Sheet 9

Exercises for November 22

Question 30. Exponential martingales and SDE (Level A, 3 pts)
For any semimartingale X we define (similarly as in the lecture)

$$
\mathcal{E}(\lambda X)_{t}=\exp \left\{\lambda X_{t}-\frac{\lambda^{2}}{2}\langle X\rangle_{t}\right\}
$$

Show the following identity:

$$
\mathcal{E}(\lambda X)_{t}=\mathcal{E}(\lambda X)_{0}+\int_{0}^{t} \lambda \mathcal{E}(\lambda X)_{s} \mathrm{~d} X_{s} .
$$

This can be interpreted as: $\mathcal{E}(\lambda X)$ is a solution to the stochastic differential equation (therefore the terminology)

$$
\mathrm{d} Y_{t}=\lambda Y_{t} \mathrm{~d} X_{t}
$$

Question 31. Uniquenes of the solution (Level B, 3 pts)
In the setting of the previous exercise, assuming $X_{0}=0$, show that $\mathcal{E}(X)$ is the unique solution to the given SDE with $Y_{0}=1$ and $\lambda=1$.
Hint. If Y is another solution, compute $Y \mathcal{E}(\lambda X)^{-1}$ using the integration by parts formula. To this end, show that $\mathrm{d}\left(\mathcal{E}(X)^{-1}\right)=-\mathcal{E}(X)^{-2} \mathrm{~d} \mathcal{E}(X)+\mathcal{E}(X)^{-3} \mathrm{~d}\langle\mathcal{E}(X)\rangle$ (which should be interpreted as above and proved using Ito formula). Observe also that Question 30 implies that $\mathrm{d}\langle\mathcal{E}(X)\rangle=\mathcal{E}(X)^{2} \mathrm{~d}\langle X\rangle$.

Question 32. Exponential of the sum (Level A, 2 pts)
For two semimartingales X, Y, compute $\mathcal{E}(X+Y)$. Compare it to $\mathcal{E}(X) \mathcal{E}(Y)$. When does the equality hold?

Question 33. (Level B, 4 pts)
Let B be a Brownian motion with $B_{0}=1$. Fix $\varepsilon \in(0,1)$ and set $H_{\varepsilon}=\inf \{t \geq 0$: $\left.B_{t}=\varepsilon\right\}$. We also let $\lambda>0$ and $\alpha \in \mathbb{R}$.
(a) Show that $\left(B_{t}^{H_{\varepsilon}}\right)^{\alpha}$ is a semimartingale and give its canonical decomposition into martingale and f.v. process.
(b) Show that

$$
Z_{t}=\left(B_{t}^{H_{\varepsilon}}\right)^{\alpha} \exp \left\{-\lambda \int_{0}^{t \wedge H_{\varepsilon}} \frac{\mathrm{d} s}{B_{s}^{2}}\right\}
$$

is a continuous local martingale if α and λ satisfy certain polynomial equation which you should determine.
(c) Compute

$$
E\left[\exp \left\{-\lambda \int_{0}^{H_{\varepsilon}} \frac{\mathrm{d} s}{B_{s}^{2}}\right\}\right]
$$

