Sheet 9

Exercises for May 9

Question 28. Increasing coupling in percolation (Level A, 3 pts) Construct, on one probability space, a family of random variables $X_p(e), p \in [0, 1], e \in E^d$, so that

- the law of $(X_p(e))_{e \in E^d}$ is P_p ,
- $X_p(e) \ge X_{p'}(e)$ for every $p \ge p'$ and $e \in E^d$.

Use it to give a formal proof of the following facts:

- (a) $p \mapsto E_p(Y)$ is non-decreasing for every increasing random variable Y.
- (b) $p \mapsto \theta(p)$ is non-decreasing.

Question 29. Properties of product σ -field (Level B-C, 2 pts)

Show that every event in the product σ -field \mathcal{A} on $\{0,1\}^{E^d}$ can be approximated by events depending on finitely many edges only. More precisely, denoting B_n the collection of edges with both ends in the box $[-n,n]^d \cap \mathbb{Z}^d$, for every $A \in \mathcal{A}$ there is a sequence A_n of events such that A_n is $\sigma(\omega(e) : e \in B_n)$ -measurable, and $\lim_{n\to\infty} P_p(A_n\Delta A) = 0$. (This question might be easy or difficult, depending on how much measure theory you know.)

Question 30. Bond and site percolation (Level A, 2 pts)

Recall from the lecture that we speak about 'site percolation' if vertices (instead of edges) of the graph are independently declared open or closed. Show that the bond percolation on \mathbb{Z}^d corresponds to the site percolation on a modified graph (Z^d, E_1^d) (specify E_1^d). Use it to show that (with obvious notation)

$$p_c^{site}(\mathbb{Z}^d) \ge p_c^{bond}(\mathbb{Z}^d).$$

Question 31. ... continued (Level B, 2 pts) Show that

$$p_c^{site}(\mathbb{Z}^d) \le 1 - (1 - p_c^{bond}(\mathbb{Z}^d))^{2d}.$$

Question 32. Square root trick (Level B, 2 pts)

Show that for n increasing events A_1, \ldots, A_n

$$\max_{i \le n} P_p(A_i) \ge 1 - (1 - P_p(A_1 \cup \dots \cup A_n))^{1/n}.$$

Question 33. BK for non-local events (Level B, 3 pts)

In the lecture we proved the BK inequality only for events depending on finitely many edges. Prove that

$$P[x \leftrightarrow y \circ u \leftrightarrow v] \le P[x \leftrightarrow y]P[u \leftrightarrow v]$$

Remark that the above events do not depend on finitely many edges only. However, as, by definition, every path between x and y has a finite length, those can be approximated by local events.