Sheet 12

Exercises for December 13

Question 42. Markov processes on a finite space (Level A, 5 pts) Let $(Q_t)_{t\geq 0}$ be a transition semigroup on a finite space E. As remarked in the lecture, in this case Q_t might be identified with the $n \times n$ matrix $Q_t(i, j) = Q_t(i, \{j\})$. Also, $\mathcal{B}(E)$ and $C_0(E)$ coincide with $\mathbb{R}^{|E|}$.

- (a) Prove that Q is Feller iff $\lim_{t\downarrow 0} Q_t(i,j) = \delta_{ij}$ for all $1 \le i,j \le |E|$. Assume from now on that Q is Feller.
- (b) For the resolvent R_{λ} of this semigroup, show that $\lim_{\lambda\to\infty} \lambda R_{\lambda}(i,j) = \delta_{ij}$. Deduce that the range \mathcal{R} of the resolvent is $\mathbb{R}^{|E|}$, and thus $t \mapsto Q_t(i,j)$ must be differentiable (you may freely use the theory developed in the lecture)
- (c) Let $L(i, j) = \frac{d}{dt}Q_0(i, j)$ be the generator matrix of Q. Show that $L(i, j) \ge 0$ for $i \ne j$, and that $\sum_{j=1}^{|E|} L(i, j) = 0$.
- (d) Show that $\frac{d}{dt}Q_t(i,j) = (LQ_t)(i,j)$ where LQ_t stands for matrix multiplication. Deduce that $Q_t = e^{tL}$ (matrix exponential).
- (e) Define now $\rho(i) = -L(i, i)$ and $P(i, j) = L(i, j)/\rho(i)$. Observe that P is a stochastic matrix. Let $(\xi_n)_{n\geq 0}$ be a discrete-time Markov chain on E with transition matrix P and given $(\xi_n)_{n\geq 0}$, let $(\tau_n)_{n\geq 0}$ be a sequence of (conditionally) independent random variables, τ_n having exponential distribution with parameter $\rho(\xi_n)$. Set $T_n = \sum_{i=0}^{n-1} \tau_i$ and define

$$X_t = \xi_n \qquad \text{for } T_n \le t < T_{n+1}.$$

Show that $\frac{d}{dt}|_{t=0}P[X_t = j|X_0 = i] = L(i, j)$ and deduce that X is a Markov process associated to the transition semigroup Q.

Question 43. Reflected Brownian motion (Level B, 5 pts)

Let $(B_s)_{s\geq 0}$ be a Brownian motion on some $(\Omega, \mathcal{A}, (\mathcal{A}_t), P)$ with $B_0 = a, a \geq 0$, and let $p_t(z) = (2\pi t)^{-1/2} e^{-z^2/2t}$. (a) Let $X_t = |B_t|$. Verify that for every $s, t \ge 0$ and every $f \in \mathcal{B}(\mathbb{R}_+)$

$$E[f(X_{t+s})|\mathcal{A}_s] = Q_t f(X_s)$$

where $Q_0 f = f$ and $Q_t f(x) = \int_0^\infty (p_t(x-y) + p_t(x+y))f(y) \, \mathrm{d}y$.

- (b) Infer that (Q_t) is a transition semigroup, and then that X_t is a Markov process associated to this semigroup.
- (c) Verify that (Q_t) is Feller, and denote by L its generator.
- (d) Show that $D(L) \subset \{f \in C_0(\mathbb{R}_+) : f'' \in C_0(\mathbb{R}_+) \text{ and } f'(0) = 0\}$. For such f, show that $Lf = \frac{1}{2}f''$. *Hint.* Show that the function g(y) = f(|y|) must be differentiable on \mathbb{R} .
- (e) Show that if $f'(0) \neq 0$ then $f \notin D(L)$.

Question 44. Function of Markov process (Level B, 4 pts)

Let $(Q_t)_{t\geq 0}$ be a transition semigroup on E, and let π be a measurable mapping from E to some other measurable space F. Assume that for every measurable $A \subset F, t \geq 0$ and every $x, y \in E$ such that $\pi(x) = \pi(y)$ we have

$$Q_t(x, \pi^{-1}(A)) = Q_t(y, \pi^{-1}(A)),$$

and define, for $z \in F$ and an arbitrary $x \in \pi^{-1}(z)$.

$$Q'_t(z, A) = Q_t(x, \pi^{-1}(A))).$$

Assume that Q' satisfies all necessary measurability conditions.

- (a) Show that Q' is a transition semigroup.
- (b) If X is a Markov process associated to Q, show that $Y_t = \pi(X_t)$ is a Markov process associated to Q'.
- (c) Let now B be a Brownian motion in \mathbb{R}^d , $d \ge 1$. Show that $Y_t = |B_t|$ is a Markov process and give its transition semigroup.