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Exercises for May 2

Question 25. Diverging degree in PA (Level A, 3 pts)
Show that in PAm=1,δ, for every i ∈ N, limt→∞Di(t) =∞ a.s. Try to find a direct
proof not based on martingale argument of the lecture.

Question 26. Gamma function identities (Level A, 3 pts)
Recall that tΓ(t) = Γ(t+ 1) and use it to show that
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Use this identity to show that pk, k ≥ 1, defined by

pk = (2 + δ)
Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
,

is a probability distribution.

Question 27. Uniform recursive tree (Level B, 6 pts)
In uniform recursive tree, we attach each vertex to a uniformly chosen old vertex,
that is, denoting URT(t) the uniform recursive tree after adding t vertices and
using a similar notation as for the preferential attachment model,

P (vt+1 → vi|URT(t)) = t−1 for all i ∈ [t].

This can be viewed as δ → ∞ limit of PAm=1,δ. Let Pk(t) = t−1
∑t

i=1 1Di(t)=k.
Show that for some C ∈ (0,∞), the degree sequence of UST satisfies

P
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] t→∞−−−→ 0,

where pk = 2−k−1.
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