Sheet 3

Exercises for March 21

Question 7. Extinction probability of Poisson BP (Level A, 3 pts)
Consider a branching process whose offspring distribution is Poisson with parameter λ. Recall that η_{λ} denotes its extinction probability.
(a) Show that for $\lambda>1$

$$
\frac{d}{d \lambda} \eta_{\lambda}=-\frac{\eta_{\lambda}\left(1-\eta_{\lambda}\right)}{1-\mu_{\lambda}}
$$

where μ_{λ} is the conjugate exponent defined in the lecture (see (2.42) in the lecture notes).
(b) Show that

$$
1-\eta_{\lambda}=2(\lambda-1)(1+o(1)), \quad \text { as } \lambda \downarrow 1 .
$$

In particular, η_{λ} is a continuous function of λ and its right derivative at $\lambda=1$ equals (-2).

Hint. Recall formula (2.40) of the notes
Question 8. Factorial moments of sum of indicators (Level A, 2 pts)
Let $X=\sum_{i \in \mathcal{I}} I_{i}$, where \mathcal{I} is a finite index set, and I_{i} are $\{0,1\}$-valued random variables. We write $\left(X_{r}\right)=X(X-1) \cdots(X-r+1)$, so that $E\left[(X)_{r}\right]$ is the r th factorial moment of X. Show that

$$
E\left[(X)_{r}\right]=\sum_{i_{1}, i_{2}, \ldots, i_{r} \in \mathcal{I}}^{*} P\left[I_{i_{1}}=\cdots=I_{i_{r}}=1\right],
$$

where \sum^{*} denotes a sum over distinct indices.
Question 9. Triangles in ER graph (Level B, 4 pts)
Consider ER graph with $p=\lambda / n$, as in the lecture.
(a) What is the distribution of the number E_{n} of the edges of this graph?
(b) Let $m_{n}=\lambda n / 2$. Prove that $m_{n}^{-1 / 2}\left(E_{n}-m_{n}\right)$ converges to a standard normal random variable as $n \rightarrow \infty$.
(c) We say that distinct vertices $x, y, z \in[n]$ form a triangle if edges $x y, y z$ and $z x$ are present in the graph. Note that (x, y, z) is the same triangle as e.g. (y, x, z). Let T_{n} be the number of distinct triangles in the graph. Compute $E T_{n}$
(d) Show that, as $n \rightarrow \infty, T_{n}$ converges to a Poisson random variable.

Hint. You may use the following claim: A sequence X_{n} of \mathbb{N}-valued random variables converges in distribution to a $\operatorname{Poisson}(\lambda)$ random variable, iff

$$
\lim _{n \rightarrow \infty} E\left[\left(X_{n}\right)_{r}\right]=\lambda^{r}, \quad \text { for all } r \in \mathbb{N}
$$

Question 10. Thinning of binomials and neutral vertices (Level B, 4 pts)
(a) Let $N \sim \operatorname{Bin}(n, p)$ and, conditionally on N, let $M \sim \operatorname{Bin}(N, q)$. Show that $M \sim \operatorname{Bin}(n, p q)$.
(b) Recall the exploration algorithm for the $\operatorname{ER}(n, p)$ random graph from pages 17-18 of the notes. Use the previous claim and an induction argument to show that the number N_{k} of neutral vertices at the end of k th step of the algorithm satisfies $N_{k} \sim \operatorname{Bin}\left(n-1,(1-p)^{k}\right)$.

