Sheet 7

Exercises for November 8

Question 23. Trivias about local martingales (Level A, 4 pts)
Show the following statements (cf. (4.37) in the notes):
(a) In the definition of a continuous local martingale starting from 0 , one can replace "UI martingale" by "martingale".
(b) If M is a local martingale and T is a stopping time, then M^{T} is a local martingale (recall $M_{t}^{T}=M_{t \wedge T}$).
(c) If the sequence $\left(T_{n}\right)_{n \geq 0}$ of stopping times reduces a local martingale M and $\left(S_{n}\right)_{n \geq 0}$ is another sequence of stopping times with $S_{n} \rightarrow \infty$, then $\left(S_{n} \wedge\right.$ $\left.T_{n}\right)_{n \geq 0}$ reduces M as well.
(d) The space of local martingales on a given filtered probability space is a vector space.

Question 24. "Gaussian martingales" (Level B, 3 pts)

(a) Assume that M is a continuous martingale with $M_{0}=0$ which is also a Gaussian process. Show that for every $s<t$, the increment $M_{t}-M_{s}$ is independent of $\sigma\left(M_{u}: u \leq s\right)$.
(b) For M as in (a), prove that there exists a (deterministic) continuous nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ such that $\langle M\rangle_{t}=f(t)$ for every $t \geq 0$.

Hint: Recall the limit expression for $\langle M\rangle$ and use it to determine the value of $E\left[\langle M\rangle_{t}\right]$. Then show that $\langle M\rangle_{t}$ concentrates around this value.

Question 25. (Level B, 3 pts)
(a) Let M, N be two independent local martingales on $\left(\Omega, \mathcal{A},\left(\mathcal{A}_{t}\right)_{t>0}, P\right)$. Show that $\langle M, N\rangle=0$. (In particular, show that if $B=\left(B^{1}, \ldots, B^{d}\right)$ is a BM in \mathbb{R}^{d}, then $\left\langle B^{i}, B^{j}\right\rangle_{t}=\delta_{i j} t$.)
(b) Show that the converse to (a) does not hold. To this end consider a BM B_{t} and a stopping time T and examine the processes B^{T} and $B-B^{T}$.
(c) (Level C) Let M, N be two continuous local martingales with $M_{0}=N_{0}=0$ which are not identically zero (to exclude the trivial case). Assume that $\langle M, N\rangle^{2}=\langle M\rangle\langle N\rangle$, and set $T_{\varepsilon}=\inf \left\{t \geq 0:\langle M\rangle_{t} \vee\langle N\rangle_{t}>\varepsilon\right\}$. Show that $M=\gamma N$ for some random variable γ which is measurable with respect to $\cap_{\varepsilon>0} \mathcal{A}_{T_{\varepsilon}}$.

Question 26. (Level B, 3 pts)
Let M be a continuous local martingale with $M_{0}=0$. Show that

$$
\left\{\lim _{t \rightarrow \infty} M_{t} \text { exists and is finite }\right\}=\left\{\langle M\rangle_{\infty}<\infty\right\} .
$$

Hint. Consider stopping times $T_{n}=\inf \left\{t:\left|M_{t}\right| \geq n\right\}$ and $S_{n}=\inf \left\{t:\langle M\rangle_{t} \geq n\right\}$ and use them to prove the first set is a sub-/super-set of the second.

