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Exercises for October 25

The purpose of this sheet is to recall/introduce the concept of uniform integrability
and to develop further the discrete martingale theory.

The sheet probably requires more work than usual. It will be compensated the
next week.

Question 16. Martingale a.s. convergence (discrete time) (Level A, 3 pts)
Let (Xn)n≥0 be a submartingale with supn≥0E[X+

n ] <∞. Show that there exists
a random variable X∞ such that limn→∞Xn = X∞ a.s.

Hint: With help of the discrete-time upcrossing inequality show thatMX
a,b(N) <

∞ a.s. for every a < b ∈ Q. To this end use that, by monotone convergence,
E[MX

a,b(N)] = limn→∞E[MX
a,b({0, . . . , n})].

Question 17. Martingale Lp-convergence (discrete time) (Level B, 3 pts)
Let p ∈ (1,∞) and (Xn)n≥0 be a martingale with supn≥0E[|Xn|p] <∞. Show that
there is X∞ such that limn→∞Xn = X∞ a.s. and also in Lp.

Hint. Use the previous exercise to show thatXn converges a.s. Use then Doob's L
p-

inequality to show that (supn≥0 |Xn|) ∈ Lp and apply the dominated convergence
to deduce the result.

Question 18. Uniform integrability, L1-convergence (Level -, 0 pts)
Read the following notes on Uniform integrability:

The previous exercise leaves open the case p = 1. Actually, the statement does
not hold for p = 1, in general. On the other hand, if supnE[|Xn|] < ∞, then, by
the �rst exercise, Xn converges a.s. We also know one way how to deduce L1 con-
vergence from the a.s. convergence, namely the dominated convergence theorem,
whose application requires the existence of L1-dominating function.

We develop here another condition allowing to deduce L1-convergence from the
a.s. one. We will see that this condition is not only su�cient, but also necessary.
It deals with general families of random variables, not only with martingales.

De�nition. A collection (Xi)i∈I of random variables is said to be uniformly inte-
grable (UI) if

lim
M→∞

sup
i∈I

E
[
|Xi|1{|Xi| > M}

]
= 0.
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Example. (a) When |Xi| < Y for all i ∈ I and some Y ∈ L1, that is there is
L1-dominating function, then (Xi)i∈I is UI. (Try to show that!)

(b) Let ϕ ≥ 0 be a function such that limx→∞ ϕ(x)/x = ∞. Examples are
ϕ(x) = xp, p > 1, or ϕ(x) = x log+(x). If supi∈I Eϕ(|Xi|) <∞, then (Xi)i∈I is UI.

To see that this is true, set A = supiEϕ(|Xi|) and choose ε > 0 and M < ∞
such that infu≥M

ϕ(u)
u
≥ A

ε
. Then for all i ∈ I,

E
[
|Xi|1{|Xi| > M}

]
≤ ε

A
E
[ϕ(|Xi|)
|Xi|

|Xi|1{|Xi| > M}
]

≤ ε

A
E[ϕ(|Xi|)] ≤ ε,

which implies the condition of the de�nition of UI. ♦

Lemma. Let X ∈ L1(Ω,A, P ). Then the family

{E[X|G] : G ⊂ A is a σ-algebra}

is UI.

Proof. We start with a technical claim:

Claim. If X ∈ L1 then for every ε > 0 exists δ > 0 such that

P [A] < δ =⇒ E[|X|;A] ≤ ε.

Proof. Assume, by contradiction, that there is a sequence of events An with
P [An] ≤ 1

n
and E[|X|;An] ≥ ε. It follows that |X|1{An} → 0 in probability

and thus a.s. along a subsequence kn. For such sub-sequence, the dominated con-
vergence theorem implies E[|X|;Akn ]

n→∞−−−→ 0, leading to contradiction.

Fix now ε and δ as in the claim and choose M < ∞ such that E|X|/M ≤ δ.
For G ⊂ A, by Jensen's inequality

E
[
|E[X|G]|; |E[X|G]| ≥M

]
≤ E

[
E
[
|X|
∣∣G];E[|X|∣∣G] ≥M︸ ︷︷ ︸

∈G

]
= E

[
|X|;E

[
|X|
∣∣G] ≥M

]
,

(1)

where the equality follows from the de�nition of the conditional expectation. In
addition, by Chebyshev's inequality

P
[
E
[
|X|
∣∣G] ≥M

]
≤M−1E

[
E
[
|X|
∣∣G]] = M−1E[|X|] ≤ δ,

and thus, by the claim, the right-hand side of (1) is bounded by ε, proving the UI
property.
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The following theorem explains the usefullness of the UI property for dealing
with L1-convergence.

Theorem. If Xn
n→∞−−−→ X a.s (actually `in probability' would be su�cient, but we

restrict to the a.s. case), then the following are equivalent

(i) {Xn : n ≥ 1} is UI,

(ii) Xn
n→∞−−−→ X in L1,

(iii) E|Xn|
n→∞−−−→ E|X| <∞.

Proof. (i) =⇒ (ii). For M > 0,

E[|Xn −X|] ≤ E[|Xn −X|; |Xn| ≤M, |X| ≤M ]

+ 3E[|Xn|; |Xn| > M ] + 3E[|X|; |X| > M ].
(2)

For ε ∈ (0, 1), (i) implies the existence of M0 such that

sup
n
E[|Xn|; |Xn| ≥M ] ≤ ε

2
for all M ≥M0.

By Fatou's lemma

E[|X|] ≤ lim inf E[|Xn|] ≤
ε

2
+M0 ≤M0 + 1.

Hence, we may choose M so that, uniformly in n, the last two terms in (2) are
smaller than ε

2
. Hence,

lim supE|Xn −X| ≤ lim supE[|Xn −X|; |Xn| ≤M, |X| ≤M ] + ε = ε

by the dominated convergence theorem. As ε is arbitrary, (ii) follows.
(ii) =⇒ (iii). By Jensen's inequality∣∣E|Xn| − E|X|

∣∣ ≤ E
[∣∣|Xn| − |X|

∣∣] ≤ E[|Xn −X|]→ 0

by (ii), which implies (iii).
(iii) =⇒ (i). Fix ε > 0. Let ψM : R+ → R+ be a continuous function such that

ψM(x) =


x if x ≤M − 1,

linear on x ∈ [M − 1,M ],

0 if x ≥M.

By the dominated convergence theorem, forM large enough, E|X|−EψM(|X|) ≤
ε
2
. Another application of the dominated convergence theorem implies that

E[ψM(|Xn|)]
n→∞−−−→ E[ψM(|X|)], (3)
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so by (iii), for all n larger than some n0

E[|Xn|; |Xn| ≥M ] ≤ E[|Xn|]− EψM(|Xn|) ≤ E[|X|]− E[ψM(|X|)] +
ε

2
< ε.

By increasing M , the last inequality is valid for all n's, that is (Xn)n≥1 is UI.

As a corollary we obtain a L1-convergence theorem for submartingales.

Theorem. For a submartingale (Xn)n≥0 the following are equivalent

(i) (Xn)n≥0 is UI,

(ii) Xn → X in L1 and P -a.s.

(iii) Xn → X in L1.

Proof. (i) =⇒ (ii). The UI property implies supE|Xn| < ∞, so by Question 16,
Xn → X, P -a.s. The previous theorem then implies that Xn → X in L1.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) Since Xn → X in L1, we have also Xn → X in probability. The

claim then follows by another application of the previous theorem. (Actually, here
the proof is not complete, we need Xn → X a.s. to apply the previous theorem.
Since this implication is not so important, we leave its proof `partly' open).

Theorem. For a Fn-martingale (Xn)n≥0 the following are equivalent

(i) (Xn)n≥0 is UI,

(ii) Xn → X∞ in L1 and P -a.s.

(iii) Xn → X∞ in L1.

(iv) There is a random variable X such that Xn = E[X|Fn]

Proof. (i)⇔(ii)⇔(iii) follows from the last theorem.

(iii) =⇒ (iv). Let n < m. Then, for every A ∈ Fn E[Xn1A] = E[Xm1A]
(iii)−−−→

m→∞
E[X∞1A], that is Xn = E[X∞|Fn] for all n ≥ 0.

(iv) =⇒ (i) is a direct consequence of the lemma above.

4



Question 19. Backward martingale convergence (Level B, 3 pts)

(a) Let (Xn)n≤0 be a martingale with respect to ��ltration� (An)n≤0. (Here all
de�nitions are �as usual� only the index set is di�erent, that is An ⊂ An+1,
Xn is An measurable, and Xn = E[Xn+1|An] for all n ≤ −1.). Show that
there is a random variable X such that X = limn→−∞Xn a.s. and also in L1.

Hint. Use the upcrossing inequality as before and recall also that Xn =
E[X0|Fn] for all n < 0. This allows you to apply the previous theory.

(b) Use this theorem to complete the proof of Theorem 4.18 of the notes in the

case when X is a martingale. Namely, show that Xtk

k→∞−−−→ Xt+ in L1, with
the notation of the notes.
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