## Sheet 11

## Exercises for December 6

Question 39. Squared Bessel process (Level A, 3 pts)
For $m \geq 0$ consider the SDE

$$
\mathrm{d} X_{t}=2 \sqrt{X_{t}} \mathrm{~d} B_{t}+m \mathrm{~d} t .
$$

Solution of this SDE is called $m$-dimensional squared Bessel process.
(a) To understand the name, consider a $d$-dimensional Brownian motion $\beta, d \geq$ 1, and show that $X_{t}=\left|\beta_{t}\right|^{2}$ solves this equation with $m=d$
(b) Show that the process

$$
M_{t}= \begin{cases}\left(X_{t}\right)^{1-\frac{m}{2}}, & \text { if } m \neq 2, \\ \log \left(X_{t}\right), & \text { if } m=2\end{cases}
$$

is a continuous local martingale.
(c) For $a<x<b$ and $H_{a}=\inf \left\{s \geq 0: X_{s}=a\right\}$ find $P\left[H_{a}<H_{b}\right]$ given $X_{0}=x$.

Question 40. Ornstein-Uhlenbeck process (Level A, 4 pts)
For $\lambda>0$ consider the SDE

$$
\mathrm{d} X_{t}=\mathrm{d} B_{t}-\lambda X_{t} \mathrm{~d} t
$$

where $B_{t}$ is a Brownian motion.
(a) Show that this SDE is solved by

$$
X_{t}=X_{0} e^{-\lambda t}+\int_{0}^{t} e^{-\lambda(s-t)} \mathrm{d} B_{s}
$$

This solution is called Ornstein-Uhlenbeck process.
(b) Observe that the integrand of the above integral does not depend on $B$ and use it to deduce that $X_{t}$ is a Gaussian process which belongs to the Gaussian space generated by $B$.
(c) Compute the mean function and the covariance function of this process in the case when $X_{0}=x_{0}$ and in the case when $X_{0}$ is distributed according to $\mathcal{N}\left(0, \frac{1}{2 \lambda}\right)$. What can you say about $X$ in the latter case?

Question 41. Yamada-Watanabe uniqueness criterion (Level B-C, 4 pts )
Consider one-dimensional SDE $\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} B_{t}$ with $X_{0}=x_{0}$. Assuming that

$$
|b(x)-b(y)| \leq K|x-y| \quad \text { and } \quad|\sigma(x)-\sigma(y)| \leq K \sqrt{|x-y|},
$$

for every $x, y \in \mathbb{R}$ and $K<\infty$, show that this SDE has a unique strong solution:
(a) Preparatory step: Let $Z$ be a semimartingale with $\langle Z\rangle_{t}=\int_{0}^{t} h_{s} \mathrm{~d} s$ for some $h$ satisfying $0 \leq h_{s} \leq C\left|Z_{s}\right|$, with $C<\infty$. Show that

$$
E\left[\int_{0}^{t}\left|Z_{s}\right|^{-1} \mathbf{1}_{\left\{0<\left|Z_{s}\right| \leq 1\right\}} \mathrm{d}\langle Z\rangle_{s}\right] \leq C t<\infty
$$

and use this to deduce that

$$
\lim _{n \rightarrow \infty} n E\left[\int_{0}^{t} \mathbf{1}_{\left\{0<\left|Z_{s}\right| \leq 1 / n\right\}} \mathrm{d}\langle Z\rangle_{s}\right]=0
$$

(b) For $n \in \mathbb{N}$, let $\phi_{n}: \mathbb{R} \rightarrow[0, \infty)$ be given by $\phi_{n}(0)=2 n$, $\phi_{n}(x)=0$ for $|x| \geq 1 / n, \phi_{n}$ is linear on $(0,1 / n)$ and $(-1 / n, 0)$. Let $F_{n}$ be the unique $C^{2}$ function on $\mathbb{R}$ such that $F_{n}(0)=F_{n}^{\prime}(0)=0$ and $F_{n}^{\prime \prime}=\phi_{n}$. (Note that $F_{n}(x) \xrightarrow{n \rightarrow \infty}|x|$ and $\left.F_{n}^{\prime}(x) \xrightarrow{n \rightarrow \infty} \mathbf{1}_{x>0}-\mathbf{1}_{x<0}=: \operatorname{sign}(x).\right)$
Let now $X$ and $X^{\prime}$ be two solution to the above SDE on the same filtered probability space with the same Brownian motion $B$. Use (a) to show that

$$
\lim _{n \rightarrow \infty} E\left[\int_{0}^{t} \phi_{n}\left(X_{s}-X_{s}^{\prime}\right) \mathrm{d}\left\langle X-X^{\prime}\right\rangle_{s}\right]=0
$$

(c) For a stopping time $T$ making the semimartingale $X^{T}-X^{T T}$ bounded, apply Itô's formula to $F_{n}\left(X_{t}^{T}-X_{t}^{\prime T}\right)$ and show that

$$
E\left[\left|X_{t}^{T}-X_{t}^{\prime T}\right|\right]=E\left[\int_{0}^{T \wedge t}\left(b\left(X_{s}\right)-b\left(X_{s}^{\prime}\right)\right) \operatorname{sign}\left(X_{s}-X_{s}^{\prime}\right) \mathrm{d} s\right] .
$$

(d) Use Gronwall's lemma to deduce the main claim of the exercise.

