Sheet 11

Exercises for May 23

Question 37. Counting lattice animals (Level B, 2 pts)

Consider a graph $G=(V, E)$ such that every vertex has degree at most D. A finite connected subset of G is called a lattice animal. For $x \in V$ and $n \in \mathbb{N}$, let $a(x, n)$ be the number of lattice animals with n vertices.
(a) Using percolation show that

$$
\sum_{n \geq 1}[p(1-p)]^{D n} a(n, x) \leq 1
$$

(b) Deduce that for every x and $n, a(n, x) \leq 4^{D n}$, as used in the lecture.
(c) Show that one can replace $p^{D}(1-p)^{D}$ by $p(1-p)^{D}$ in the previous bound.

Question 38. Critical susceptibility (Level B, 3 pts)

Recall that $\phi_{p}(S)=p \sum_{x y \in \Delta S} P_{p}(0 \stackrel{S}{\leftrightarrow} x)$, for $S \subset \mathbb{Z}^{d}$.
(a) Show that the set $\left\{p \in[0,1]: \exists 0 \in S \subset \mathbb{Z}^{d}\right.$ finite s.t. $\left.\phi_{p}(S)<1\right\}$ is open in $[0,1]$.
(b) Deduce that this set coincides with $\left[0, p_{c}\right)$, and thus $\phi_{p_{c}}\left(B_{n}\right) \geq 1$ for all $n \in \mathbb{N}$.
(c) Deduce from this that $E_{p_{c}}\left[\left|\mathcal{C}_{0}\right|\right]=\infty$.

Question 39. Correlation lenght (Level B, 5 pts)
Let $e_{1}=(1,0, \ldots, 0) \in \mathbb{Z}^{d}$.
(a) Show that for any $p \in[0,1], n, m \in \mathbb{N}$,

$$
P_{p}\left(0 \leftrightarrow(n+m) e_{1}\right) \geq P_{p}\left(0 \leftrightarrow n e_{1}\right) P_{p}\left(0 \leftrightarrow m e_{1}\right)
$$

(b) Use this and subadditivity to show that

$$
\xi(p):=\left(\lim _{n \rightarrow \infty}-\frac{1}{n} \log P_{p}\left(0 \leftrightarrow n e_{1}\right)\right)^{-1}
$$

exists and that $P_{p}\left(0 \leftrightarrow n e_{1}\right) \leq \exp (-n / \xi(p)) . \quad \xi(p)$ is called correlation length.
(c) Use the BK inequality to show that

$$
P_{p}\left(0 \leftrightarrow \partial B_{n+m}\right) \leq\left|\partial B_{n}\right| P_{p}\left(0 \leftrightarrow \partial B_{n}\right) P_{p}\left(0 \leftrightarrow \partial B_{m}\right) .
$$

(d) Deduce that for every n and $x \in \partial B_{n}$,

$$
P_{p}\left(0 \leftrightarrow \partial B_{n}\right) \geq e^{-n / \xi_{p}} /\left(c n^{d-1}\right)
$$

Hint. Observe that defining $\beta(n)=\log P_{p}\left(0 \leftrightarrow \partial B_{n}\right)$ and $g(n)=\log \left|\partial B_{n}\right|$, one has $\beta(m+n) \leq \beta(m)+\beta(n)+g(n)$. Use this to show that there is a constant c such that $a(n)=\beta(n)+g(n)+c$ is subadditive.
(e) Use the last exercise to show that $\xi_{p_{c}}=\infty$.

