Sheet 2

Exercises for October 4

Level A exercises are not difficult and should be understood by everybody. Level B exercises are more difficult but doable. Level C exercises are optional, solving them is a bonus for the final exam.

Question 4. Gaussian process characterisation of pre-BM (Level A, 2 pts) Prove the converse to Proposition 3.2 of lecture notes: If $\left(X_{t}\right)_{t \geq 0}$ is a centred Gaussian process with covariance function $E\left[X_{s} X_{t}\right]=s \wedge t$, then X is a preBrownian motion.

Hint. Adapt the proof of Proposition 3.3.

Question 5. Invariances of pre-BM (Level A, 4 pts)
Prove Proposition 3.6 of lecture notes: Let $\left(B_{t}\right)_{t \geq 0}$ be a pre-Brownian motion. Then all the following processes are pre-Brownian motions as well:
(a) $-B_{t}$
(b) $B_{t}^{\lambda}:=\lambda^{-1} B_{\lambda^{2} t}$, for every $\lambda>0$.
(c) $\beta_{t}:=t B_{1 / t}, t \geq 0, \beta_{0}:=0$.
(d) $B_{t}^{(s)}=B_{t+s}-B_{s}$, for every $s \geq 0$.

Question 6. L^{2}-differentiability of Gaussian processes (Level B, 4 pts) Let $\left(X_{t}\right)_{t \in[0,1]}$ be a Gaussian process with a covariance function Γ.
(a) Show that the mapping $t \mapsto X_{t}$ from $[0,1]$ to $L^{2}(\Omega)$ is continuous iff Γ is continuous on $[0,1]^{2}$.
(b) Assume now that Γ is twice continuously differentiable. Show that, for every $t \in[0,1]$ the limit

$$
\dot{X}_{t}:=\lim _{h \rightarrow 0} \frac{1}{h}\left(X_{t+h}-X_{t}\right)
$$

exists in $L^{2}(\Omega)$. Verify that $\left(\dot{X}_{t}\right)_{t \in[0,1]}$ is a Gaussian process and compute its covariance function.

Question 7. Gaussian conditioning (Level B, 3 pts)

Let $X=\left(X_{1}, \ldots, X_{d}\right)^{11}$ be a \mathbb{R}^{d}-valued centred Gaussian vector with a covariance matrix C and for $n<d$ make partitions

$$
\begin{aligned}
X & =\left(X^{1}, X^{2}\right)=\left(\left(X_{1}, \ldots, X_{n}\right),\left(X_{n+1}, \ldots, X_{d}\right)\right), \\
C & =\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
\end{aligned}
$$

where C_{11} is a $n \times n$-matrix. Assume that C_{22} is invertible and show that conditionally on $\sigma\left(X^{2}\right), X^{1}$ is a Gaussian vector with mean $C_{12} C_{22}^{-1} X^{2}$ and covariance matrix $C_{11}-C_{12} C_{22}^{-1} C_{21}$
Hint. Let $T=C_{12} C_{22}^{-1}$ and set $W=X^{1}-T X^{2}$. Show that $E\left[W\left(X^{2}\right)^{T}\right]=0$ (as a matrix) and deduce the independence of W and X^{2}. Use it to compute $E\left[X^{1} \mid \sigma\left(X^{2}\right)\right]$ and then also the conditional covariance.

[^0]
[^0]: ${ }^{1}$ Here, all vectors should be understood as column vectors, but for sake of compactness of presentation we use the row form.

