Sheet 10

Exercises for November 29

Question 34. Hitting probabilities (Level A, 2 pts)

Let W_{x} be the d-dimensional Wiener measure, $d \geq 2, X$ the canonical process (i.e. a Brownian motion in \mathbb{R}^{d} with $X_{0}=x$), and let $K \subset \mathbb{R}^{d}$ compact. Prove that the function $x \mapsto W_{x}\left[H_{K}<\infty\right]$ is harmonic on $\mathbb{R}^{d} \backslash K$.
Hint. Use the strong Markov property and the fact that $f: U \rightarrow \mathbb{R}$ is harmonic on U iff $\int_{\partial B(y, r)} f(u) \mathrm{d} \sigma(u)=f(y)$ for every y, r such that $\overline{B(y, r)} \subset U$; here σ denotes the surface measure on the sphere $\partial B(y, r)$.

Question 35. Polar sets (Level B, 4 pts)

Assume now that K is polar, that is there exists a point $x \in \mathbb{R}^{d}$ such that $W_{x}\left[H_{K}<\right.$ $\infty]=0$.
(a) Show that $\mathbb{R}^{d} \backslash K$ is connected and that $W_{x}\left[H_{K}<\infty\right]=0$ for all $x \in \mathbb{R}^{d} \backslash K$. Hint. Observe that the set $\left\{x \in \mathbb{R}^{d} \backslash K: W_{x}\left[H_{K}<\infty\right]=0\right\}$ is both open and closed in $\mathbb{R}^{d} \backslash K$.
(b) If $\alpha \in(0, d]$, we say that K has zero α-dimensional Hausdorff measure if, for every $\varepsilon>0$, we can find an integer N_{ε} and open balls $B\left(x_{i}, r_{i}\right), i=1, \ldots, N_{\varepsilon}$, such that $K \subset \bigcup_{i=1}^{N_{\varepsilon}} B\left(x_{i}, r_{i}\right)$, and

$$
\sum_{i=1}^{N_{\varepsilon}}\left(r_{i}\right)^{\alpha} \leq \varepsilon .
$$

Show that if $d \geq 2$ and K has zero $d-2$-dimensional Hausdorff measure, then K is polar.

Question 36. (Level B, 4 pts)
Consider now $d=2$ and identify \mathbb{R}^{2} with \mathbb{C}. For $\alpha \in(0, \pi)$ consider the open cone $\mathcal{C}=\left\{r \mathrm{e}^{\mathrm{i} \theta}: r>0, \theta \in(-\alpha, \alpha)\right\}$. Let $T=T_{\mathcal{C}}$ be the exit time from \mathcal{C}.
(a) Show that the law of $\log \left|X_{T}\right|$ under W_{1} agrees with the law of $\beta_{\inf \left\{s \geq 0:\left|\gamma_{s}\right|=\alpha\right\}}$, where β and γ are two independent 1-dimensional Brownian motions started from 0 .
(b) Verify that for every $\lambda \in \mathbb{R}$,

$$
W_{1}\left[\mathrm{e}^{\mathrm{i} \lambda \log \left|X_{T}\right|}\right]=\frac{1}{\cosh (\alpha \lambda)} .
$$

Hint. Use that $z \mapsto \mathrm{e}^{\mathrm{i} \lambda z}$ is holomorphic, i.e. its real and imaginary part are harmonic.

Question 37. Liouville's theorem (Level B, 2 pts)
Show that every bounded function which is harmonic in whole plane \mathbb{R}^{2} must be constant. Use recurrence of BM in $d=2$.

Question 38. D'Alembert's theorem (Level B, 3 pts)
Let P be a non constant polynomial with complex coefficients. Use the properties of complex BM to show that, for any $\varepsilon>0$, the compact set $\{z \in \mathbb{C}:|P(z)| \leq \varepsilon\}$ is non empty. Conclude that there exists a solution to $P(z)=0$.

