as in the proof of Lemma 6.4.5 together with the previous
lemma give

(1− δ)Kpn
i 22n(β−1) ≤ Vx,i(n) ≤ (1 + δ)Kpn

i 22n(β−1). (6.97)

The proof is then finished using the previous expression, Lemma 6.4.7, and
Bonferroni’s inequalities. Indeed,

Px(n, i) ≤ Vx,i(n) ≤ (1 + δ)Kpn
i 22n(β−1). (6.98)

Similarly,

Px(n, i) ≥ Vx,i(n)− P
[

Xd hits two traps from T
zn(i+1)
zn(i)

]

≥ Vx,i(n)− P
[

Xd hits two traps from TM
ε

]

≥ (1− 2δ)Kpn
i 2

2n(β−1).

(6.99)

This completes the proof.

The next lemma describes the distribution of sx’s.

Lemma 6.5.4. For P-a.e. random environment τ ,

lim
n→∞

max
x∈E0(n)

1− E[exp(− λsx

22n/α )|sx <∞, τ ]

22n(β−1)
= F (λ),

lim
n→∞

min
x∈E0(n)

1− E[exp(− λsx

22n/α )|sx <∞, τ ]

22n(β−1)
= F (λ),

(6.100)

with

F (λ) = F (λ; ε,M, α) = K
(

pM
ε −

∫ M

ε

α

1 + λG(0)z
· 1

zα+1
dz

)

. (6.101)
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Proof. When the process X hits a deep trap y during its visit of Dx(2
nβ) and

when the part started at x is good, then the score of this part is simply the time
spent in y before the exit from Dy(2

nγ). The process X hits y a geometrical
number times. The mean of this geometrical variable is GD(2nγ )(0, 0). Each
visit take an exponential time with mean τy. Using the expression (6.126) from
Appendix we get the following formula for the conditional Laplace transform
of sx.

E
[

exp
(

− λsx

22n/α

)
∣

∣

∣
τy, sx <∞

]

=
1

1 + λτy2−2n/αG(0)
(

1 + o(1)
) . (6.102)

The probability that sx =∞ is o(22n(β−1)) as follows from the previous section.
We have thus by the same calculation as in d = 2

E
[

exp
(

− λsx

22n/α

)
∣

∣

∣
sx <∞, τ

]

= E
[

exp
(

− λsx

22n/α

)
∣

∣

∣
τ
]

(

1 + o(22n(β−1))
)

.

(6.103)
The last expectation can be estimated using Lemma 6.5.4 and (6.102),

E
[

exp
(

− λsx

22n/α

)
∣

∣

∣
τ
]

≥

(

1− (1 + δ)KpM
ε 22n(1−β)

)

+K22n(β−1)

R
∑

i=1

pn
i (1− δ)

1 + λzn(i)G(0)(1 + o(1))
. (6.104)

The last expression can be bounded from bellow for n large by

1−K22n(β−1)
(

pM
ε −

∫ M

ε

α

1 + λG(0)z
· 1

zα+1
dz

)

− δC22n(β−1)pM
ε . (6.105)

The required upper bound on the first expression in (6.100) is then easy to
obtain from the last expression and (6.103). The proof of the lower bound for
the second expression in (6.100) is very similar.

Before proving the convergence of sequence Y n we should define the aux-
iliary random variables s̃n

i . We require that they satisfy the same relation as
sx’s in the limit, i.e.

E
[

exp
(

− λ

22n/α
s̃n

i

)]

= 1− F (λ)22n(β−1). (6.106)

Now, we have all ingredients to show the convergence of the sequence of time
changes Y n.
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Proposition 6.5.5. For P-a.e. realisation of the environment, the sequence
of processes Y n(t) converges weakly in the Skorokhod topology on D([0,∞)) to
the Lévy process Y (t), whose Lévy measure ρ is given by

ρ(dx) =
αK
G(0)

∫ M

ε

1

zα+2
exp

(

− x

zG(0)

)

dz dx. (6.107)

Proof. The proof is exactly the same as this of Proposition 5.6.5 in the two-
dimensional case. The only difference is that all factors 2n/α in formulas in
d = 2 should be replaced by 22n/α, and similarly n1−α−β should be replaced by
22n(1−β).

6.6 Proof of aging for function R(tw, tw + t)

We use the convergence of Y n that we have shown in the previous section
to prove the first part of Theorem 6.1.1 as in the two-dimensional case. The
limiting function R(θ) can be calculated explicitly using the arcsine law for
Lévy processes and is actually the same as in d = 2. The proof of this result
is very similar to that one in d = 2. We do not repeat it completely.

Proposition 6.6.1. For P-a.e. realisation of the environment τ

lim
t→∞

R(t, t+ θt) =

∫ 1/1+θ

0

sinαπ

π
uα−1(1− u)−α du ≡ R(θ) (6.108)

for every 0 < θ <∞.

Proof. As before we add to Y n and Y an auxiliary Lévy process Z with the
Lévy measure

ρ′(dx) =
αK
G(0)

(

∫ ε

0

+

∫ ∞

M

) 1

zα+2
exp

(

− x

zG(0)

)

dz dx. (6.109)

According to the value of t, we choose an integer n = n(t) satisfying

1 ≤ t

22n(t)/α
< 22/α. (6.110)

We rescale the time t. The scaled value of t is defined by s = s(t) = t2−2n(t)/α.
The choice of constants M and ε can be done in the same way as in Part I of
the proof in the two-dimensional case. Only obvious changes as in the proof of
Proposition 6.5.5 are needed. All lemmas that are needed for the adaptation
have been already proved.
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Part II deals only with convergence of the range of Ỹ n and is completely
independent of dimension. Part III of the two-dimensional proof requires only
one modification. We should only replace Dy(2

nn−κ) by Dy(2
nγ).

The last part of the proof in d = 2 was the proof of Lemma 5.7.4. In
this lemma we proved that if s and (1 + θ)s fall into one jump of the Lévy
process, then X is at times t and (1 + θ)t with large probability at the same
site. We should prove an equivalent of this lemma here, because the original
proof depends on the fact that we have worked in d = 2. As before we define
E3(n, s) by

E3(n, s) =
{

dist(s,Rn) > 2δ2, dist((1 + θ)s,Rn) > 2δ2

and (s, (1 + θ)s) ∩Rn = ∅
}

.
(6.111)

We use y to denote the deep trap that caused the jump of Ỹ n where s and
(1 + θ)s are.

Lemma 6.6.2.

lim
t→∞

P
[

X(t) = y
∣

∣E3

(

n(t), s(t)
)]

= lim
t→∞

P
[

X
(

(1 + θ)t
)

= y
∣

∣E3

(

n(t), s(t)
)]

= 1. (6.112)

Proof. We show the lemma only for X(t), the proof for X((1 + θ)t) is very
similar. Let t1 denote the time when X arrives the first time to y, and let t2 is
the moment of the last visit of y before the exit from Dy(2

nγ). Let U denote
the time that X spends during excursions from y between t1 and t2. We bound
the expected value of U .

E[U ] ≤
∑

z∈Dy(2nγ )\{y}

GDy(2nγ )(y, z)τz

≤
∑

z∈D

GD(0, z)τzχ{τz ≤ n−5/(1−α)22n/α}. (6.113)

In the last inequality we used the fact that y /∈ B(n), because, owing to
condition (vi), y is necessarily not bad. The last expression can be bounded
using the formulas (6.13) and (6.25). Namely, let imax be defined as after (6.13),
and let imin be an integer satisfying

n−5/(1−α)22n/α ≤ 2−iminε22n/α < 2n−5/(1−α)22n/α. (6.114)
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Then (6.113) is smaller than

∑

z∈D

GD(0, z)τzχ{τz ≤ 1}+
imax
∑

imin

GD(0, z)τzχ
{

z ∈ T ε2−i+1

ε2−i

}

≤ C22n +

imax
∑

imin

K ′ε1−α2−i(1−α)22n/α ≤ C22n/αn−5. (6.115)

Further, we proceed as in d = 2. We consider two cases. First, if t2 − t ≤
n−222n/α, we use the fact that X(t2−) = y and we have

P[X(t) = y] ≥ exp
(

− t2 − t
τy

)

≥ exp
(

− 22n/αn−2

ε22n/α

)

≥ 1− C/n2. (6.116)

Second, if t2 − t > n−222n/α, we have by Fubini theorem

E[U ] = E
[

∫ t2

t1

χ{X(u) 6= y}du
]

=

∫ t2

t1

P[X(u) 6= y]du. (6.117)

Since E[U ] ≤ C22n/αn−5, it is easy to see from the previous formula that there
exist u ∈ [t, t+ n−222n/α] such that

P[X(u) 6= y] ≤ Cn−2. (6.118)

The proof is finished by a construction of a coupled process X ′ which is the
same as in d = 2.

6.7 Proof of aging for function Π(tw, tw + t)

In the following proposition we present the exact form of the limiting function
Π(θ). The second part of Theorem 6.1.1 is then its direct consequence. We
use µ1 to denote the distribution of the size of the jump of Ỹ that intersect
level 1.

Proposition 6.7.1. For P-a.e. realisation of the environment τ

lim
t→∞

Π
(

t, t+ θt
)

=

∫ ∞

0

( ℓ

ℓ+ θG(0)

)1+α

µ1(dℓ) = Π(θ). (6.119)

Proof. There are only small differences between the proof of this proposition
and the proof of subaging in the two-dimensional case. We use ℓn(s) to denote
the size of the jump of Ỹ n that intersects the level s = t/22n(t)/α. Let y be
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the depth of the trap that is “responsible” for this jump. (If there is one, that
means if Ỹ n is relevant and s is far enough from Rn.) Then we have

22n/αℓn(s) = τy

ξ
∑

i=1

e′i, (6.120)

where e′i’s are i.i.d. exponential with mean one, and ξ is geometrical random
variable with meanGD(2nγ )(0, 0) = G(0)−O(2nγ(2−d)). Introducing the rescaled
depth σy(n) = τy(n)/2

2n/α, we get

ℓn(s) = σy

ξ
∑

i=1

e′i. (6.121)

As before the distribution νn of visited deep traps converges weakly to

ν(dx) =
α

ε−α −M−α
· 1

xα+1
dx for ε ≤ x ≤M. (6.122)

The random variable
∑ξ

i=1 e
′
i with density fn converges weakly to the distri-

bution whose density is

f(x) = G(0)−1 exp
(

− xG(0)−1
)

. (6.123)

With this notation the Lemmas 5.8.4 and 5.8.5 can be overtaken directly from
d = 2 without any change. To finish the proof we should only slightly modify
the calculation of integral I(t),

I(t) =

∫ ∞

0

∫ M

ε

exp
(

− θt

a22n/α

)

dF n
ℓ (a)µn

s (dℓ). (6.124)

Taking t = s22n/α we get

I(s22n/α) =

∫ ∞

0

∫ M

ε

exp
(

− θs

a

)

dF n
ℓ (a)µn

s (dℓ). (6.125)

Further steps are obvious. The expression θsα/(a log 2) should be everywhere
replaced by θs/a and the constant K′ by G(0). After an easy computation we
get the the claim of the proposition.

Appendix 6.A Properties of simple random walk

We recall here some known facts about Green’s function and hitting probabil-
ities of the simple random walk (SRW) on Zd. We use G(0) = Gd(0) to denote
the mean number of visit of 0 by SRW started at 0.
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Proposition 6.A.1. The Green’s function GD(n)(·, ·) of SRW killed on exit
from disk D(n) satisfies

GD(n)(0, 0) = G(0)− O
(

n2−d
)

. (6.126)

and
GD(n)(0, x) = ad

(

|x|2−d − n2−d
)

+O
(

|x|1−d
)

, (6.127)

where ad = d
2
Γ(d

2
− 1)π−d/2.

Proof. For proof see [Law91], Proposition 1.5.9.

Let pn(0, x) denote the probability that SRW started at 0 hits x before the
exit from D(n).

Proposition 6.A.2. The function pn(0, x) satisfies

pn(0, x) ≥ ad

G(0)

(

|x|2−d − n2−d
)

+O
(

|x|1−d
)

, (6.128)

pn(0, x) ≤ ad

(

|x|2−d − n2−d
)

+O
(

|x|1−d
)

. (6.129)

More precisely pn(0, x) can be bounded from above by

pn(0, x) ≤ ad

G(0)

(

|x|2−d − n2−d +O
(

|x|1−d
))(

1 +O
(

(n− |x|)2−d
))

. (6.130)

Proof. The first two claims follows from equation (6.127),

GD(n)(0, x) = pn(0, x)GD(n)(x, x), (6.131)

and 1 ≤ GD(n)(x, x) < G(0). The third fact is a consequence of (6.131) and

GD(n)(x, x)
−1 ≤ GDx(n−|x|)(x, x)

−1

= GD(n−|x|)(0, 0)−1 = G(0)−1 +O
(

(n− |x|)2−d
)

, (6.132)

which is a consequence of (6.126).
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of equilibrium dynamics in spin-glasses and other glassy systems,
Spin glasses and random fields (A. P. Young, ed.), World Scientific,
Singapore, 1998.
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