Sheet 6

Exercises for April 11

This time the questions should be easier. Question 20 can be handed in one week later, if you prefer.

Question 18. Ladder time of a random walk (Level B, 8 pts)

Let $\left(S_{n}\right)_{n \geq 0}$ be a random walk with $S_{0}=0$, and whose increments $X_{n}=S_{n}-S_{n-1}$ are i.i.d., take values in $\{-1,0,1,2, \ldots\}$, and satisfy $E X_{i}=0$, $\operatorname{Var} X_{i}=\sigma^{2} \in$ $(0, \infty)$. We define the stopping time T, called the first (weak) ascending ladder time, by

$$
T=\inf \left\{k \geq 1: S_{k} \geq 0\right\}
$$

(a) Show that T is a.s. finite. Hint: What can you say about recurrence resp. transience of S ?
(b) Show that, for every $k \geq 0$,

$$
P\left[S_{T}=k\right]=P\left[X_{1}=k\right]+P\left[X_{1}=-1\right] P\left[S_{T}=k+1 \mid S_{T}>0\right] .
$$

Hint. Decompose the event $\left\{S_{T}=k\right\}$ according to value of X_{1}. In the case $X_{1}=-1$, what is the distribution of the number of excursions from (-1) to (-1) staying strictly under (-1), before reaching $\{0,1, \ldots\}$ again?
(c) Use (b) to show that for any $k \geq 0$

$$
P\left[S_{T}=k\right]=\sum_{j \geq 0}\left(\frac{P\left[X_{1}=-1\right]}{P\left[S_{T}>0\right]}\right)^{j} P\left[X_{1}=k+j\right] .
$$

(d) Independently from the previous computations observe that

$$
\sum_{k \geq 0} \sum_{j \geq k} P\left[X_{1}=j\right]=1
$$

Hint: Recall the formula $E Y=\sum_{j \geq 1} P[Y \geq j]$ which holds for every $\{0,1, \ldots\}$-valued random variable Y.
(e) Combine (c) and (d) to show that $P\left[S_{T}>0\right]=P\left[X_{1}=-1\right]$.
(f) Deduce the final result of this exercise:

$$
E\left[S_{T}\right]=\sigma^{2} / 2
$$

Question 19. Ladder time sequence and claim (4.88) (Level B, 3 pts) For the random walk as in the previous exercise, let $T_{0}=0$, and

$$
T_{i}=\inf \left\{k>T_{i-1}: S_{k}=M_{k}\right\}
$$

where $M_{k}=\sum_{i \leq k} S_{i}$ is the running maximum. Observe that $T_{1}=T$. Let further $J_{n}:=\#\left\{1 \leq i \leq n: S_{i}=M_{i}\right\}$.
(a) Observe $J_{n}=\sup \left\{k \geq 1: T_{k} \leq n\right\}$.
(b) Deduce,

$$
M_{n}=\sum_{k=1}^{J_{n}}\left(S_{T_{k}}-S_{T_{k-1}}\right)
$$

(c) Show that

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{J_{n}}=\frac{\sigma^{2}}{2}, \quad \text { a.s. }
$$

Question 20. Contour function of geometric GW process (Level A, 3 pts) Let T_{n} be the critical GW tree with geometric offspring distribution (that is $P[X=$ $\left.k]=2^{-(k+1)}, k \in\{0,1, \ldots\}\right)$ conditioned on $\left|T_{n}\right|=n$. Show that its contour function C^{n} is a SRW conditioned on hitting 0 for the first time at instant 2(n-1). Deduce that, as $n \rightarrow \infty C^{n}$, converges to a standard Brownian excursion, after a correct rescaling.

