Sheet 8

Exercises for May 2

Question 25. Diverging degree in PA (Level A, 3 pts)
Show that in $\mathrm{PA}_{m=1, \delta}$, for every $i \in \mathbb{N}, \lim _{t \rightarrow \infty} D_{i}(t)=\infty$ a.s. Try to find a direct proof not based on martingale argument of the lecture.

Question 26. Gamma function identities (Level A, 3 pts)
Recall that $t \Gamma(t)=\Gamma(t+1)$ and use it to show that

$$
\frac{\Gamma(k+a)}{\Gamma(k+b)}=\frac{1}{b-a-1}\left(\frac{\Gamma(k+a)}{\Gamma(k+b-1)}-\frac{\Gamma(k+a+1)}{\Gamma(k+b)}\right) .
$$

Use this identity to show that $p_{k}, k \geq 1$, defined by

$$
p_{k}=(2+\delta) \frac{\Gamma(k+\delta) \Gamma(3+2 \delta)}{\Gamma(k+3+2 \delta) \Gamma(1+\delta)},
$$

is a probability distribution.
Question 27. Uniform recursive tree (Level B, 6 pts)
In uniform recursive tree, we attach each vertex to a uniformly chosen old vertex, that is, denoting $\operatorname{URT}(t)$ the uniform recursive tree after adding t vertices and using a similar notation as for the preferential attachment model,

$$
P\left(v_{t+1} \rightarrow v_{i} \mid \operatorname{URT}(t)\right)=t^{-1} \quad \text { for all } i \in[t] .
$$

This can be viewed as $\delta \rightarrow \infty$ limit of $\mathrm{PA}_{m=1, \delta}$. Let $P_{k}(t)=t^{-1} \sum_{i=1}^{t} \mathbf{1}_{D_{i}(t)=k}$. Show that for some $C \in(0, \infty)$, the degree sequence of UST satisfies

$$
P\left[\max _{k \geq 1}\left|P_{k}(t)-p_{k}\right| \geq C \sqrt{t^{-1} \log t}\right] \xrightarrow{t \rightarrow \infty} 0,
$$

where $p_{k}=2^{-k-1}$.

