Blatt 7

Abgabe am 1. November

Aufgabe 37. (zur Wiederholung ...) (A-B, 10 Punkte)

Ein Angler hat drei Angelplätze $O \in \{1,2,3\}$, die er mit gleicher Wahrscheinlichkeit aufsucht. Wirft er die Angel am ersten Platz aus, so beißt ein Fisch an mit der Wahrscheinlichkeit p_1 , am zweiten mit der Wahrscheinlichkeit p_2 , am dritten mit der Wahrscheinlichkeit p_3 . Alle Resultate sollen als Funktion von p_1, p_2, p_3 angegeben und für $p_1 = p_2 = \frac{1}{8}, p_3 = \frac{1}{20}$ berechnet werden.

- (a) Der Angler wählt einen Platz und wirft die Angel aus. Wie gross ist die Wahrscheinlichkeit p_A des Ereignisses $A = \{\text{beim ersten Wurf beisst ein Fisch an}\}$?
- (b) Er wiederholt nun das Vorgehen in (a): Er wählt nach jedem Wurf zufällig einen Angelplatz und wirft seine Angel aus.
 - (i) Sei M die Nummer des Versuchs, bei dem der erste Fisch anbeisst. Welche Verteilung hat M?
 - (ii) Er wiederholt das Vorgehen in (a) 20 Mal. Es sei N_0 die Anzahl gefangener Fische. Bestimme den Erwartungswert von N_0 .
- (c) Er wählt nun zufällig einen Angelplatz $O \in \{1,2,3\}$ und wirft seine Angel nur an diesem Platz aus. Die Anzahl Würfe W ist zufällig, unabhängig von der Wahl des Angelplatzes, und erfüllt $P(W=k)=\frac{\lambda^k}{k!}e^{-\lambda}$, für alle $k=0,1,\ldots$, mit $\lambda=40$ (Poissonverteilung). Sei N die Anzahl gefangener Fische in den W Würfen.
 - (i) Bestimme für i = 1, 2, 3 und $k \ge 0$ die bedingte Wahrscheinlichkeit $P[N = k \mid O = i]$.
 - (ii) Es sei bekannt, dass während des Angelns nur einmal ein Fisch angebissen hat. Bestimme die Wahrscheinlichkeit dafür, dass der Angler am ersten Platz geangelt hat.

Aufgabe 38. Korrelation und Unabhängigkeit (B, 3 Punkte)

In der Vorlesung haben wir gesehen, dass wenn X, Y unabhängige Zufallsvariablen sind, die Kovarianz, wenn sie definiert ist, Cov(X,Y) = 0 erfüllt. Zeige, dass die umgekehrte Implikation nicht gilt. D.h. finde zwei Zufallsvariablen X, Y mit Cov(X, Y) = 0 die aber nicht unabhängig sind.

 $\mathit{Hinweis}$: Betrachte $\Omega = \{-1,0,1\}^2,\,X,\,Y$ die Koordinaten-Abbildungen und wähle das Mass P.

Aufgabe 39. Schiefe (A, 3 Punkte)

Es sei X eine Zufallsvariable (auf einem diskreten W-Raum) mit Erwartungswert $\mu := E(X)$ und **Standardabweichung** $\sigma = \sqrt{E(X^2) - E(X)^2}$. Die **Schiefe** von X ist definiert als

$$\gamma(X) := E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right].$$

Zeige, dass

$$\gamma(X) = \frac{E[X^3] - 3\mu\sigma^2 - \mu^3}{\sigma^3}.$$

Aufgabe 40. Funktionen von Zufallsvariablen sind Zufallsvariablen (B, 4 Punkte)

(a) Sei X eine Zufallsvariable auf einem diskreten W-Raum und $f: \mathbb{R} \to \mathbb{R}$ eine Funktion. Zeige, dass (sobald beide Seiten wohldefiniert sind)

$$E(f(X)) = \sum_{x \in \Omega_X} f(x)P(X = x),$$

wobei, wie üblich, Ω_X der Wertebereich von X ist.

(b) Seien X_1, \ldots, X_n unabhängige Zufallsvariablen, und f_1, \ldots, f_n beliebige Funktionen. Zeige, dass die Zufallsvariablen $Y_i = f(X_i), i = 1, \ldots, n$ unabhängig sind und daher (sobald beide Seiten wohldefiniert sind)

$$E[f_1(X_1)...f_n(X_n)] = E[f_1(X_1)]...E[f_n(X_n)].$$
 (1)

(c) (Bonusfrage B, 2 Punkte) Nehme jetzt an, dass (1) für alle beschränkten Funktionen f_1, \ldots, f_n wahr ist. Zeige, dass dann X_1, \ldots, X_n unabhängig sind. *Hinweis:* Es reicht die Funktionen f_1, \ldots, f_n geschickt zu wählen, damit man die Bedingung der Definition der Unabhängigkeit überprüfen kann.

Aufgabe 41. Varianz und Ungleichungen (A, 10 Punkte)

Seien T_1, T_2, \ldots die Zeiten (in ganzen Tagen), an welchen es bei einem Gerät zu Störungen kommt, und $T_0 = 0$. Wir nehmen an, dass die Intervalle zwischen den Störungen, $I_i = T_i - T_{i-1}, i \ge 1$, unabhängig und geometrisch verteilt sind mit Parameter $p \in (0, 1)$, d.h. $P(I_i = k) = p(1-p)^{k-1}, k = 1, 2, \ldots, i = 1, 2, \ldots$

(a) Berechne die Varianz von T_1 . Hinweis: Nutze für den Erwartungswert die Aufgabe 29(a). Um die Varianz zu berechnen, nutze die Formel

$$\sum_{i=0}^{\infty} i(i-1)x^{i-2} = \frac{2}{(1-x)^3}, \qquad x \in (0,1),$$

die durch zweifache Differenziation nach x aus $\sum_{i=0}^{\infty} x^i = 1/(1-x)$ folgt. (Zeige das!)

- (b) Berechne den Erwartungswert von T_n .
- (c) Mit Hilfe dieses Ergebnisses, gib eine Abschätzung für $P[T_{10} > 1100]$, wenn p = 0.01.
- (d) Berechne die Varianz von T_n
- (e) Mit Hilfe dieses Ergebnisses, gib eine Abschätzung für $P[T_{10} > 1100]$, wenn p = 0.01.