Sheet 1

Exercises for February 28

This series develops two important related concepts: coupling of two random variables and total variation distance. The results will be used in the lecture.

Definition. For random variables X_1, \ldots, X_n , a random vector $(\hat{X}_1, \ldots, \hat{X}_n)$ is called coupling of X_1, \ldots, X_n , if, for every $i \in [n]$, \hat{X}_i has the same distribution as X_i .

Remark. The random variables X_i do not need to be defined on the same probability space. On the other hand, all \hat{X}_i 's must be. Since the distribution of the random vector $(\hat{X}_1, \ldots, \hat{X}_n)$ is not uniquely determined by its marginal distribution, there are typically many different couplings of X_1, \ldots, X_n .

Definition. For two measures μ , ν on the same measurable space (Ω, \mathcal{A}) , we define their total variation distance by

$$d_{TV}(\mu,\nu) = \sup_{A \in \mathcal{A}} |\mu(A) - \nu(A)|.$$

Question 1. Total variation distance (Level A, 3 pts)

- (a) Show that d_{TV} is a metric on the space of measures on (Ω, \mathcal{A}) .
- (b) Assume now that Ω is countable, $\mathcal{A} = \mathcal{P}(\Omega)$, and denote $p_x = \mu(\{x\})$, $q_x = \nu(\{x\}), x \in \Omega$. Show that

$$d_{TV}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |p_x - q_x| = \sum_{x \in \Omega: p_x > q_x} p_x - q_x,$$

that is, in this case, d_{TV} is actually a (half of) ℓ^1 -distance.

Question 2. Maximal coupling and variation distance (Level B, 4 pts) Let X, Y be two random variables with distributions μ_X , μ_Y , and set $d_{TV}(X, Y) = d_{TV}(\mu_X, \mu_Y)$. Show that there exists a coupling (\hat{X}, \hat{Y}) of X with Y so that

$$P[X \neq Y] = d_{TV}(X, Y),$$

and for any other coupling (\hat{X}, \hat{Y}) of X and Y, one has

$$P[\hat{X} \neq \hat{Y}] \ge d_{TV}(X, Y).$$

Question 3. (Level B, 4 pts)

Let $(I_i)_{i=1,\dots,n}$, be independent Bernoulli random variables with respective parameters p_i , $\lambda = \sum_{i=1}^{n} p_i$, $X = \sum_{i=1}^{n} I_i$, and Y a Poisson (λ) random variable.

- (a) Show that $d_{TV}(X, Y) \le \sum_{i=1}^{n} (p_i)^2$.
- (b) If X is Binomial(n, p) random variable and Y as above with $\lambda = np$, show that $d_{TV}(X, Y) \leq \lambda^2/n$.

Hint. Construct first a coupling of I_i with J_i , where J_i is $Poisson(p_i)$, distributed, with the property that $P(\hat{I}_i \neq \hat{J}_i) \leq p_i^2$. Use that the Poisson distribution is (sum-)stable.