Sheet 5

Exercises for April 4

Question 15. Proof of Theorem 4.24 (Level B, 3 pts)

Complete the proof of Theorem 4.24 of the lecture notes by showing Claim 4.32. You may use all claims proved in the lecture.

Question 16. Multiplicative coalescent (Level B, 4 pts)

Recall from the lecture the definition of the multiplicative coalescent: It is a Markov process $X = (X(t))_{t\geq 0}$ taking values in the space ℓ^2_{\downarrow} of ordered non-negative ℓ^2 -sequences $x = (x_1, x_2, \ldots)$ (i.e. sequences satisfying $x_1 \geq x_2 \geq \cdots \geq 0$ and $||x||_2^2 := \sum_{i=1}^{\infty} x_1^2 < \infty$). To construct it, we consider a family $(\xi_{ij})_{i<j}$ of i.i.d. standard exponential random variables. Given initial condition $X(0) = x \in \ell^2_{\downarrow}$, and a time $t \geq 0$, we construct a graph G(x,t) with vertex set \mathbb{N} , by connecting every pair of vertices (i, j) satisfying $\xi_{ij} \leq tx_i x_j$. Let $C^1(t), C^2(t), \ldots$ be the connected components of G(x,t) ordered by they weights, that is so that $\sum_{i \in C^k(t)} x_i \geq \sum_{i \in C^l(t)} x_i$ for every k > l. Finally, define $X(t) = (\sum_{i \in C^k(t)} x_i)_{k\geq 1}$, that is in X(t) all points in one component of G(x, t) are "merged into one point". We write P_x for the law of the process started from X(0) = x.

- (a) Assume that $||x||_1 = \sum_{i \ge 1} x_i < \infty$. Show that, P_x -a.s., for every $t \ge 0$, G(x,t) contains only finitely many edges. *Hint:* Compute and estimate the expected number of edges in G(x,t).
- (b) Show that if $||x||_1 = \infty$, then P_x -a.s., for every t > 0, every point *i* has infinitely many neighbours in G(x, t). *Hint:* Second Borel-Cantelli Lemma.
- (c) Observe that $t \mapsto S(t) = ||X(t)||_2^2$ is non-decreasing, i.e. it is not a priori clear that $X(t) \in \ell_{\perp}^2$ for all $t \ge 0$.
- (d) For $x \in \ell^2_{\downarrow}$ and $k \in \mathbb{N}$, define $x^k = (x_1, \ldots, x_k, 0, 0, 0)$ (truncated sequence). Couple now P_x and P_{x^k} by using the same ξ_{ij} 's, and write S(x, t), $S(x^k, t)$ for the process S started from x or x^k , respectively. Show that, a.s., as $k \to \infty$

$$S(x^k, t) \nearrow S(x, t) \in [0, \infty].$$

Question 17. Multiplicative coalescent - continued (Level C, 4 pts) We now show that $X(t) \in \ell^2_{\downarrow}$ for all $t \ge 0$, P_x -a.s.

Let C be the space of bounded continuous functions from ℓ^2_{\downarrow} to \mathbb{R} . For $x \in \ell^2_{\downarrow}$, let x^{i+j} be the element of ℓ^2_{\downarrow} obtained by merging x_i and x_j , that is x^{i+j} is the ordered version of the sequence $(x_i + x_j, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{j-i}, x_{j+1}, \ldots)$. For $f \in C$ and $x \in \ell^2_{\downarrow}$ define

$$(Af)(x) = \sum_{i} \sum_{j>i} x_i x_j \left(f(x^{i+j}) - f(x) \right)$$

(a) Assume that $||x||_1 < \infty$. Show that

$$(Af)(x) = \lim_{t \to 0} \frac{1}{t} \{ E_x[f(X(t))] - f(x) \},\$$

that is A is the generator of X (restricted to ℓ^1).

(b) What can you say about the process

$$M_f(t) = f(X(t)) - \int_0^\infty (Af)(X(t)) \,\mathrm{d}t$$

- (c) Assume $||x||_1 < \infty$ and let S be as in the previous question. Show that under P_x , the process $Y(t) = t + \frac{1}{S(t)}$ is a submartingale.
- (d) Use (c) to show the inequality

$$P_x(S(t) \ge s) \le \frac{tsS(0)}{s - S(0)}$$

Hint. Bound $E_x\left[\frac{1}{S(t)}\right]$ from above by $\frac{1}{s} + E_x\left[\left(\frac{1}{S(t)} - \frac{1}{s}\right)_+\right]$ and use that S(t) is non-decreasing.

(e) Use (d) of the last question to show that the inequality in (c) holds for all $x \in \ell_{\downarrow}^2$. Then use it to show that $X(t) \in \ell_{\downarrow}^2$, P_x -a.s.