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CHAPTER 1

Introduction

The intention of this course is to give an introduction to the percolation theory and
prove some of its most important results. These notes contain the material discussed in
the lectures only. Interested reader should consult, e.g., the books of Grimmett [Gri99] or
Bollobás and Riordan [BR06a] and the references therein.

1. Bond percolation on Zd

Of central interest will be so called bond percolation on Zd, d ≥ 2 mostly. This model
is very simply stated. Namely, one considers Zd and the edge set

Ed =
{
{x, y} : x, y ∈ Zd with |x− y| = 1

}
, (1.1)

so called set of nearest-neighbour edges in Zd. One fixes 0 ≤ p ≤ 1, and declares each edge
e ∈ Ed to be open with probability p or closed with probability (1− p), in an i.i.d. fashion.
That is we have

Ω = {0, 1}Ed

A = ‘the canonical product σ-algebra1’

P = Pp = µ⊗Ed with µ Bernoulli law with success parameter p.

(1.2)

Figure 1.1. Illustration of a percolation configuration.

This model goes back to Broadbent and Hammersley [BH57]. They introduced it as
a model of disordered porous medium trough which a fluid or gas was supposed to flow.
Since then thousands of papers and many books have been devoted to the subject.

One of the most important question of the theory is: “Is there, for a P-typical config-
uration, an infinite cluster of open bonds?2” We will see later that the existence of such
infinite cluster has probability either 0 or 1, and this probability is 1 exactly when

θ(p) = Pp[|C0| =∞] > 0, (1.3)

1the σ-algebra generated by cylinder events Nω,A = {ω′ ∈ Ω : ω′(e) = ω(e) for every e ∈ A}, where
A ⊂ Ed finite and ω ∈ Ω.

2The standard terminology of percolation theory differs from that of graph theory: vertices and
edges ale called sites and bonds, components are called clusters. We will use the both terminologies
interchangeably.

4



1. BOND PERCOLATION ON ZD 5

where

C0 = ’the connected cluster of open bonds containing the origin’. (1.4)

The striking feature of the model is the existence of a critical probability pc ∈ (0, 1) such
that

θ(p)

{
= 0, if p < pc,

> 0, if p > pc.
(1.5)

Figure 1.2. Believed shape of θ(p).

Hence, if p is small there is no infinite cluster P-a.s., but for p large enough there is an
infinite cluster P-a.s. (as we will see later, this cluster is P-a.s. unique).

The shape of the graph of θ as on Figure 1.2 is proved for d = 2 and d ≥ 19 only. For
d between 3 and 19, we still miss the proof of the left-continuity of θ in the point p = pc.

The exact value of pc is in general unknown. In the special case of Z2 Kesten [Kes80]
showed that

pc(d = 2) = 1
2
. (1.6)

We will see the proof of this result later. There are other few two-dimensional lattices
where pc is known exactly, cf. [Gri99, page 53]. For three- and more-dimensional lattices
we have numerical estimates only.

Resolving the question of existence/non-existence of the infinite cluster, one is further
interested to study the geometric properties of clusters in various phases of this model,
namely in sub-critical (p < pc) and super-critical (p > pc) phase. Special interest has also
the behaviour of the model near the criticality, that is p is close or equal to pc. In this
lecture we will see proofs of some of the following results.

Sub-critical phase (p < pc). In this phase P-a.s. clusters are finite. One is interested
in the tail of the distribution of the size of the cluster C0. We will show that

P[|C0| = n] = exp{−n(ψ(p) + o(1))} as n→∞, (1.7)

where ψ(p) = ψd(p) > 0, when p < pc(d).

Super-critical phase (p > pc). As mentioned above, an infinite cluster exists P-a.s. in
this phase. We will use methods of [BK89] to show that

There is a unique infinite cluster, Pp-a.s. (1.8)

One is then mainly interested in the geometry of this cluster. We will see that the ge-
ometry of this cluster is “not far” from the geometry of the lattice Zd itself: E.g. Grimmett
and Marstrand [GM90] proved that if p > pc, d ≥ 3, then for k large

P
[

there is an infinite open cluster in the two-dimensional
slab {x ∈ Zd,−k ≤ xj ≤ k, for 3 ≤ j ≤ d}

]
= 1. (1.9)
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As many of important result in the super-critical phase, this result is shown using renor-
malization techniques.

Another way how to see that the cluster ‘looks like the full lattice’ is the following. For
a site x in the cluster C0 define its distance in the cluster to the origin as

d(0, x) = ‘minimal length of a path in C0 connecting x to 0’. (1.10)

We will show that

P-a.s., on {|C0| =∞}, lim sup
x→∞,x∈C0

d(0, x)

|x|
<∞. (1.11)

Since the inequality lim infx→∞ d(0, x)/|x| > 0 is trivial, we find that, at large scales, the
distance d(·, ·) is equivalent with the Euclidean one. This is result of Antal and Pisztora
[AP96].

One might also be interested in the distribution of the size of C0 if it is finite. It can
be proved that this distribution decays sub-exponentially. Namely,

exp(−β1n
(d−1)/d) ≤ P[|C0| = n] ≤ exp(−β2n

(d−1)/d), for all n ≥ 0. (1.12)

(A rough idea how to see it is as follows. To separate the finite cluster C0 of volume n from
the rest of the lattice we should close all the bonds on the ‘surface of C0’. The size of the
surface of such cluster is typically volume(d−1)/d = n(d−1)/d, hence the cost to close all the
bonds on the surface is very approximately (1− p)n(d−1)/d

.)

Critical point and near-critical phase (p→ pc). This is the domain where major
open problems can be found, even if great progress has been achieved for d = 2 in the last
decade. As we have already remarked, even the continuity of θ is not proved for 3 ≤ d < 19.
For other open problems consult page 22 and Section 10.3 of [Gri99].

The striking feature of the critical two-dimensional percolation is its conformal invari-
ance. I was conjectured in the physics literature many years ago and proved first time
by Smirnov [Smi01], however for a slightly different model, the site percolation on the
triangular lattice T, see Figure 1.3. The critical parameter of this percolation pc(T) = 1

2
too.

Figure 1.3. The site percolation on the triangular lattice and its represen-
tation as coloring of the hexagonal lattice.

Let us state briefly the result of Smirnov. Consider a conformal rectangle D ⊂ R2 ' C,
that is a domain bounded by a Jordan curve equipped with (in counterclockwise order)
four points a, b, c, d on its boundary. Let Pδ(D) be the probability that the arcs (b, c)
and (d, a) are connected by a path contained in D and passing through open sites (or
open=white hexagons) only, in the site percolation on the triangular lattice with mesh size
δ, see Figure 1.4.
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Figure 1.4. Event with probability Pδ(D).

Consider another conformal rectangle (D′, a′, b′, c′, d′) which is conformally equivalent
to D, that is there exists a conformal mapping3 Φ : D → D′ which extends continuously
to the boundary, such that a′ = Φ(a), . . . , d′ = Φ(d). Smirnov Theorem claims that

lim
δ→0

Pε(D) = lim
δ→0

Pε(D
′). (1.13)

z

Φ

a1

aj

aj2

Φ (a1)

Φ (aj)
Φ (aj2)

Φ (z)

Figure 1.5. Illustration of Smirnov Theorem (Remark, that the triangu-
lar/hexagonal lattice is not transformed by the mapping Φ).

2. Other related models.

The bond percolation on Zd is only one, even if prominent, example of percolation
models. Let us present the most important ones.

We first generalise the bond percolation slightly. There is no special reason to consider
Zd only. In fact, the bond percolation can be defined on any (infinite) non-oriented graph
Λ with vertex set V (Λ) and edge set E(Λ). Given parameter p one then declares the edges
in E(Λ) open with probability p and closed otherwise, independently.

The site percolation on Λ is obtained by a similar construction, however instead of
opening/closing edges ones do the same with vertices. Clusters of the site percolation are
then connected subgraphs of Λ induced by open sites/vertices.

3that is bijective holomorphic with non-vanishing derivative
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If one takes Λ to be oriented graph, one obtains oriented percolation by opening/closing
vertices or edges of this graph. Of course, the paths defining the clusters should respect
the orientation of the edges.

Slightly different flavour has the first-passage percolation, see e.g. [Kes86]. Let us define
it on Zd. Let (te : e ∈ Ed) be a collection of non-negative i.i.d. random variables with some
given marginal distribution. te is interpreted as a time needed to traverse the edge e. One
is, e.g., interested into the set of sites that can be reached from the origin within certain
time T , that is in the set CT = {d(0, x) ≤ T}, where the distance d is defined as

d(0, x) = inf{
∑
e∈γ

te : γ a path connecting 0 to x}. (1.14)

It turns out that, under suitable moment condition on the distribution of t(e), CT grows
approximately linearly with time. More precisely, it was shown that there exists a non-
random set L ⊂ Rd such that for every ε > 0

(1− ε)TL ∩ Zd ⊂ CT ⊂ (1 + ε)TL eventually a.s. (1.15)

Leaving the discrete setting of the graph theory one obtains so called continuum per-
colation defined briefly as follows. Let Π be the Poisson process in Rd with intensity λ4

Let O be a collection of balls in Rd with radius one centred on the points of Π. One is
then interested in percolative properties of the set of these balls. One can e.g. show that,
similarly as in the discrete case, there exists a critical intensity λc such that O contains an
unique infinite component a.s. iff λ > λc. Standard reference on Continuum Percolation is
the book of Meester and Roy [MR96].

Many other percolation related models (together with references) are given in Chapter
12 of [Gri99].

3. Random-cluster measure

The random-cluster measure is related to the percolation measure, however they lack
its independence. Namely, for B a finite box in Zd, EB the set of edges of nearest-neighbour
sites in B, we consider an integer q ≥ 1, p ∈ [0, 1] and the finite set

ΓB = {1, . . . , q}B × {0, 1}EB =: ΣB × ΩB. (1.16)

One then defines a probability on ΓB by

µ(γ) = Z−1
∏

e={x,y}∈EB

{(1− p)δω(e),0 + pδω(e),1δσ(x),σ(y)}, (1.17)

where γ = (σ, ω) ∈ ΓB, Z is a normalising constant and δ the Kronecker symbol. This,
so called Edwards-Sokal [ES88] measure, has quite interesting marginals. Its marginal on
ΣB is

µ1(σ) :=
∑
ω∈ΩB

µ(σ, ω) = Z−1
1 exp

{
β

∑
{x,y}∈EB

δσ(x),σ(y)

}
, (1.18)

with p = 1 − e−β. This is so called Potts model, or in special case q = 2 the Ising
model, which is the most important model of statistical mechanics, and which was studied
probably even more than the percolation.

4That is a random set of points in Rd satisfying: (i) For any measurable A ⊂ Rd, the number of points
in A, N(A) has Poisson distribution with parameter λ|A|, the Lebesgue measure of A. (ii) If A,B ⊂ Rd

are disjoint, then N(A) and N(B) are independent.
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Its marginal on ΩB is

µ2(ω) :=
∑
σ∈ΣB

µ(σ, ω) = Z−1
2

{ ∏
e∈EB

pω(e)(1− p)1−ω(e)
}
qk(ω), (1.19)

with

k(ω) =
‘number of connected components of the graph with vertex
set B and edge set {e ∈ EB, ω(e) = 1} (open edges)’

. (1.20)

This marginal is closely related to the percolation measure (in fact, if q = 1, this is
exactly the percolation measure in B). It is usually called random cluster model. The
coupling µ of the random cluster model with the Potts and Ising models allows to apply
percolation techniques in statistical mechanics. The up-to-date reference for the random
cluster model is the book of Grimmett [Gri06].

4. Random interlacement and related problems

The random cluster model above can be viewed as a percolation model with a depen-
dency. There are, however, many other ways how to define ‘dependent percolation model’.
One of them is of interest of the probability group at ETH. Without going into details, I
will try to give you a flavour of the studied problems.

The model I will discuss relates to site percolation in a finite box, say B = [0, n]d∩Zd of
the lattice. Instead of turning the sites open/closed independently, we use a random walker
to do it. Originally all sites are open. The walker starts at point (0, 0) and performs a
simple random walk (with reflection on the boundary of the rectangle, say). When it visits
a site, it changes its state to closed. The question is how the typical picture of open/closed
clusters looks after T steps of the walk.

One fact is obvious, the closed component is always connected (since the trajectory of
the walk is). We will therefore look at the open set. If T is small, then the walk have not
visit many sites yet, and one can guess that the open set contains one large component
of size of the box. On the other hand, if T is large, random walk visited almost all sites,
and the open set has only small components. This resembles changing p from 1 to 0 in the
Bernoulli case.

One believes that there is a critical value of uc, such that if T = und, and u < uc,
that is the number of steps is small, then with high probability the open set has a unique
component of with volume of order nd, and if u > uc than the open set has only small
components. The complete proof of such claim is however missing at present.



CHAPTER 2

Basic concepts and results

1. Critical probability

We now consider the bond percolation on Zd and keep the notation of Chapter 1. Let
Cx be the connected open component containing the vertex x, x ∈ Zd. Define the events

Jx = {|Cx| =∞},

I = {ω ∈ Ω : there exists an infinite cluster in ω} =
⋃
x∈Zd

Jx. (2.1)

It is easy to see that I and Jx are events in A. Indeed, let B(n) = [−n, n]d∩Zd be the box
in Zd and let An =

{
0 is connected by an open path1 to the set Bc = Zd \ B

}
. An is an

event, since it depends on the state of finitely many edges of EB(n)
2 only. Moreover, since

infinite cluster cannot exist in a finite box, J0 = ∩n≥0An, and hence J0 ∈ A. Analogically,
Jx are events for all x ∈ Zd. Since, I = ∪x∈ZdJx, I is an event too.

Proposition 2.1. The probability Pp[I] equals 0 or 1. It has value 0 exactly when θ(p) = 0.

Proof. We first show that

I is σ(ω(e) : e ∈ Ed \ EB(n)) measurable for all n ≥ 1. (2.2)

Indeed, let In be the event ‘the restriction of ω to Ed \ EB(n) contains an infinite cluster’.
Of course, In ∈ σ(ω(e) : e ∈ Ed \ EB(n)), by the same proof as for (2.1). The claim (2.2)
then directly follows from the following equality:

I = In. (2.3)

To check this observe first that In ⊂ I. Conversely, if ω ∈ I, let C be an infinite cluster of
ω. Consider connected components of C \B(n) induced by ω. If they are at least two such
components, any of them must contain at least one vertex neighbouring with B(n) (since
it must be connected by an open path in B(n) to the remaining components). Hence,
C \B(n) has finitely many connected components, and thus one of them should be infinite.
Hence ω ∈ In. This shows I ⊂ In and consequently (2.3) and (2.2).

From (2.2) if follows that I is tail-measurable, that is

I ∈ A∞ := ∩E⊂Ed,E finite σ(ω(e) : e ∈ Ed \ E). (2.4)

From the Kolmogorov 0-1 law (see [Szn07, pp. 27–28]) we then deduce that Pp(I) = 0
or 1.

Note also that J0 ⊂ I ⊂ ∪x∈ZdJx and thus,

θ(p) = Pp(J0) ≤ Pp(I) ≤
∑
x∈Zd

Pp[Jx] =
∑
x∈Zd

θ(p). (2.5)

(the last equality follows from the translation invariance of Zd) and second claim of the
proposition follows. �

1path is a finite sequence of neighbouring vertices
2EB(n) is the set of nearest-neighbour bonds with both endpoints in B(n).

10



1. CRITICAL PROBABILITY 11

We now show the existence of the critical probability.

Theorem 2.2. If d ≥ 2, then there exists a pc(d) ∈ (0, 1) such that

θ(p)= Pp[|C0| =∞] = Pp[J0]

{
= 0, if p < pc,

> 0, if p > pc.
(2.6)

Remark 2.3. It is easy to see that pc(d = 1) = 1. (Exercise!)

Proof. We prove the theorem in 4 steps.
Step 1. pc ≥ 1/(2d), which is equivalent to

θ(p) = 0 for p <
1

2d
. (2.7)

To see this consider the set Pn of self-avoiding paths3 starting at the origin and having
length4 n. Since on J0, at least one π ∈ Pn should be open,

θ(p) ≤
∑
π∈Pn

Pp[for all e ∈ π, ω(e) = 1] = |Pn|pn. (2.8)

To construct an element of Pn we start at the origin. At the first step we can choose
one of 2d edges incident to the orgin. On every next step, we can choose at most (2d− 1)
edges that are not yet used by the path. Hence |Pn| ≤ 2d(2d− 1)n−1 ≤ (2d)n and

θ(p) ≤ (2dp)n
n→∞−−−→ 0, if p < 1/(2d). (2.9)

This completes the proof Step 1.
Step 2. When d = 2, then pc(2) ≤ 3/4, which is equivalent to

θ(p) > 0 for p >
3

4
, in Z2. (2.10)

We prove this claim using so-called Peierl’s argument (going back to Peierl’s article
about the Ising model from 1936). To this end we consider the dual lattice of (Z2, E2) (see
Figure 2.1). The vertices of the dual lattice are the points of the shifted lattice Z2 + (1

2
, 1

2
).

Two dual vertices are joined by a dual edge if there are at distance one or, equivalently, if
they are contained in the two neighbouring squares of the original lattice. Given ω ∈ Ω,
we declare a dual edge open (resp. closed) if the edge it crosses is open (resp. closed).
Note that this construction induces at the dual lattice again percolation on Z2 with succes

Figure 2.1. Part of(Z2, E2) (solid lines), and its dual lattice (dashed lines).
The open edges appear bold and closed dual edges bold-dashed.

3self-avoiding path = no vertex of the path is traversed more then ones
4length = the number of traversed edges
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probability p .
Important Observation. If C0 is finite, then we can find a closed dual circuit (or cycle)

containing C0 in its interior (see Figure 2.1 again). The proof of this intuitively obvious
observation is slighly complicated and we will encounter similar claims later. So we let it
without proof, which can be found e.g. in [BR06a], pp. 14–15.

In particular, if C0 is finite, then there is a dual closed circuit containing the origin it
its interior; let P ′n be the set of such circuits of length n. Observe that n should be even,
since Z2 is bipartite, and n ≥ 4. Therefore,

1− θ(p) = P[|C0| <∞] ≤
∑
k≥2

(1− p)2k|P ′2k|. (2.11)

To estimate the size of P ′2k observe that any circuit in this set should intersect the segment
connecting (0, 0) to (0, k). Hence, to construct an element of P ′2k we should pick a dual edge
crossing this segment (k-choices). For placing every next edge we have then (2d − 1) = 3
possibilities. Ignoring the fact that the circuit should be closed we get the upperbound
|P ′2k| ≤ k(2d− 1)2k−1 and thus

1− θ(p) ≤
∑
k≥2

(1− p)2kk(2d− 1)2k−1 < 1, when p ≥ 3/4. (2.12)

This implies (2.10).
Step 3. pc(d) ≤ pc(2) for every d ≥ 2. We embed canonically (Z2, E2) into (Zd, Ed).

Observe that percolation5 in dimension two then implies percolation in dimension in d ≥ 2.
In particualar, if p > pc(2), then with a positive probability the origin is contained in an
infinite component contained in Z2. Hence θp(d) ≥ θp(2), which implies the claim.

Step 4. θ(p) is non-decreasing. The event J0 = {|C0| = ∞} is so-called increasing
event. That is, if ω(e) ≤ ω′(e) for all e ∈ Ed (denoted by ω ≤ ω′), then ω ∈ J0 =⇒ ω′ ∈ J0.

We now prove the claim by a coupling argument. Consider the probability space Σ =
[0, 1]Ed equipped with the canonical product σ-algebra B and the probability measure Q,
under which are the canonical coordinates Xe, e ∈ Ed, are i.i.d. uniform random variables.

We couple each Pp, p ∈ [0, 1] with Q by the following construction. Let

Φp : σ ∈ Σ 7→ ω = (ω(e) = 1Xe(σ)≤p)e∈Ed ∈ Ω. (2.13)

It is easy to see that Φp is measurable and that it sends Q to Pp. Moreover, Φp is increasing
in p, that is if p ≤ p′ then Φp(σ) ≤ Φp′(σ), for every σ ∈ Σ. Therefore, for p ≤ p′, since J0

is increasing

θ(p) = Pp[J0] = Q[σ ∈ Σ,Φp(σ) ∈ J0] ≤ Q[σ ∈ Σ,Φp′(σ) ∈ J0] = Pp′ [J0] = θ(p′). (2.14)

This completes the proof of Step 4. The theorem then follows. �

2. FKG inequality

We now prove three inequalities that are very important in the percolation theory.
We start with the FKG inequality, which shows that “increasing events are positively
correlated” (in the sense of (2.16)). This inequality goes back to Harris [Har60]. It is
named after Fortuin, Kesteleyn and Ginibre [FKG71].

Theorem 2.4 (FKG inequality). Let X, Y ∈ L2(P) be increasing random variables (that
is if ω ≤ ω′ then X(ω) ≤ X(ω′) and Y (ω) ≤ Y (ω′)). Then

E[XY ] ≥ E[X]E[Y ]. (2.15)

5sometimes the event ‘there exists an infinite cluster’ is referred itself to as ‘percolation’
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In particular, if A, B are increasing events, then

P[A ∩B] ≥ P[A]P[B]. (2.16)

Example 2.5. This is the typical application of the FKG inequality. Let, for x, y ∈ Zd,
{x ↔ y} be the event {ω ∈ Ω : x is connected to y by an open path in ω}. This even is
clearly increasing. Therefore

P[{x↔ y} ∩ {u↔ v}] ≥ P[{x↔ y}]P[{u↔ v}]. (2.17)

This formalises the intuitively obvious fact that the existence of an open path from x to y
helps to build a path from u to v (see Figure 2.2).

Figure 2.2. Illustration of Example 2.5

Remark 2.6. By replacing X, Y by −X, −Y , it is easy to see that the FKG inequality
(2.16) also holds for decreasing random variables (or events).

Remark 2.7. We will see that the proof of the FKG inequality does not use the geometry
of Zd. In fact, the inequality holds for any product measure P =

⊗
e∈E µpe on {0, 1}E,

where E is a at most countable index set and µpe are Bernoulli distributions with success
pe ∈ [0, 1], which may depend on e ∈ E.

Proof of Theorem 2.4. We only need to show (2.15), which we prove in two steps.
Step 1. FKG on finite sets. We consider random variables X, Y , which depend on

the state of n edges e1, . . . , en only. We proceed by induction.
Suppose first that n = 1, that is X, Y are functions of the state ω(e1) of the edge e1.

As X, Y are increasing, for any pair ω1, ω2 ∈ {0, 1},
{X(ω1)−X(ω2)}{Y (ω1)− Y (ω2)} ≥ 0. (2.18)

Multiplying the last inequality by Pp[ω(e1) = ω1]Pp[ω(e1) = ω2] and summing over all ω1,
ω2 we get

0 ≤
∑
ω1,ω2

{X(ω1)−X(ω2)}{Y (ω1)− Y (ω2)}Pp[ω(e1) = ω1]Pp[ω(e1) = ω2]

= 2{Ep[XY ]− Ep[X]Ep[Y ]}
(2.19)

as required.
Suppose now that (2.15) is valid for all n < k and consider X, Y depending on

ω(e1), . . . , ω(ek). Observe that fixing the states ω(e1), . . . , ω(ek−1) of the first k−1 edges, X
and Y are increasing functions of the last state ω(ek). Setting F = σ(ω(e1), . . . , ω(ek−1)),
we thus obtain

Ep[XY ] = Ep[Ep(XY |F)] ≥ Ep[Ep(X|F)Ep(Y |F)] (2.20)
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by the FKG inequality for n = 1. Moreover, as X and Y are increasing, Ep(X|F) and
Ep(Y |F) are increasing functions of k − 1 variables ω(e1), . . . , ω(ek−1). Hence, by the
induction hypothesis,

Ep[XY ] ≥ Ep[Ep(X|F)Ep(Y |F)] ≥ Ep[Ep(X|F)]Ep[Ep(Y |F)] = Ep[X]Ep[Y ], (2.21)

completing the induction step.
Step 2. Lift to general random variables. We now consider two increasing random

variables X, Y ∈ L2(Pp). We fix e1, e2, . . . an enumeration of Ed and define a filtration
Fn = σ(ω(e1), . . . , ω(en)), n ≥ 1. The random variables Xn := Ep[X|Fn], Yn := Ep[Y |Fn]
are increasing and depend only on the state of n first edges. Hence by Step 1,

Ep[XnYn] ≥ Ep[Xn]Ep[Yn]. (2.22)

Moreover, the process Xn, n ≥ 1 is an L2(Pp) martingale. Hence, by Martingale Conver-
gence Theorem, Xn → X, Yn → Y in L2(Pp). So that

Ep[XY ] = lim
n→∞

Ep[XnYn] ≥ lim
n→∞

Ep[Xn]Ep[Yn] = Ep[X]Ep[Y ]. (2.23)

This completes the proof. �

Exercise 2.8. Consider bond percolation on a general connected non-oriented graph G =
(V,E) with both V , E countable, that is the measure Pp =

⊗
e∈E µp on {0, 1}E. Define

θx(p) = Pp[|Cx(ω)| =∞], pc(x) = inf{p ∈ [0, 1], θx(p) > 0}. (2.24)

We do not assume any symmetry of the graph so in general, θx(p) 6= θy(p) for x 6= y ∈ V .
None the less, pc(x) is independent of x. Proof this claim using the FKG inequality.

3. BK inequality

In various situation the FKG inequality is useless since it goes in the wrong direction.
We thus need a complementary opposite inequality, which of course cannot hold for the
intersection A ∩ B of two increasing events A, B. We are, thus, going to define a new
event, so called disjoint occurrence of A, B, denoted by A ◦ B. It is useful to start by an
example.

Example 2.9. Consider four vertices x, y, u, v and consider the event “{x ↔ y} and
{u ↔ v} by edge disjoint open paths” (see Figure 2.3). It seems plausible that the fact
that we cannot use the same edges for connecting x,y and u,v makes the probability of this
event smaller than Pp[x↔ y]Pp[u↔ v].

Figure 2.3. Illustration of Example 2.9
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We are now going to formally define the disjoint occurrence. To this end we set

OH = {ω ∈ Ω : ω(e) = 1 for all e ∈ H}, H ⊂ Ed. (2.25)

Definition 2.10. Let A, B be two increasing events depending only on the state of edges
in a finite set E ⊂ Ed. We define the disjoint occurrence of A and B as

A ◦B = {ω ∈ Ω : ∃H1, H2 ⊂ E with H1 ∩H2 = ∅, OH1 ⊂ A,OH2 ⊂ B,

such that ω(e) = 1 for all e ∈ H1 ∪H2}.
(2.26)

Note that A ◦ B is also an increasing event. The following theorem was proved by
Kesten and van den Berg [vdBK85].

Theorem 2.11 (BK inequality). Let A, B be as in Definition 2.10. Then

Pp[A ◦B] ≤ Pp[A]Pp[B]. (2.27)

The typical application of Theorem 2.11 is the next.

Corollary 2.12.

Pp[∃ edge disjoint open paths joining x1 to y1 and x2 to y2] ≤
2∏
i=1

Pp[xi ↔ yi]. (2.28)

Proof of the corrolary. Consider a sequence of finite sets EN such that EN ↑ E
as N →∞. For i = 1, 2 define

AN,i = {∃ open path joining xi to yi in EN}. (2.29)

Then (since paths have by definition finite length), the left-hand side of (2.28) is simply
the increasing limit limN→∞ Pp[AN,1 ◦ AN,2]. Inequality (2.28) then follows from (2.27),
since limN→∞ Pp[AN,i] = Pp[xi ↔ yi]. �

Proof of Theorem 2.11. We follow the proof by Bollobás and Leader. Let e1,. . . ,eN
be a fixed enumeration of E and set Fk = σ(ω(e1), . . . , ω(ek)), 0 ≤ k ≤ N . For any event
A ∈ Fk we define two events A0 and A1 ∈ Fk−1 such that

A = ∪i=0,1{ω : ω(ek) = i, (ω(e1), . . . , ω(ek−1)) ∈ Ai}. (2.30)

Obviously,

Pp[A] = (1− p)Pp[A0] + pPp[A1]. (2.31)

If A is increasing, then A0 ⊂ A1 and A0, A1 are increasing. (2.32)

We now proceed by induction. It is easy to check that if A,B ∈ F0 or A,B ∈ F1,
then (2.27) holds. Assume now that (2.27) holds for all A,B ∈ Fk−1. Take A,B ∈ Fk and
define C = A ◦B. It is easy to see that

C0 = A0 ◦B0,

C1 = (A1 ◦B0) ∪ (A0 ◦B1).
(2.33)

As A, B are increasing, it follows from (2.32) that

C0 ⊂ (A1 ◦B0) ∩ (A0 ◦B1),

C1 ⊂ (A1 ◦B1).
(2.34)

By induction hypothesis

Pp[C0] ≤ Pp[A0]Pp[B0],

Pp[C1] ≤ Pp[A1]Pp[B1].
(2.35)
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Further, by (2.34)

Pp[C0] + Pp[C1] ≤ Pp[(A1 ◦B0) ∩ (A0 ◦B1)] + Pp[(A1 ◦B0) ∪ (A0 ◦B1)]

= Pp(A1 ◦B0) + Pp(A0 ◦B1).
(2.36)

Multiplying the last three inequalities by (1 − p)2, p2 and p(1 − p) and summing them
together we obtain

(1− p)Pp[C0] + pPp[C1] ≤ {(1− p)Pp[A0] + pPp[A1]}{(1− p)Pp[B0] + pPp[B1]}. (2.37)

Applying three times (2.31) we complete the induction step. �

Exercise 2.13. Prove that the operation ’◦’ is associative. That is for A, B, C as in
Definition 2.10, (A ◦B) ◦C = A ◦ (B ◦C) =: A ◦B ◦C. Extend the BK inequality to more
than two events.

Remark 2.14. There is a generalisation of the BK inequality for general (not increasing)
events depending only on the state of edges in finite E ⊂ Ed proved by Reimer [Rei00].
The disjoint occurrence of such events is defined by

A�B = {ω ∈ Ω : for some H ⊂ E,NH,ω ⊂ A,NE\H,ω ⊂ B}, (2.38)

where
NI,ω = {ω′ ∈ Ω : ω′(e) = ω(e) for all e ∈ I}. (2.39)

Reimer’s theorem then states

Pp[A�B] ≤ Pp[A]Pp[B]. (2.40)

4. Russo’s Formula

Using the coupling as in Step 4 of the proof of Theorem 2.2, it can be proved that for
any increasing event A, the probability Pp[A] is a non-decreasing function of p (Exercise!).
In this section we show Russo’s formula which gives a control of the derivative of this
function in the case when A depends on the state of finitely many edges only.

We will need the following definition.

Definition 2.15. Let A ∈ A (that is A is an event) and let ω ∈ Ω, e ∈ Ed. We say that e
is pivotal for (A, ω) if 1A(ω) 6= 1A(ωe), where

ωe(f) =

{
ω(f), for all f ∈ Ed \ {e},
1− ω(e), if f = e.

(2.41)

Example 2.16. Let A be the event that the origin lies in an infinite open cluster. The
edge e is pivotal for A if, when e is removed from the lattice, one end-vertex of e is in a
finite open component containing the origin, and the second end-vertex of e is in an infinite
cluster (see Figure 2.4).

Remark 2.17. Note that the event ‘e is pivotal for A’= {ω : e is pivotal for (A, ω)} does
not depend on the state of the edge e. In other words it is included in the σ-algebra
σ(ω(f) : f ∈ Ed \ e).

We can now state the Russo’s formula.

Theorem 2.18 (Russo’s formula [Rus81]). Let A be an increasing event depending on the
state of finitely many edges only. Then

d

dp
Pp[A] =

∑
e∈Ed

Pp[e is pivotal for A] = Ep[N(A)], (2.42)

where N(A) is the number of edges that are pivotal for A.
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Figure 2.4. Illustration of Example 2.16

Proof of Theorem 2.18. Since A depends only on the state of finitely many edges,
its probability is a polynomial function in p, and therefore its derivative exists. Let E =
{e1, . . . , en} be the set of the edges on whose states A depends. Similarly as in Step 4 of
proof of Theorem 2.2, consider a family of independent random variables (Xe : e ∈ E) on
a probability space (Σ,Q) having uniform distribution on [0, 1]. Let p = (pe : e ∈ E) be a
collection of numbers, 0 ≤ pe ≤ 1. We then define the mapping Φp by

Φp : σ ∈ Σ 7→ ω = (ω(e) = 1Xe(σ)≤pe)e∈E ∈ {0, 1}E. (2.43)

Under this mapping the measure Q maps to a probability measure Pp on {0, 1}E under
which every edge e is open with probability pe, independently of all others edges. This
provides a natural coupling between Pp’s for various values of p.

Let now observe how Pp[A] changes if we change the parameter pf for a given edge
while all others pe, e 6= f are kept constant. That is, we consider a fixed edge f and two
collections p, p′ such that pe = p′e for all e 6= f , pf < p′f . By the coupling construction,
since A is increasing

Pp′ [A]− Pp[A] = Q[σ : Φp(σ) /∈ A,Φp′(σ) ∈ A]

= Q[σ : (Φp′(σ))f = 1, (Φp(σ))f = 0, and f is pivotal for (A,Φp(σ))]

= (p′f − pf )Pp[f is pivotal for A].
(2.44)

In the last equality we used the observation that f being pivotal does not depend on the
state of f , and the fact that the first two events on the second line occur exactly when
Xf ∈ (pf , p

′
f ].

The relation (2.44) implies directly that

∂

∂pf
Pp[A] = lim

p′f↓pf

Pp′ [A]− Pp[A]

p′f − pf
= Pp[f is pivotal for A]. (2.45)

Since A depends on finitely many edges only, we obtain, by the chain rule,

d

dp
Pp[A] =

∑
f∈E

∂

∂pf
Pp[A]

∣∣∣
p=(p,...,p)

=
∑
f∈Ed

Pp[f is pivotal for A] (2.46)

which completes the proof. �

Exercise 2.19. If A does not depend on finitely many edges, Pp[A] need not to be differ-
entiable (take for instance θ(p) = Pp[0 is in an infinite open cluster], cf. Theorem 3.11).
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On the other hand, the argument above can be extended to show a lower bound on the
right-hand side derivative: For any increasing event A

lim inf
δ→0

Pp+δ[A]− Pp[A]

δ
≥ Ep[N(A)]. (2.47)

The precise argument can be found in [Gri99, p.45].

Application of Russo’s formula. Let A be increasing event depending on edges in
E only. Russo’s formula can be rewritten as

d

dp
Pp[A] =

∑
f∈E

Pp[f is pivotal for A]

=
∑
f∈E

1

p
Pp[f is open and pivotal for A]

=
∑
f∈E

1

p
Pp[A ∩ f and pivotal for A]

=
∑
f∈E

1

p
Pp[f and pivotal for A|A]Pp[A] =

1

p
Ep[N(A)|A]Pp[A].

(2.48)

Integrating this differential equality over [p1, p2] we obtain

Pp2 [A] = Pp1 [A] exp
{∫ p2

p1

p−1Ep[N(A)|A] dp
}
. (2.49)

If we use the trivial bound Ep[N(A)|A] ≤ |E|, we obtain integrating (2.49)

Pp2 [A] ≤ (p2/p1)|E|Pp1 [A]. (2.50)

This bounds the possible growth of Pp[A].



CHAPTER 3

Sub-critical phase

We have seen in the previous chapter that pc is non-trivial for all d ≥ 2. In this chapter
we describe how the percolation configuration looks like in the sub-critical phase, p < pc.

1. Menshikov’s theorem

We first show that the distribution of the radius of the cluster containing the origin
decays at least exponentially.

We use ‖x‖ to denote the L1 norm of x, that is ‖x‖ = |x1| + · · · + |xd|. We use Sn
to denote the ball in this norm, Sn = {x : ‖x‖ ≤ n}, ∂Sn = {x : ‖x‖ = n} stays for its
surface, and An = {ω : 0↔ ∂Sn}.
Theorem 3.1. (d ≥ 2) If 0 < p < pc, then there exist constants C(p, d), c(p, d) ∈ (0,∞)
such that

Pp[An] ≤ C(p, d)e−c(p,d)n, for all n. (3.1)

Proof. The strategy of the proof is based on Menshikov [Men86]. Let gn(p) = Pp[An].
Observe that An is increasing and depends on the state of finitely many edges only. Hence
we can use Russo’s formula as in (2.48) to obtain, for any 0 ≤ p1 < p2 ≤ 1,

gn(p1) = gn(p2) exp
{
−
∫ p2

p1

1

p
Ep[N(An)|An]dp

}
≤ gn(p2) exp

{
−
∫ p2

p1

Ep[N(An)|An]dp
}
.

(3.2)

We will see that if p < pc, then the expectation Ep[N(An)|An] increases roughly linearly
with n when p < pc and we will use (3.2) to prove the theorem.

Let n ≥ 1 and consider a configuration ω ∈ An. Let

e1, . . . , eN(An) be the (random) edges which are pivotal for (An, ω), (3.3)

see Figure 3.1. Since An is increasing, all edges e1, . . . , eN(An) are open in ω. Moreover, any
open path π from the origin to ∂Sn should traverse ej for every j, otherwise ej would be
not pivotal. We assume that ej’s are enumerated in the order in which they are traversed
by π (this ordering is independent of π). We write, for all 1 ≤ j ≤ N(An), ej = {xj, yj}
where xj is the end-vertex of ej that is encountered first by π. Further we set, ρ1 = ‖x1‖,
and ρj = ‖xj − yj−1‖, 2 ≤ j ≤ N(An). For j > N we fix ρj =∞. We are going to compare
the random variables ρi under Pp[·|An] to a sum of i.i.d. random variables. Define a new
random variable M by

M = sup{‖z‖ : z ∈ C0}. (3.4)

Note that if p < pc, then Pp[M <∞] = 1. Let M1,M2, . . . be an i.i.d. sequence distributed
as M . It is useful to define Mn on the same probability space (Ω,Pp) as the percolation
(by enlarging this space), so that Mi’s are independent of (ω(e), e ∈ Ed). We will see later
that for any p ∈ (0, 1) and k ≥ 1,

Pp[ρ1 + · · ·+ ρk ≤ n− k|An] ≥ Pp[M1 + · · ·+Mk ≤ n− k]. (3.5)

The basic step for proving (3.5) is the following lemma.

19
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Figure 3.1. Sequence of pivotal edges for the event An.

Lemma 3.2. Let k be a positive integer, r1, . . . , rk be non-negative integers such that1∑k
i=1 ri ≤ n− k and p ∈ (0, 1). Then

Pp[ρk ≤ rk, ρi = ri,∀1 ≤ i < k|An] ≥ Pp[M ≤ rk]Pp[ρi = ri,∀1 ≤ i < k|An]. (3.6)

�

Proof. We will first explain the case k = 1, 0 ≤ r1 < n. Observe that,

{ρ1 > r1} ∩ An ⊂ Ar1+1 ◦ An, (3.7)

see also Figure 3.2. Indeed, by Menger’s theorem, on {ρ1 > r1}, there are at least two

Figure 3.2. Sequence of pivotal edges for the event An.

edge-disjoint path from 0 to x1, and ‖x‖1 = ρ1 > r1, hence x1 lies either outside Sr1+1 or at
its surface. Both events on the right-hand side depend on the state of finitely many edges,
hence by BK inequality

Pp[{ρ1 > r1} ∩ An] ≤ Pp[Ar1+1]Pp[An]. (3.8)

and thus
Pp[ρ1 > r1|An] ≤ gr1+1(p). (3.9)

Since Pp[M ≥ m] = gm(p), we have obtained (3.6) for k = 1.

1Observe that the condition
∑k

i=1 ri ≤ n− k assures that yk ∈ Sn.
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We not turn to the general case. For any edge e = {u, v}, let De be the open component
of ω when e is removed from ω. Let Be be the event that the following holds

• exactly one of u, or v lies in De, say u;
• e is open;
• De contains no vertex of ∂Sn;
• there is at least k − 1 pivotal edges for the event {0 ↔ v}. They are, in order,
{x1, y1}, . . . , {xk−2, yk−2}, {xk−1, yk−1} = e, where ‖yi−1 − xi‖ = ri, for 1 ≤ i < k,
and y0 = 0.

We define B =
⋃
eBe. For all ω ∈ An ∩ B, there exists a unique edge e = e(ω) such that

Be occurs. (Indeed, e should be (k−1)th pivotal edge on a path from 0 to ∂Sn.) Therefore,

Pp[An ∩B] =
∑

e={u,v},G

Pp[Be, De = G, yk−1 = v, An], (3.10)

where the sum runs over all edges in Sn and all connected subgraphs of G of Sn. This can
be further written as

Pp[An ∩B] =
∑

e={u,v},G

Pp[Be, De = G, yk−1 = v, v ↔ ∂Sn off G and {u, v}]

=
∑

e={u,v},G

Pp[Be, De = G, yk−1 = v]Pp[v ↔ ∂Sn off G and {u, v}],
(3.11)

where in the last equality we used the fact that given G and {u, v} the events on the
right-hand side depend on disjoint set of edges and are therefore independent. Similarly
as in the case k = 1, using the same reasoning as in (3.11), we obtain

Pp[{ρk > rk} ∩ An ∩B] =
∑

e={u,v},G

Pp[Be, De = G, yk−1 = v]

× Pp
[{
v ↔ ∂Srk+1(v) off G, {u, v}

}
◦
{
v ↔ ∂Sn off G, {u, v}

}]
,

(3.12)

where Sr(v) = {z : ‖v − z‖ ≤ r}. Using the BK inequality,

Pp[{ρk > rk} ∩ An ∩B] ≤
∑

e={u,v},G

Pp[Be, De = G, yk−1 = v]

× Pp
[
v ↔ ∂Srk+1(v) off G, {u, v}

]
Pp
[
v ↔ ∂Sn off G, {u, v}

]
.

≤ grk+1(p)Pp[An ∩B],

(3.13)

where in the last inequality we used (3.11) and

Pp
[
v ↔ ∂Srk+1(v) off G, {u, v}

]
≤ Pp

[
v ↔ ∂Srk+1(v)

]
= grk+1(p). (3.14)

Hence, by dividing by Pp[An ∩ B], we get Pp[ρk ≤ rk|An ∩ B] ≥ 1 − gp(rk + 1) and the
result of the lemma follows by multiplying by Pp[B|An]. �

We now use the lemma to prove (3.5). We have

Pp[ρ1 + · · ·+ ρk ≤ n− k|An] =
n−k∑
i=0

Pp[ρ1 + · · ·+ ρk−1 = i, ρk ≤ n− k − i|An]

≥
n−k∑
i=0

Pp[ρ1 + · · ·+ ρk−1 = i|An]Pp[M ≤ n− k − i] by (3.6)

= Pp[ρ1 + · · ·+ ρk−1 +Mk ≤ n− k|An],

(3.15)
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where in the last equality we used the fact that Mk is independent of (ω(e), e ∈ Ed) and
thus of all ρi’s. Iterating the argument finishes the proof of (3.5).

We now derive a lower bound on Ep[N(An)|An]

Lemma 3.3. For p ∈ (0, 1)

Ep[N(An)|An] ≥ n∑n
i=0 Pp[M ≥ i]

− 1 =
n∑n

i=0 gi(p)
− 1. (3.16)

Proof. We introduce a truncation of Mi:

M ′
i = 1 +M1 ∧ n, (3.17)

to avoid problems with possible defectiveness of the distribution of Mi for p > pc. Observe
that ρ1 + · · ·+ ρk ≤ n− k implies N(An) ≥ k, and therefore, using (3.5),

Pp[N(An) ≥ k|An] ≥ Pp[M1 + · · ·+Mk ≤ n− k] = Pp[M ′
1 + · · ·+M ′

k ≤ n]. (3.18)

Summing over k we obtain

Ep[N(An)|An] ≥
∞∑
k=1

Pp[M ′
1 + · · ·+M ′

k ≤ n] =
∑
k≥1

Pp[T > k] = Ep[T ]− 1, (3.19)

where T = inf{k ≥ 0,M ′
1 + . . .M ′

k > n} (observe that T ≤ n + 1). The Wald equation
gives in this setting

n < Ep[M ′
1 + · · ·+M ′

T ] = Ep[T ]Ep[M ′
1] (3.20)

and thus

Ep[T ] ≥ n

Ep[M ′
1]

=
n

1 + Ep[M ∧ n]
=

n∑n
i=0 Pp[M ≥ i]

. (3.21)

The claim of the lemma then follows from (3.19) and (3.21). �

We will inject (3.16) into (3.2). To this end we need to obtain an upper bound on
gi(p) = Pp[Ai] or, more precisely, on

∑n
i=0 gi(p) = 1 + Ep[M ∧ n] (cf. (3.21)). It will be

sufficient to show that

Ep[M ] =
∞∑
i=1

gi(p) <∞ for all p < pc. (3.22)

We will show later

Lemma 3.4. For p < pc there exists a δ(p) <∞ such that

gn(p) ≤ δ(p)n−1/2, for n ≥ 1. (3.23)

On the first sight, this lemma is not sufficient to prove (3.22). It can be however
combined with (3.2) to show faster decay of gn(p). Indeed, the last lemma implies that for
p < pc, for some ∆(p) ∈ (0,∞),

∞∑
i=0

gn(p) ≤ ∆(p)n1/2. (3.24)

Take p1 < pc and choose p2 such that p1 < p2 < pc. Then from (3.2) and (3.16) it follows
that

gn(p1) ≤ gn(p2) exp
(
−
∫ p2

p1

[ n∑n
i=0 gi(p)

− 1
]
dp
)

≤ gn(p2) exp
(
− (p2 − p1)

[ n∑n
i=0 gi(p2)

− 1
])
,

(3.25)
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since gi(p2) ≥ gi(p1) for all i ≥ 0. Inserting (3.24),

gn(p1) ≤ gn(p2) exp
(
− (p2 − p1)

[ n1/2

∆(p2)
− 1
])
, (3.26)

and thus
∑∞

i=1 gi(p1) = C(p1) <∞ for all p1 < pc.
Fix now p < pc and fix p′ such that p < p′ < pc. Using (3.25) with p, p′ in the place of

p1, p2, and using the last claim of the previous paragraph for p′ in the place of p1 we get

gn(p) ≤ gn(p′) exp
(
− (p′ − p)

[ n

C(p′)
− 1
])
≤ C(p, d)e−c(p,d)n. (3.27)

This finishes the proof of the theorem, given we show Lemma 3.4.2

Proof of Lemma 3.4. We proceed in three steps in which we first find a sequence
n1, n2, . . . along which gn(p) decreases rather quickly, and then we fill the gaps in this
sequence.

First step. We show that for any 0 < β < pc, if for n ≥ 1 and n′ := nbgn(β)−1c,
α := β − 3gn(β)(1− log gn(β)) > 0, (3.28)

then

0 < α < β and gn′(α) ≤ gn(β)2. (3.29)

Note that since β < pc we have limn→∞ gn(β) = 0, hence α > 0 holds for all n ≥ n0(β).
To prove (3.29) we have from (3.2), (3.25) that for 0 ≤ u < β, m ≥ 1

gm(u) ≤ gm(β) exp
(

(β − u)
(

1− m∑m
i=0 gi(β)

))
≤ gm(β) exp

(
1− m(β − u)∑m

i=0 gi(β)

)
. (3.30)

For m ≥ n we have, since g·(β) is decreasing,

1

m

m∑
i=0

gi(β) ≤ 1

m
(ng0(β) +mgn(β)) ≤ 1

m
(n+mgn(β)). (3.31)

Setting m = n′ and using bxc ≥ x/2 for all x > 0 we obtain

1

n′

n′∑
i=0

gi(β) ≤ 3gn(β). (3.32)

Inserting this into (3.30) and using monotonicity of gn(p) we get

gn′(u) ≤ gn(β) exp
(

1− (β − u)

3gn(β)

)
. (3.33)

For n ≥ n0(β) we can replace u by α and use the definition of α to obtain (3.29).

Second step. Iteration of the first step. Problem of the iteration relation in the
first step is that it allows us to control gn(p) as n increases at the price that we change p
in the same time. We now show that this iteration relation can be useful even for p fixed.

We consider p ∈ (0, pc), π ∈ (p, pc), and we construct sequences (pi : i ≥ 0) and
(ni : i ≥ 0) such that p0 = π, n0 to be fixed later, and for i > 0

gi = gni(pi), ni+1 = nibgic, pi+1 = pi − 3gi(1− log gi), (3.34)

such that pi > p for all i ≥ 0. This will allow us “to iterate the first step starting from π
while staying above p”.

2Expecting more carefully (3.25), the last inequality in (3.27) can be proved with C(p, d) = 1.
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To see that such construction is possible, define for x0 ∈ (0, 1), the sequence (xi : i > 0)

by xi+1 = x2
i , that is xj = x2j

0 , and set

S(x0) =
∞∑
j=0

3xj(1− log xj). (3.35)

Obviously S(x0) < ∞ and S(x0) → 0 as x0 → 0. Hence we can choose x0 such that
S(x0) < π − p, and n0 such that gn0(π) < x0.

It is easy to show by induction that pi, ni, gi as defined above satisfy pi ≥ π −∑i−1
j=0 3xj(1 − log xj) and gi < xi for all i ≥ 0. Indeed, it is true for i = 0 and assuming

that it holds up to i, then, using twice the induction assumption,

pi+1 = pi − 3gi(1− log gi) ≥ pi − 3xi(1− log xi) ≥ π −
i∑

j=0

3xj(1− log xj)(> p) (3.36)

and, by the first step, gi+1 ≤ g2
i < x2

i = xi+1.

Third step. Filling the gaps. For n ≥ n0 we find k such that nk−1 ≤ n < nk. This
is always possible since ni is strictly increasing and diverging. Since pk > p we have

gn(p) ≤ gn(pk−1) ≤ gnk−1
(pk−1) = gk−1. (3.37)

But, by the first step we have

g2
k−1 ≤ gk−1g

2
k−2 ≤ gk−1 . . . g1n

−1
0 n0gn0(π)2 ≤ δ2/nk, (3.38)

since by definition of ni’s, nk ≤ n0g
−1
1 . . . g−1

k−1, and since n0gn0(π) is a constant. Combining
last two compuations we get,

gn(p) ≤ δ/
√
nk ≤ δ/

√
n, (3.39)

for n > n0. By adjusting the constants, the claim of the lemma holds for all n ≥ 0. This
completes the proof of Menshikov’s Theorem. �

2. Equivalence of critical points

We have defined the critical probability pc as inf{p ∈ [0, 1] : θ(p) > 0}. There are,
however, other reasonable definitions of the critical point. We can, for example, replace
the function θ(p) = inf{p : Pp[0 ↔ ∞] > 0} used in the definition of pc by by another
functions of C0: Considering the expected size of C0,

χ(p) = Ep[|C0|], (3.40)

we can define p̄c as

p̄c(d) = sup{p ∈ [0, 1] : χ(p) <∞}. (3.41)

The question if p̄c = pc was one of the major problems of the percolation theory for nearly
twenty years. Menshikov’s theorem gives the affirmative answer to this question as can be
seen from the following two arguments.

Corollary 3.5 (d ≥ 2). For 0 ≤ p < pc,

Ep[|C0|] <∞. (3.42)

and thus p̄c ≥ pc.
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Proof. Since |Sn| ≤ c(d)(n+ 1)d, for n ≥ 0, we have

Ep[|C0|] =
∑
n≥0

Ep[|C0|,M = n] ≤
∑
n≥0

c(d)(n+ 1)dPp[M = n]

≤
∑
n≥0

c(d)(n+ 1)dgn(p) ≤
∑
n≥0

c(d)(n+ 1)de−c(d,p)n <∞,
(3.43)

and the claim follows. �

Remark 3.6. The inequality p̄c ≤ pc is trivial, since for p > pc one has Pp[|C0| = ∞] > 0
and thus Ep[|C0|] =∞.

Remark 3.7. If one assumes Ep[|C0|] < ∞ instead of p < pc in Theorem 3.1, then the
proof is much simpler, see Chapter 6 of [Gri99]. In this case, however, the equality of pc
and p̄c does not follow. This is the main reason why we presented the theorem with the
weaker assumption.

3. Exponential-tail of the radius

Menshikov’s theorem implies that the tail of the radius of C0 is at least exponential.
We now show that the exponential decay is the right one.

Theorem 3.8 (d ≥ 2, p ∈ (0, 1)). The limit

lim
n→∞

1

n
logPp[0↔ ∂Sn] = −φ(p) (3.44)

exists, and φ(p) > 0 iff p < pc.

Proof. For p 6= pc, the second claim of the theorem follows easily from Theorem 3.1
and the definition of pc. The case p = pc is slightly more complicated, see [Gri99, Theorem
6.14].3

We will now show the existence of the limit. To this end we will use the following very
useful lemma (for its proof see e.g. [DZ98], p. 255)

Lemma 3.9 (Subadditive limit theorem). Let (xr : r ≥ 1) be a sequence of real numbers
which is subadditive, that is it satisfies the inequality

xm+n ≤ xm + xn, for all m,n ≥ 1. (3.45)

Then the limit

λ = lim
r→∞

xr
r

(3.46)

exists and satisfies −∞ ≤ λ <∞. Moreover,

λ = inf
{xr
r
, r ≥ 1

}
. (3.47)

To apply this lemma we fix m,n ≥ 1. Obviously, on Am+n = {ω : 0 ↔ ∂Sm+n} there
exists a vertex x ∈ ∂Sm which is connected by edge disjoint path to 0 and to ∂Sm+n, see
Figure 3.3. Hence, using the BK inequality,

Pp[Am+n] ≤
∑
x∈∂Sm

Pp[0↔ x ◦ x↔ ∂Sm+n] ≤
∑
x∈∂Sm

Pp[0↔ x]Pp[x↔ ∂Sm+n]. (3.48)

3In fact, it can be proved that φ is continuous on (0, 1].
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Figure 3.3. Towards the sub-multiplicativity.

It is easy to see that Pp[0 ↔ x] ≤ Pp[Am] and Pp[x ↔ ∂Sm+n] ≤ Pp[An], by the
translation invariance and the fact that ∂Sn(x) ⊂ Sm+n, see Figure 3.3 again. Therefore,

Pp[Am+n] ≤
∑
x∈∂Sm

Pp[Am]Pp[An] ≤ |∂Sm|Pp[Am]Pp[An] ≤ cdm
d−1Pp[Am]Pp[An]. (3.49)

(Without the prefactor cdm
d−1, we would obtain subaditivity for the sequence logPp[An].

The presence of this prefactor needs some additional treatment.) We consider function
h(n) = log(cdn

d−1) = log cd + (d− 1) log n. This function satisfies for m ≤ n

h(m+ n)− h(n) = (d− 1) log(1 + m
n

) ≤ (d− 1) log 2. (3.50)

So, if we define an = logPp[An] + h(n) + (d − 1) log 2, we obtain using (3.49), (3.50), for
m ≤ n,

am+n = logPp[Am+n] + h(m+ n) + (d− 1) log 2

≤ h(m) + logPp[Am] + logPp[An] + h(n) + 2(d− 1) log 2 = am + an,
(3.51)

and thus the sequence (ak) is subadditive. By Lemma 3.9, an/n converges. Moreover, since
obviously P [An] ≥ pn (consider one path joining 0 and ∂Sn) and thus an ≥ n log p, this
limit must be finite. It is also non-positive. The claim of the theorem the follows from the
fact that limh(n)/n = 0. �

Remark 3.10. Observe that from the last proof one can obtain

Pp[An] ≥ cdn
1−de−nφ(p), n ≥ 1. (3.52)

It is believed that that for some κ, P [An] = cnκe−nφ(p)(1+o(1)). See Chapter 6.2 of [Gri99]
for more comments.

4. Critical behaviour of θ(p)

We conclude this chapter by one consequence of the proof of Menshikov’s theorem for
the super-critical behaviour of the function θ(p).

Theorem 3.11. There exist a, b > 0 such that

θ(p)− θ(pc) ≥ a(p− pc), for 0 ≤ p− pc ≤ b. (3.53)

Remark 3.12. By work of Hara and Slade [HS94], it is known that for d ≥ 19 there exist
c1, c2 ∈ (0,∞) such that

c1(p− pc) ≤ θ(p)− θ(pc) ≤ c2(p− pc), p > pc. (3.54)
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Figure 3.4. Illustration of Theorem 3.11.

This estimates are believed to hold for d ≥ 7. On the other hand, in d = 2 it was proved
by Kesten and Zhang [KZ87] that

c1(p− pc)b ≤ θ(p)− θ(pc), for p > pc and b < 1. (3.55)

Hence the (so-called mean-field) behaviour of (3.54) fails for d ≥ 2. It is believed that
θ(p) ∼ (p− pc)β(d) as p ↓ pc with β(d) = 1 iff d ≥ 7 (with possible logarithmic corrections
for d = 6). The constant β is one of so-called critical exponents.

Proof of Theorem 3.11. Observe that θ(p) is right-continuous. Indeed, θ(p) is
a decreasing limit of continuous functions, θ(p) = limn→∞ Pp[An], hence θ(p) is upper-
semicontinuous. Since it is increasing, it is right-continuous.

Recall that, for p ∈ (0, 1) with (3.2) and Lemma 3.3, we have

d

dp
Pp[An] ≥ Pp[An]

{ n∑n
i=0 Pp[Mn ≥ i]

− 1
}
, n ≥ 1. (3.56)

Assume now that pc < p < 1 and pick an ε ∈
(
0, 1

2
(1−θ(p))

)
. Using the right-continuity

of θ, for any α ∈ (pc, p) we can choose β ∈ (α, p] such that

θ(β) ≤ (1 + ε)θ(α). (3.57)

Since Pβ[An]
n→∞−−−→ θ(β), we can fix N such that

1

n

n∑
i=0

Pβ[Ai] ≤
1

1− ε
θ(β) if n ≥ N . (3.58)

For γ ∈ [α, β] we have θ(α) ≤ Pα[Ai] ≤ Pγ[Ai] ≤ Pβ[Ai]. Using this inequality in (3.56)
with p = γ, we get( d

dp
Pp[An]

)
p=γ
≥ θ(α)

( n∑n
i=0 Pβ[Ai]

− 1
)

≥ θ(α)
(1− ε
θ(β)

− 1
)

by (3.58) for n ≥ N

≥ 1

1 + ε

(
1− ε− θ(β)

)
by (3.57)

≥ ε

1 + ε
, since β ≤ p and 1− θ(p) ≥ 2ε.

(3.59)

Integrating over γ and letting n→∞ we find

θ(γ)− θ(α) ≥ (γ − α)
ε

1 + ε
, α ≤ γ < β. (3.60)
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We now want to send α ↓ pc but since β depends on α in (3.60), see (3.57), a little care
is necessary. We will now prove that one can choose β = p. Indeed, define

µ(α) = sup{β ∈ (α, p], such that (3.60) holds for α ≤ γ ≤ β}. (3.61)

Assume that α < µ(α) < p. We can apply the above construction for µ(α) on the place of
α and find a ξ ∈ (µ(α), p] such that

θ(ρ)− θ(µ(α)) ≥ (ρ− µ(α))
ε

1 + ε
for ρ ∈ [µ(α), ξ). (3.62)

Moreover, by upper-semicontinuity of θ and (3.60),

θ(µ(α))− θ(α) ≥ lim
q↑µ(α)

θ(q)− θ(α) ≥ lim
q↑µ(α)

(q − α)
ε

1 + ε
= (µ(α)− α)

ε

1 + ε
. (3.63)

Combining last two claims we thus obtain

θ(ρ)− θ(α) ≥ (ρ− α)
ε

1 + ε
for ρ ∈ [µ(α), ξ) (3.64)

which contradicts with definition of µ(α).
As a result, we can choose β = p in (3.60) and by letting α ↓ pc we obtain

θ(γ)− θ(pc) ≥ (γ − pc)
ε

1 + ε
, pc ≤ γ < p, (3.65)

which proves the theorem. �



CHAPTER 4

Super-critical phase

1. Uniqueness of the infinite cluster

We now consider the situation when p > pc that is θ(p) > 0. We have seen in Proposi-
tion 2.1 that an infinite open cluster exists a.s. We will now discuss its uniqueness.

Theorem 4.1 (d ≥ 2). If θ(p) > 0, then

Pp[there exists exactly one infinite open cluster] = 1. (4.1)

Proof. We will use the argument of Burton and Keane [BK89]. We set

N(ω) = # of distinct infinite open clusters in ω, (4.2)

that is 0 ≤ N(ω) ≤ ∞.

Exercise 4.2. Show that N is a random variable. Hint. Prove that {N ≥ k} is an event.
To this end approximate this event by an event depending only on finitely many edges.

For a finite set of vertices B ⊂ Zd we introduce

MB(ω) = # of infinite clusters of ω touching the set B,

NB,0(ω) = N(ω0
B), NB,1(ω) = N(ω1

B),
(4.3)

where the configuration ωiB, i = 0, 1, is defined by

ω1
B =

{
i, on EB, (EB is the set of edges with both vertices in B)

ω, on Ed \ EB.
(4.4)

In words, NB,0(ω) is the number of infinite clusters in ω if all edges in EB are erased (set
to be closed), and NB,1 is the number of infinite clusters in ω if all edges in EB are set to
be open. Obviously

NB,0(ω) ≥ N(ω) ≥ NB,1(ω) for every ω and B finite. (4.5)

Denote by tx, x ∈ Zd, the translations of ω given by

(txω)(e) = ω(e+ x), where for e = 〈y, z〉, e+ x = 〈x+ y, x+ z〉. (4.6)

Observe that N is invariant by translations:

N ◦ tx = N, for all x ∈ Zd. (4.7)

It follows by the ergodicity (see e.g. book [Kre85]) of the measure Pp that N is Pp-
a.s. constant, that is

Pp[N = k] = 0 or 1, for k ∈ N ∪∞. (4.8)

Exercise 4.3. The general argument of ergodicity is not necessary to prove (4.8). Prove
(4.8) by mimicking the proof of Kolmogorov’s 0-1 law. Hint. Approximate the event
{N = k} by an event depending only on finitely many edges, and use the translation
invariance together with the independence of Pp.

We now restrict the possible set of values of N .

29
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Lemma 4.4 (d ≥ 2, p ∈ (0, 1)).

Pp[N = k] = 1, for some k ∈ {0, 1,∞}. (4.9)

Proof. Consider 2 ≤ k < ∞ and assume that Pp[N = k] = 1. Take B = Sn = {x :
‖x‖1 ≤ n} and observe that since Pp is a product measure and Sn is finite

Pp[ω|EB ≡ 1] > 0 and Pp[ω|EB ≡ 0] > 0. (4.10)

Moreover, the law of ω0
B and ω1

B is simply

Pp[·|ω|EB ≡ 0] and Pp[·|ω|EB ≡ 1], respectively. (4.11)

Therefore,

Pp[NB,0 = k] = Pp[NB,1 = k] = 1, and thus Pp[NB,0 = NB,1] = 1. (4.12)

Observe that NB,0 = NB,1 <∞(!) implies that B is intersected by at most one infinite
cluster, since otherwise, by switching the edges of EB on and off, we would findNB,0 > NB,1.
Therefore, by (4.12), we have

Pp[MB ≥ 2] = 0. (4.13)

But, MB is non-decreasing in B, and as B ↑ Zd, MB ↑ N . We thus find

Pp[N ≥ 2] = 0, (4.14)

which contradicts with the assumption that Pp[N = k] with 2 ≤ k <∞. �

To prove Theorem 4.1 we should now exclude the possibility N = ∞. To this end we
introduce the notion of trifurcation.

Definition 4.5. We say that x ∈ Zd is a trifurcation for ω ∈ Ω, if

(a) x belongs to an infinite open cluster,
(b) there are exactly three open edges containing x,
(c) the deletion of these three open edges splits the infinite open cluster containing x

into three distinct infinite open clusters.

Figure 4.1. A trifurcation at x.

We denote by Tx the event ‘there is a trifurcation at x’. By the translation invariance
of the measure Pp,

Pp[Tx] = Pp[T0], for all x ∈ Zd. (4.15)

We now show that
Pp[N =∞] = 1 implies Pp[T0] > 0. (4.16)

To see this assume that N =∞ with probability one, take B = Sn and define MB,0(ω) =
M(ω0

B) to be the number of infinite open clusters touching B if all edges of EB are removed.
Note that NB,0 6= MB,0 and MB,0 ≥MB. Therefore,

Pp[MSn,0 ≥ 3] ≥ Pp[MSn ≥ 3]
n→∞−−−→ Pp[N ≥ 3] = 1. (4.17)
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We can thus choose n such that Pp[MSn,0 ≥ 3] > 1
2
. Observe that the event MSn,0 ≥ 3 does

not depend on the state of edges in EB.
For ω ∈ {MSn,0 ≥ 3} we can find three vertices x = x(ω0

Sn
), y = y(ω0

Sn
), z = z(ω0

Sn
) ∈

∂Sn so that they belong to distinct infinite open clusters, see Figure 4.2

Figure 4.2. Construction of a trifurcation at 0.

Moreover, for any such x, y, z we can construct three path joining 0 to x, y, z respec-
tively, so that

(1) each path touches exactly one vertex of ∂Sn,
(2) 0 is the only common vertex of these paths.

We denote by Ax,y,z the event ‘all edges of these three paths are open and all remaining
edges in ESn are closed’. Clearly, Ax,y,z depends only on the state of edges in EB and

Pp[Ax,y,z] ≥ (p ∧ (1− p))|ESn |. (4.18)

As a result we obtain

Pp[T0] ≥ Pp[MSn,0 ≥ 3, Ax(ω0
Sn

),y(ω0
Sn

),z(ω0
Sn

)]. (4.19)

Using the uniform estimate (4.18) and the independence of MSn,0 of the state of edges in
ESn , we obtain

Pp[T0] ≥ (p ∧ (1− p))|ESn |Pp[MSn,0 ≥ 3] ≥ 1
2
(p ∧ (1− p))|ESn | > 0, (4.20)

where we used our choice of n. This proves (4.16)
We have just seen that on N =∞ we can find trifurcations. Actually, due to (4.15), we

can expect that the number of trifurcations in a given set is proportional to the volume of
this set. The trifurcations create a tree like structure in this set, see Figure 4.3. By looking
at traces of this tree at the boundary of a large box Sn, we will find that the boundary of
Sn is not large enough to accommodate all leaves of the tree. We now present the rigorous
argument

Figure 4.3. The tree-like structure of the open cluster coming from its trifurcations.

We first introduce several ‘set-theoretic’ objects.
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Definition 4.6. Let Y be a finite set |Y | ≥ 3. A 3-partition of Y is a partition π =
(π1, π2, π3) of Y into three non-empty subsets.

Two 3-partitions π, π′ are said to be compatible when for a suitable ordering of these
3-partitions π1 ⊃ π′2 ∪ π′3 (or equivalently by taking complements π′1 ⊃ π2 ∪ π3).

A collection P of 3-partitions is compatible when any two distinct 3-partition of P are
compatible.

We will apply these concepts for the trace left on ∂Sn by an open infinite cluster C
intersecting Sn. Note that any trifurcation in Sn−1 of C induces a 3-partition of ∂Sn ∩ C.
We will need the following lemma.

Lemma 4.7. If P is a compatible collection of 3-partitions of Y , then

|P| ≤ |Y | − 2. (4.21)

Proof. We proof the lemma by induction over |Y |. The claim is obviously satisfied
for |Y | = 3.

Assume now that (4.21) holds for all 3 ≤ k ≤ n. Let |Y | = n + 1. Pick a y ∈ Y and
define Y ′ = Y \ {y}. Let P be a family of compatible 3-partitions of Y . Any π ∈ P can
be written as π = {π1 ∪ {y}, π2, π3}, with π1, π2, π3 disjoint and π2, π3 non-empty.

Split P into two sub-collections P ′ = {π ∈ P : π1 6= ∅}, P ′′ = P \ P ′. If π ∈ P ′, then
π1, π2, π3 form a 3-partition of Y ′. Moreover, if π, π̃ ∈ P ′ are distinct and compatible on
Y , then (π1, π2, π3) and (π̃1, π̃2, π̃3) are distinct and compatible (on Y ′). By the induction
hypothesis we have thus

|P ′| ≤ |Y ′| − 2 = |Y | − 3. (4.22)

Next, we will now show that |P ′′| ≤ 1. Indeed, otherwise we can find two distinct
3-partitions of Y , ({y}, A2, A3) and ({y}, B2, B3) which are compatible. However, then
either A2 or A3 contains either {y} ∪ B2, or {y} ∪ B3, or B2 ∪ B3. But, A2 ⊃ B2 ∪ B3 or
A3 ⊃ B2 ∪B3 is impossible because then A3 or A2 are empty. Similarly, A2 ⊃ {y}∪B2, or
A2 ⊃ {y}∪B3, or A3 ⊃ {y}∪B2, or A3 ⊃ {y}∪B3 is impossible since y /∈ A2 and y /∈ A3.
As a result |P ′′| ≤ 1 which together with (4.22) implies the induction step. �

We can now finish the proof of Theorem 4.1. Assume Pp[N = ∞] = 1. Pick ω ∈ Ω
and n ≥ 2. Let C be an infinite cluster intersecting Sn. If x ∈ C ∩ Sn−1 is a trifurcation
then the deletion of x partitions C ∩∂Sn into three non-empty sets (those points of C ∩Sn
joined to x with an open self-avoiding path in C using one of the three open edges incident
to x, respectively). Hence, each trifurcation in Sn−1 induces a 3-partition of ∂Sn ∩ C.

Figure 4.4. 3-partitions of ∂Sn ∩K coming from trifurcations at x (solid
lines) and at x′ (dashed lines).
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Moreover, if x, x′ are different trifurcation in Sn−1 the corresponding 3-partitions are
compatible and distinct, see Figure 4.4. As a result we find∑

x∈K∩Sn−1

1Tx ≤ |∂Sn ∩K| − 2, (4.23)

and summing over all infinite clusters intersecting Sn∑
x∈Sn−1

1Tx ≤ |∂Sn|. (4.24)

Taking expectations, we obtain from (4.15), (4.16)

|Sn−1|Pp[T0] ≤ |∂Sn|, for all n ≥ 2. (4.25)

However this is impossible since Pp[T0] ≥ 0, |Sn−1| ≥ cnd and ∂Sn ≤ c′nd−1. This completes
the proof. �

2. Renormalization

We are now explore the geometry of the unique open infinite cluster in the super-critical
phase. To this end we will use the technique called renormalization. Informally said, this
technique serves to ‘increase the occupation probability p’ of the percolation. This then
allows to prove many claims only for p large enough (i.e. close to 1), which is easier,
and then propagate them to all p > pc. The technique is based on the fact that certain
well-chosen properties of big blocks are more percolative than the original model.

Let us start with the formal construction. Let Bn be the box of size 2n,

Bn = [−n, n]d ∩ Zd, (4.26)

and let Mn = Mn(ω) be an open cluster in Bn (when we view all edges in Ed \ EBn as
closed). We say that Mn is a crossing cluster of Bn if Mn crosses Bn in every direction i,
1 ≤ i ≤ d (that is there exist x, y ∈ Mn such that their ith coordinates satisfy xi = −n,
yi = n).

For A ⊂ Zd let diamA = max1≤i≤d
∑

x,y∈A |xi − yi|. Observe that if Mn is crossing,
then diamMn = 2n. We now define an important concept of ε-good block.

Definition 4.8 (0 < ε < 1). Given ω ∈ Ω we say that Bn is ε-good for ω if there is an
open cluster Mn of Bn such that

(i) Mn is crossing.
(ii) All clusters C of Bn distinct from Mn satisfy diamC < n.

(iii) |Mn| ≥ (1− ε)θ(p)|Bn|.

Observe that Bn being ε-good depend only on the state of edges of EBn . The third
condition intuitively correspond to the fact that Mn should be the trace of the unique
infinite cluster in the box Bn, hence its density should be not much lower than θ(p) which
is the density of this infinite cluster.

To explain the role of the second condition we first need to define blocks

Bx,n = nx+Bn, x ∈ Zd, (4.27)

and a family of random variables (Xε
x,n)x∈Zd = (Xx)x∈Zd given by

Xx = 1{Bx,n is ε-good}, (4.28)

where the ‘being good’ for Bx,n is defined similarly as for Bn, requiring that Mx,n, a cluster
in Bx,n, satisfies “translated versions” of the above three conditions.

The implication of the condition (ii) is the following geometrical property. Let x, y be
neighbours on Zd, for sake of concreteness y = x + (0, . . . , 0, 1, 0, . . . , 0) where 1 is at ith
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position. Suppose that Xx = Xy = 1. Then My,n crosses By,n in ith direction and thus
My,n contains an open path having diameter n lying entirely in the intersection Bx,n∩By,n.
Since we assumed that Xx = 1 this path must be contained in Mx,n, otherwise the condition
(ii) would be violated. In particular, we get that Mx,n ∩My,n 6= ∅. See Figure 4.5 for an
illustration of this reasoning.

Figure 4.5. Illustration of the renormalization construction. The dot-
ted connection should be present since the intersection of the cluster My,n

(dashed cluster) with Bx,n has diameter at least n.

In particular, if s1, . . . , sk be a nearest-neighbour path in Zd and Xs1 = · · · = Xsk = 1,
then for any x ∈ Ms1,n and y ∈ Msk,n there exists an open path linking x and y lying
entirely in ∪ki=1Msk,n.

Let us now look at the distribution of the family (Xx). First, this distribution is
stationary with respect to the shifts of Zd, as follows easily from the translation invariance
of Pp. The family (Xx) is not independent, but satisfies the following weaker property.

The family (Xx)x∈Zd is 3d-dependent, (4.29)

which means that for all A,B ⊂ Zd such that dist(A,B) = infx∈A,y∈B ‖x − y‖1 ≥ 3d the
families (Xx)x∈A and (Xx)x∈B are independent. Indeed, the first family depends only on
the edges of ∪x∈ABx,n, the second one on the edges of ∪y∈BBy,n and these two edge sets
are disjoint since dist(A,B) ≥ 3d, implying the independence.

The next two theorems will be at the heart of the renormalization construction. The
first one will show that by taking large blocks, the probability that Xx = 1 can be made
arbitrarily large. The second will then show that the ‘dependent site percolation’ (Xx)x∈Zd
dominates an independent Bernoulli site percolation (Zρ

x)x∈Zd with success probability ρ
arbitrarily close to 1. These construction goes back to Pisztora [Pis96].

Theorem 4.9 (d ≥ 2, p > pc, ε ∈ (0, 1)). Good blocks are typical, more precisely

lim
n→∞

Pp[Xε
0,n = 1] = 1. (4.30)

To state the second theorem we need the following definition.

Definition 4.10. Let (Yx)x∈Zd and (Zx)x∈Zd be two collections of (not necessarily inde-
pendent) Bernoulli variables. We say that Y dominates Z, writing Y � Z, if for every
increasing bounded measurable function f : Ω→ R one has

E[f(Y )] ≥ E[f(Z)]. (4.31)
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It is known fact, see e.g. [Xxx1], that

Y � Z iff there exists a coupling1Q of Y and Z such that Q[Yx ≥ Zx∀x ∈ Zd] = 1. (4.32)

We can now state the second theorem which allows us to pass from dependent to
independent site percolation.

Theorem 4.11 (d ≥ 1, k ≥ 1). There exists a non-decreasing function φ : [0, 1] → [0, 1]
satisfying limu→1 φ(u) = 1 such that if (Yx)x∈Zd is a k-dependent family satisfying

P[Yx = 1] ≥ δ for all x ∈ Zd, (4.33)

then
Y � Zφ(δ), (4.34)

where (Zρ
x)x∈Zd is i.i.d. Bernoulli family with success parameter ρ.

Proof. The proof follows the strategy of Liggett, Schonmann and Stacey [LSS97].
For a given δ we choose α, ρ ∈ (0, 1) such that

(1− α)(1− ρ)|S(k)| ≥ 1− δ
(1− α)α|S(k)| ≥ 1− δ.

(4.35)

(Such choice is possible for δ large enough. For δ small we can set φ(δ) = 0 and therefore
Y � Zφ(δ) automatically holds.)

The idea of the proof is to dilute (Yx) a little bit, and show that the diluted percolation
dominates an independent one. We dilute Y using an independent Bernoulli family (Wx)
with parameter ρ independent of (Yx). The diluted version of Y is the family YW =
(YxWx)x∈Zd . We will show that

YW � Zαρ. (4.36)

Since obviously Y � YW , we obtain Y � Zαρ. Now, as δ → 1 we may allow α and ρ to
approach one too, whence we may find α(δ) and ρ(δ) satisfying (4.35) such that

α(δ)ρ(δ)→ 1 as δ → 1. (4.37)

This will imply the theorem.
In order to obtain (4.36) we will prove the following statement by induction: Let j ≥ 0

and let x1, . . . , xj+1 be distinct points in Zd and z1, . . . , zj ∈ {0, 1}. Then,

P[YxiWxi = zi∀1 ≤ i ≤ j] > 0, (4.38)

implies
P[Yxj+1

= 1|YxiWxi = zi∀1 ≤ i ≤ j] ≥ α. (4.39)

Consider first the case j = 0. Then, by the assumption of the theorem and (4.35),

P[Yx1 = 1] ≥ δ ≥ α, (4.40)

whence the claim holds for j = 0.
Suppose now that the claim holds for all j < J , where J ≥ 1, and set j = J . Let

z1, . . . , zJ satisfy (4.38) and partition {x1, . . . , xJ} into three sets N0, N1 and M where

N0 = {xi : 1 ≤ i ≤ J, ‖xJ+1 − xi‖1 ≤ k, zi = 0},
N1 = {xi : 1 ≤ i ≤ J, ‖xJ+1 − xi‖1 ≤ k, zi = 1},
M = {x1, . . . , xJ} \ (N1 ∪N0).

(4.41)

1 A coupling of Y and Z is a probability Q on Ω2 = {0, 1}Zd ×{0, 1}Zd

such that, when (X1
x)x∈Zd and

(X2
x)x∈Zd denote the canonical coordinate on this space, under Q, (X1

x)x∈Zd has the same law as (Yx)x∈Zd

and (X2
x)x∈Zd has the same law as (Zx)x∈Zd .
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Since (Wx) is i.i.d and independent of (Yx),

P[YxiWxi = zi∀1 ≤ i ≤ J ]

= P[YxiWxi = zi∀xi ∈M,YxiWxi = 1∀xi ∈ N1, YxiWxi = 0∀xi ∈ N0]

= P[YxiWxi = zi∀xi ∈M,Yxi = 1∀xi ∈ N1, YxiWxi = 0∀xi ∈ N0]ρ|N1|,

(4.42)

and

P[YxJ+1
= 1, YxiWxi = zi∀1 ≤ i ≤ J ]

= P[YxJ+1
= 1, YxiWxi = zi∀xi ∈M,YxiWxi = 1∀xi ∈ N1, YxiWxi = 0∀xi ∈ N0]

= P[YxJ+1
= 1, YxiWxi = zi∀xi ∈M,Yxi = 1∀xi ∈ N1, YxiWxi = 0∀xi ∈ N0]ρ|N1|,

(4.43)

the conditional probability of (4.39) can be written as

P[YxJ+1
= 1|YxiWxi = zi∀1 ≤ i ≤ J ] = P[YxJ+1

= 1|A0, A1, A], (4.44)

where

A0 = {YxiWxi = 0∀xi ∈ N0},
A1 = {Yxi = 1∀xi ∈ N1},
A = {YxiWxi = zi∀xi ∈M}.

(4.45)

Now,

P[YxJ+1
= 1|A0, A1, A] ≥ 1−

P[YxJ+1
= 0 ∩ A]

P[B0, A1, A]
, (4.46)

where B0 = {Wxi = 0∀xi ∈ N0}. Since Y is k-dependent and M does not contain any
vertex within distance k of xJ+1, we have that

P[YxJ+1
= 0 ∩ A] = P[YxJ+1

= 0]P[A] ≤ (1− δ)P[A], (4.47)

by the hypothesis of the theorem. Further, using that (W ) and (Y ) are independent we
get

P[B0, A1, A] = (1− ρ)|N0|P[A1, A]. (4.48)

Therefore,

P[YxJ+1
= 1|YxiWxi = zi∀1 ≤ i ≤ J ] ≥ 1− 1− δ

(1− ρ)|N0|P[A1|A]
. (4.49)

To obtain a lower bound on P[A1|A] we use the induction hypothesis. Assume first that
N1 is non-empty and write N1 = {y1, . . . , yn} for some n ≥ 1. We have,

P[A1|A] =
n∏
l=1

P[Yyl = 1|A, Yyi = 1∀i < l]. (4.50)

Using again the same reasoning as in (4.42)–(4.44)

P[Yyl = 1|A, Yyi = 1∀i < l] = P[Yyl = 1|A, YyiWyi = 1∀i < l] ≥ α, (4.51)

For the last inequality we used |M | + (l − 1) < J and applied the induction hypothesis.
Therefore,

P[A1|A] ≥ α|N1| if |N1| ≥ 1. (4.52)

The same inequality holds trivially when N1 = ∅.
Inserting (4.52) into (4.49) we get

P[YxJ+1
= 1|YxiWxi = zi∀1 ≤ i ≤ J ] ≥ 1− 1− δ

(1− ρ)|N0|α|N1|
. (4.53)
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Now, |N0|+ |N1| ≤ |Sk|, by definition (4.41) of N0 and N1. Hence using (4.35), we obtain

1− 1− δ
(1− ρ)|N0|α|N1|

≥ 1− 1− δ
(1− δ)/(1− α)

= α (4.54)

which completes the induction step and proves (4.39).
It remains to show that (4.39) implies (4.36). To this end we construct a coupling of

YW and Zαρ. To this end consider an enumeration x1, x2, . . . of Zd and observe that (4.39)
can be rewritten as

gj(z1, . . . , zj) := P[Yxj+1
Wxj+1

= 1|YxiWxi = zi∀1 ≤ i ≤ j] ≥ ρα. (4.55)

Consider now (Ui)i≥1 a family of i.i.d. random variables which are uniform on [0, 1]. Define,
for all i ≥ 1

V 2
xi

= 1{Ui ≤ αρ}, (4.56)

that is (V 2) has the same law as (Zαρ). Further set

V 1
x1

= 1{U1 ≤ g0}, (4.57)

where g0 = P[Wx1Yx1 = 1] ≥ δρ ≥ αρ, and inductively define

V 1
xj+1

= 1{Uxj+1
≤ gj(V

1
x1
, . . . , V 1

xj
)}. (4.58)

With this definition (V 1) has the same law as (YW ). Moreover the condition (4.55)
implies that V 1

x ≥ V 2
x for all x ∈ Zd, P-a.s. Whence, V 1, V 2 is a coupling of (YW ) and

(Zαρ) satisfying (4.32). This implies (4.36) and completes the proof of Theorem 4.11. �

To complete the renormalisation construction, we should now show Theorem 4.9, that
is to show that if n is large then the probability that a block is ε-good is close to one.

Proof of Theorem 4.9. We prove this theorem only for d ≥ 3. The proof for d = 2
is simpler (see [Gri99], pp. 191–193) and uses ideas that we will see in the next chapter.
The proof is based on Theorem (7.2) of Grimmett’s book [Gri99], whose proof is, in turns,
based on the technique called dynamic renormalisation. From temporal reasons we do not
present this technique in this lecture.

Theorem 4.12 ([Gri99],Theorem (7.2)). Let Σ(L) = Z+ × Z+ × [0, L]d−2 and define2

pc(Σ(L)) = inf{p ∈ [0, 1],Pp[0
Σ(L)↔ ∞] > 0}. Then for every p > pc = pc(Zd), there exists

L large enough such that
p > p(Σ(L)). (4.59)

We proceed with the proof of Theorem 4.9 which will be split into four lemmas. For
the first one, we define

Sn(L) = [−n, n]2 × [0, L]d−2,

Un(L) = [0, n]2 × [0, L]d−2,

Tn(L) = [0, n]d−1 × [0, L].

(4.60)

(We will typically take n� L so Sn(L) and Un(L) are essentially ‘two-dimensional’, while
Tn(L) is ’d− 1-dimensional’.)

Lemma 4.13 (d ≥ 3, p > pc). There exist L ≥ 1 and δ(p, L) > 0 such that

Pp[x
Sn(L)↔ y] ≥ δ for all x, y ∈ Sn(L) and all n ≥ 1, (4.61)

Pp[x
Tn(L)↔ y] ≥ δ for all x, y ∈ Tn(L) and all n ≥ 1. (4.62)

2A
C↔ B denotes the event ‘A is connected to B in C.
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Proof. Using Theorem 4.12, fix L such that p > pc(Σ(L)), and choose p′ such that
p′ ∈ (pc(Σ(L)), p). Define

θ = Pp′ [0
Σ(L)↔ ∞] > 0. (4.63)

For m ≥ 1 we consider four facets of the box Um(L),

H1(m) = [0,m]× {0} × [0, L]d−2, H2(m) = {m} × [0,m]× [0, L]d−2,

H3(m) = [0,m]× {m} × [0, L]d−2, H4(m) = {0} × [0,m]× [0, L]d−2.
(4.64)

Let xij be the intersection of facets Hi(m), Hj(m) with the plane x3 = · · · = xd = 0, here
(ij) ∈ {(12), (23), (34), (41)} = I.

Figure 4.6. Notation for the slab Um(L).

We first show that all xij, (ij) ∈ I, are connected with a positive probability, uniformly
in m. By the definition of θ, and using the symmetry, we have

θ ≤ Pp′ [x41
Um(L)↔ H2(m) ∪H3(m)]

≤ Pp′ [x41
Um(L)↔ H2(m)] + Pp′ [x41

Um(L)↔ H3(m)]

= 2Pp′ [x41
Um(L)↔ H2(m)].

(4.65)

Define the events Aij, (ij) ∈ I by Aij = {xij
Um(L)↔ Hj+2}, where j + 2 should be taken

cyclically in the set {1, 2, 3, 4}, see Figure 4.65. By the FKG inequality and using (4.65),

Pp′ [
⋂

(ij)∈I

Aij] ≥ (θ/2)4. (4.66)

The projection of the four paths γij realising the events Aij,(ij) ∈ I, to the plane
x1x2 is depicted on Figure 4.7. The problem is, however, that in reality these path do
not intersect, since the points on the picture corresponds to cubes [0, L]d−2. To connect
those path we use the technique called sprinkling. Heuristically, we increase the percolation
density from p′ to p by ‘sprinkling’ additional open edges into Sn(L) and we estimate the
probability that these new open edges join the paths γij.

More precisely, let (Ye)e∈Ed be an i.i.d. collection of Bernoulli variables with success
(p−p′)/(1−p′) on an auxiliary probability space (Ω′,Q), representing the additional edges
that we add to the lattice. It is easy to see that the law of (max(Ye, ωe))e∈Ed under Q×Pp′
is the same as the law of (ωe)e∈Ed under Pp.

To connect, e.g., γ12 with γ23 we consider an arbitrary path γ′ connecting these two
paths whose projection stays within point where γ12 and γ23 ‘intersect’ on Figure 4.7. The
path γ′ can be chosen in such way that it contains at most (d−2)L edges. The probability
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Figure 4.7. A realisation of events Aij.

that all edges of γ′ are opened by the sprinkling is thus larger than ((p−p′)/(1−p′))L(d−2).
Therefore,

Pp[γ12 ↔ γ23] = Q× Pp′ [γ12 ↔ γ23] ≥
(p− p′

1− p′
)(d−2)L

. (4.67)

Using the independence, we then obtain

Pp[x41
Um(L)↔ x12 . . .

Um(L)↔ x34] ≥ (θ/2)4
(p− p′

1− p′
)4(d−2)L

= δ1, for all m ≥ 1. (4.68)

We now let z ∈ Sn(L). We now show that Pp[0
Sn(L)↔ z] ≥ δ2 > 0. The claim (4.61)

then follows by the FKG inequality. Without loss of generality we assume 0 ≤ z1 ≤ z2.
Let u = (0, z2 − z1, 0, . . . , 0) and let v = (z1, z2, 0, . . . , 0) (see Figure 4.8). Then, by FKG

Figure 4.8. Construction of u and v (Projections of v and z are the same).

inequality, and by restricting the events to smaller sets,

Pp[0
Sn(L)↔ z] ≥ Pp[0

Sn(L)↔ u
Sn(L)↔ v

Sn(L)↔ z] ≥ Pp[0
U1↔ u]Pp[u

U2↔ v]Pp[v
Sn(L)↔ z], (4.69)

where U1 and U2 are two slabs whose projections are given on Figure 4.8. By (4.68), the
first two probabilities are lager than δ1. The last one is larger than p(d−2)L. Hence,

Pp[0
Sn(L)↔ z] ≥ δ2

1p
(d−2)L = δ2. (4.70)
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This completes the proof of (4.61).
We now show (4.62). We fix L, δ so that (4.61) holds and assume n ≥ L first. Without

loss of generality we assume that x ∈ Tn(L) is such that x1 ≤ 0 for all i = 1, . . . , d − 1.
Consider the sequence of points

s(0) = x, s(1) = (0, x2, . . . , xd), s(2) = (0, 0, x3, . . . , xd), . . .

s(d− 3) = (0, . . . , 0, xd−2, xd−1, xd), s(d− 2) = 0.
(4.71)

For all 0 ≤ j < d− 2,

s(j), s(j + 1) ∈ ((0, . . . , 0, xj+3, . . . , xd−1, 0) + [0, L]j)× [−n, n]2 × [0, L]d−j−2. (4.72)

The last set is contained in Tn(L) by assumption on x, and is isomorphic to Sn(L). Hence

Pp[s(j)
Tn(L)↔ s(j + 1)] ≥ δ. By the FKG inequality again we have Pp[x

Tn(L)↔ 0] ≥ δd−2,
which is (4.62) for given x and n ≥ L. Decreasing the constant δ in order to take care of
n < L and applying rotational symmetry completes the proof. �

Let ∂Bn be the interiour boundary of Bn. For x, y ∈ Bn, α > 1, n ≥ 1, let Eα,n(x, y)
be the event (see Figure 4.9)

Figure 4.9. Event Eα,n(x, y).

Eα,n(x, y) = {x↔ ∂Bαn, y ↔ ∂Bαn, x 6↔ y in Bαn}. (4.73)

Lemma 4.14. There exists ξ > 0 such that for all n ≥ 1, α > 1 and for all x, y ∈ Bn

Pp[Eα,n(x, y) ≤ e−n(α−1)ξ]. (4.74)

Proof. Choose L, δ as in Lemma 4.13(4.62). We are going to peel the cube Bαn by
taking off layers of thickness M = L + 1 succesively. Let dαne = n + KM + r where
r,K ∈ N, r < M . For k < K define,

Ak(x, y) = {x↔ ∂Bn+kM , y ↔ ∂Bn+kM , x 6↔ y in Bn+kM−1}. (4.75)

Now,
En,α(x, y) ⊂ AK(x, y) ⊂ · · · ⊂ A1(x, y), (4.76)

and thus

Pp[Eα,n(x, y)] ≤
K∏
k=1

Pp[Ak(x, y)|Ak−1(x, y)]. (4.77)

We claim that
Pp[Ak(x, y)|Ak−1(x, y)] ≥ 1− δd+2, for k ≥ 1, (4.78)
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which implies the lemma since

Pp[Eαn(x, y)] ≤ (1− δd+2)K ≤ e−nξ(α−1). (4.79)

To prove (4.78) define Vk(x) to be the set of all vertices u ∈ ∂Bn+kM which are connected
to x by a path whose all vertices except u are in Bn+kM−1. Observe that on Ak(x, y) the sets
Vk(x) and Vk(y) are non-empty and disjoint. Obvioiusly, for Dk = Bn+kM−1 \Bn+(k−1)M−1,

Ak(x, y) ⊂ Ak−1(x, y) ∩
{
u 6↔ v in Dk∀u ∈ Vk−1(x), v ∈ Vk−1(y)

}
. (4.80)

By independence of the two events on the right-hand side (they depend on disjoint set of
edges),

Pp[Ak(x, y)|Ak−1(x, y)] ≥ sup
{
Pp[u 6↔ v in Dk] : u, v ∈ ∂Bn+(k−1)M

}
. (4.81)

We now sketch how to use (4.62) to prove

Pp[u
Dk↔ v] ≥ δd+2 (4.82)

which implies (4.78). The region Dk may be thought as a d-dimensional ‘shell’, in rought
terms comprising of 2d overlapping ’slices’ each being isomorphic to Trk(L), where rk =
n + kM = 1. For every u, v ∈ Dk one can construct a sequence T1, . . . , Tb of such ‘slices’
such that T1 3 u, Tb 3 v, Ti and Ti+1 overlap, and b ≤ d + 2. Using then (4.62) for every
slice Ti and the FKG inequality it, the claim (4.82) follows. �

Figure 4.10. Illustration on a slice forming the shell Dk.

Exercise 4.15. Make yourself certain that b ≤ d+ 2 for any u, v ∈ Dk.

Lemma 4.16 (ε > 0, p > pc).

Pp[Bn has a crossing cluster C with |C| ≥ (1− ε)θ(p)|Bn|]
n→∞−−−→ 1. (4.83)

Proof. Let ξ be as in Lemma 4.14. Fix ν such that νξ > 2d. Let

Kn = C∞ ∩Bn−ν logn,

In = {x ∈ Bn : x
Bn↔ Kn}.

(4.84)

We claim that with probability tending to one, In is connected. Indeed, if In is disconnected,
then there exist u, v ∈ Kn such that u 6↔ v in Bn. Therefore,

Pp[In disconnected] ≤ |Bn|2 exp
(
− n− ν log n

n
ξν log n

)
≤ cn2d−νξ n→∞−−−→ 0. (4.85)
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Furhter,

|In| ≥ |Kn| =
∑

x∈Bn−ν logn

1{x↔∞}. (4.86)

By the ergodic theorem (see e.g. [Dur96, p. 341]),

Pp[|Kn| ≥ (1− ε
2
)θ(p)|Bn−ν logn|]

n→∞−−−→ 1. (4.87)

Since also |Bn|/|Bn−ν logn|
n→∞−−−→ 1, we have

Pp[|In| ≥ (1− ε)θ(p)|Bn|]
n→∞−−−→ 1. (4.88)

It remains to show that In is crossing. For i ∈ {1, . . . , d} and σ ∈ {+1,−1}, let Fi,σ be
the face

Fi,σ = {x ∈ Bn : xi = σn}. (4.89)

Define events Ei,σ = {In ∩ Fi,σ 6= ∅}. Obviously, by FKG,

Pp[Kn = ∅] ≥ Pp[
⋃
i,σ

Ec
i,σ] ≥ Pp[Ec

1,1]2d. (4.90)

Therefore, the probability that In is crossing satisfies

Pp[
⋃
i,σ

Ei,σ] ≥
∏
i,σ

Pp[Ei,σ] = (1− Pp[Ec
1,1])2d ≥ (1− Pp[Kn = ∅]1/2d)2d n→∞−−−→ 1. (4.91)

This completes the proof. �

The last lemma verifies the two of the three conditions of the definition of the good
block. We now sketch how to verify the last one.

Lemma 4.17. Let Tm,n be the event that in Bn there is a crossing cluster C and in addition
Bn contains another open cluster D with diameter at least m. Then

Pp[Tm,n] ≤ d(2n+ 1)2de−µm, for all m,n ≥ 1. (4.92)

Proof. The argument is similar to the peeling construction of Lemma 4.13 so we
sketch it only. Let Hi,r = {x ∈ Bn, xi = r}. Suppose that Tm,n is realised. Then, there
must be a direction i ∈ {1, . . . , d}, r ∈ [−n, n−m] and two points x, y such that xi = yi = r,
and x ↔ Hi,r+m, y ↔ Hi,r+m and x 6↔ y, all in the slab S = Bn ∪ {x : xi ∈ [r, r + m]}.
The slab S can be pealed off as before, succesively taking off layers of thickness M (for
the same M as in Lemma 4.13), proving that for a fixed x, y, i, r, the probability of such
event is at most e−µm. The prefactor in (4.92) comes from the d choices of direction, and
at most |B(n)|2 choices of x, y and r. �

The proof of Theorem 4.9 follows directly from the previous four lemmas. �



CHAPTER 5

Critical percolation

In the last part of this lecture we study the percolation at the percolation threshold.
We will prove two important results: The theorem of Kesten [Kes80] which states that
the critical value for the bond percolation on two-dimensional square lattice equals 1/2,
and the theorem of Smirnov [Smi01] proving the conformal invariance of two-dimensional
critical site percolation on the triangular lattice.

1. Kesten’s theorem

When studying the percolation on the critical threshold pc, the first natural question
to ask is ’What is the value of pc for a particular lattice?’ This questions can be, however,
answered in few rather special cases only, including some two-dimensional lattices. (see
[Gri99], p. ??, and [BR06a], Chapter 6 for some examples and deeper discussion).

In this section we concentrate on the edge percolation on the two-dimensional square
lattice Z2. We present the celebrated result of Kesten [Kes80].

Theorem 5.1. The critical value pc(Z2) of the bond percolation on Z2 satisfies

pc(Z2) = 1/2. (5.1)

There are many proofs of this theorem, we follow closely the one presented in [BR06a].
The fact that pc(Z2) can be exactly computed is largely based on the concept called duality,
more precisely on the fact that Z2 is self-dual1 (cf. Step 2 of the proof of Theorem 2.2).

We first explore the self-duality on a ‘finite level’ to prove some elementary statements
on ‘crossing of rectangles’. Let R be a m× n rectangle in Z2, R = [1,m]× [1, n] ∩ Z2. We
define its dual R′ to be m− 1×n+ 1 rectangle R′ as at Figure 5.1 (Observe that R′ is not
the dual graph of R in sense of the planar graph duality)

Figure 5.1. The construction of the dual rectangle R′ (dashed lines) of
rectangle R (solid lines)

1Let G = (V,E) be a (possibly infinite) planar graph. The dual graph G? = (V ?, E?) of G is given
by: V ? = ‘set of faces of G’, (x, y) ∈ E? if the faces of G corresponding to x, y share an edge. It is easy
to see that (Z2, E2) and its dual are equal (in sense of graph isomorphism).

43
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We declare an edge e? of R′ open iff the (unique) edge e of R which crosses e? is closed.
(This does not define the state of the edges at the top and bottom side of R′, but these
edges will be irrelevant for our considerations.) This gives us a coupling of percolation
with parameter p on R with the percolation with parameter 1− p on R′.

We let H(R) to stand for the event ‘there is an open horizontal crossing of R’, that
is ‘there exists a path joining left and right side of R consisting only of open edges in R’.
Note that H(R) does not depend on the state of edges in the left and right side of R.
We define V (R) to be event ‘there is an open vertical crossing of R’. We use the similar
notation H(R′), V (R′) for the rectangle R′.

Lemma 5.2. Whatever the state of edges in R, exactly one of the events H(R), V (R′)
occurs.

Proof. Step 1. H(R) and V (R′) cannot occur at the same time. We explore the
known fact from the graph theory stating that K5, the complete graph on 5 vertices, is not
planar.2 We proof the claim of this step by contradiction. Assume that H(R) and V (R′)
both occur. Since open edges of R are crossed only by closed edges of R′ (by definition),
the crossing γ realising H(R) cannot intersect the crossing γ′ realising V (R′). Moreover,
both γ and γ′ lie in the convex hull of R ∪ R′ Let a, b (resp. c, d) be the endpoints of γ
(resp. γ′), and let e be an arbitrary point in the exterior of the convex hull of R ∪ R′.
If we connect a, b, c, d, e by edges (that are outside of convex hull of R ∪ R′ and thus do
not cross γ and γ′) as on Figure 5.2 we obtain a planar drawing of K5, but such drawing
cannot exist.

Figure 5.2. Planar drawing of K5 coming from the simultaneous realisation
of H(R) and V (R′).

Step 2. At least one of H(R) and V (R′) occurs. We use the argument of [BR06b].
Consider a partial tiling of the plane by squares and octagons as shown on Figure 5.3 In
this tiling all vertices of R and R′ are centres of regular octagons. The octagons centred at
vertices of R are coloured black (grey), the octagons centred at R′ are coloured white. The
edges of both rectangles are represented by small squares occupying the space between the
octagons. Each square represent one edge of R together with its dual edge e?. It is coloured
black, if the standard edge is open, it is white if the dual edge is open. The squares on
the left and right side of the tiling are all black by definition, the squares on the top and

2 This can be proved, e.g., by applying so called Euler’s formula. By this formula, every planar graph
should satisfy #vertices−#edges+ #faces = 2. The graph K5 has 5 vertices

(
5
2

)
= 10 edges. Moreover,

every three vertices of K5 form a triangle, so a planar drawing of K5 should have
(
5
3

)
= 10 faces. But,

5− 10 + 10 6= 2, so K5 cannot be drawn in the plane.



1. KESTEN’S THEOREM 45

y

w z

x

Figure 5.3. The joint representation of the percolation on R and R′ in
terms of a particular partial tiling of the plane (points of R - filled circles/grey
octagons, points of R′ - empty circles/white octagons, open edges - solid lines,
open dual edges - dashed lines, exploration process of interface graph I - thick
broken line).

the bottom side white. The state of these edges/squares is irrelevant for events H(R) and
V (R′).

Observe that if a standard edge e is open, the corresponding black square joins the
black octagons representing the endpoints of e. Therefore, there is an open horizontal
crossing of R iff there is a path in R2 lying completely within black tiles joining a black
octagon on the left side of R with a black octagon on the right side of R. Analogously,
V (R′) occurs iff top and bottom side of the tiling are joined by a path within the white
region of the tiling.

We now define the interface graph I as the graph consisting of all edges of the tiling
separating the black and white region, together with their end-vertices. It is easy to see
that every vertex of I has degree two, except for four vertices x, y, z, w which have degree
one (see Figure 5.3). Hence, I must be composed of several (possibly none) cycles and two
paths joining the four special vertices.

We now explore the component of I containing x by a local algorithm. We start a walker
in x and let him walk around the edge from x which separates black and white region. After
his arrival at the ‘crossing’ the walker should decide if he turns left or right (since vertices
of the tiling have all degree at most three, there are only these two possibilities, back-
tracking is excluded). This decision can be made locally, the walker turns to the right if
the object (octagon or square) that he sees before him is white, otherwise he turns left.
After taking decision, the walker continues along the chosen edge; on reaching the next
crossing he applies the same decission algorighm, etc. It is easy to see that this algorithm
explores the component of x in the interface graph I. Moreover, as the walker explores
this component, it has always black object on his right-hand side and white object on its
left-hand side. Eventually, the walker reaches one of the vertices y, z or w. It is however
impossible that it reaches z, since walking along the edge going to z he should have black
octagon on its left-hand side, which is impossible.

He thus exists at y or at w. In the first case we see that the black region on the right-
hand side of the walker contains an horizontal crossing of R. In the second case, the white
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region on his left-hand size contains an open vertical crossing of R′. Hence one of V (R′),
H(R) must occur, completing the proof of the lemma. �

Remark 5.3. The algorithm of the last proof give us more than just a horizontal of vertical
crossing. If the walker exits at y, the open horizontal crossing contained in the black region
neighbouring with his trajectory is the top-most horizontal crossing P of R. Moreover, the
locality of the decision making of the algorithm implies that this crossing can be found
without examining the state of the edges that are ‘below’ P . Similarly, if the walker exits
at w, the white region on his left contains left-most vertical crossing of R′, and this crossing
can be found without examining the state of edges that to the right of it.

Corollary 5.4. (i) Let R be a rectangle in Z2 and R′ its dual. Then

Pp[H(R)] + P1−p[V (R′)] = 1. (5.2)

(ii) If R = Rn+1,n is n+ 1× n rectangle (n+ 1 columns, n rows), then

P1/2(H(R)) = 1/2. (5.3)

(iii) If S = Sn is a n× n square, then

P1/2(H(S)) = P1/2(V (S)) ≥ 1/2. (5.4)

Proof. The claim (i) follows directly from the previous lemma, recalling that perco-
lation with parameter p on R induces the percolation with parameter 1 − p on R′. For
(ii), observe that if R is n + 1 × n rectangle, then R′ is n × n + 1 rectangle, and thus
P1/2[V (R′)] = P1/2[H(R)]. The claim (iii) follows from the fact that every crossing of
Rn+1,n crosses Sn, implying P1/2[H(Sn)] ≥ P1/2[H(Rn+1,n)]. �

1.1. Russo-Seymour-Welsh Theory. In the last corollary we obtained a uniform
(in n) lower bound on the crossing probability of squares. Our next goal is to extend this
lower bound to rectangles of fixed aspect ratio. The hardest step is to pass from the squares
to the rectangles 3n× 2n. We start with the following lemma.

Lemma 5.5. Let R = Rm,2n, m ≥ n be a m × 2n rectangle. Denote by X(R) the event
(see Figure 5.4)

X(R) =
{

there are open paths γ1, γ2, such that γ1 crosses Sn vertically
and γ2 joins γ1 with the right edge of R

}
. (5.5)

Then
Pp[X(R)] ≥ Pp[H(R)]Pp[V (S)]/2. (5.6)

Figure 5.4. The event X(R).
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Proof. Let γ be any vertical crossing (not necessarily open) of S and let LV (S, ω) be
the left-most vertical open crossing of S in ω (if it does not exist, we set LV (S, ω) = ∅.).
By Remark 5.3, the event {LV (S, ω) = γ} is independent of the state of the edges that
are to the right of γ. We use this property to prove the following claim.

Claim 5.6.
Pp[X(R)|LV (S, ω) = γ] ≥ Pp[H(R)]/2. (5.7)

Proof. Let γ̄ be the path formed by γ, its reflection γ′ around the horizontal symmetry
axis of R, and the edge connecting γ with γ′. (See Figure 5.5)

Figure 5.5. Construction of γ̄.

With probability Pp[H(R)] there exists a open horizontal crossing γ3 of R. The crossing
γ3 must meet the path γ̄. By symmetry, it meets γ before γ′ with probability Pp[H(R)]/2.
Therefore, for all vertical crossings γ of S,

Pp
[
there exists an open path connecing γ with the right-hand
side of R, lying to the right of γ̄

]
≥ Pp[H(R)]/2. (5.8)

Let Y (γ) denotes the event in the last display. Since Y (γ) depends only on the edges that
are to the right of γ, Y (γ) is independent of {LV (S, ω) = γ}. Hence,

Pp[Y (γ)|LV (S, ω) = γ] = Pp[Y (γ)] ≥ Pp[H(R)]/2. (5.9)

Since {LV (S, ω) = γ} ∩ Y (γ) ⊂ X(R), we obtain

Pp[X(R)|LV (S, ω) = γ] ≥ Pp[H(R)]/2. (5.10)

This proves the claim. �

The proof of the lemma is then trivial. Summing over all possible values γ of the
left-most vertical crossing of S we obtain,

Pp[X(R)] =
∑
γ

Pp[X(R)|LV (S) = γ]Pp[LV (S) = γ]

≥ 1
2
Pp[H(R)]

∑
γ

Pp[LV (S) = γ]

= 1
2
Pp[H(R)]Pp[V (S)].

(5.11)

�

We now study the crossing probability of 3n× 2n rectangle along its longer direction.

Lemma 5.7. For all n ≥ 1,
P1/2[H(R3n,2n)] ≥ 2−7. (5.12)
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Proof. Let R, R′ and S be as at Figure 5.6. R and R′ are 2n × 2n squares and S
is n × n square. Let X(R) be as before and X ′(R′) be the same event in R′, reflected
horizontally. Then, by Lemma 5.5 and Corollary 5.4,

Figure 5.6. Construction of the horizontal crossing of R3n,2n.

P1/2[X ′(R′)] = P1/2[X(R)] ≥ P1/2[H(R)]P1/2[V (S)]/2 ≥ 2−3. (5.13)

Moreover, by the FKG inequality (see Figure 5.6 again),

P1/2[H(R3n,2n)] ≥ P1/2[X(R) ∩X ′(R′) ∩H(S)]

≥ P1/2[X(R)]P1/2[X ′(R)′]P1/2[H(S)] ≥ 2−7.
(5.14)

This completes the proof. �

It is much easier to pass from 3× 2 rectangles to rectangles of larger aspect ratio.

Lemma 5.8. For all integers k ≥ 2, n ≥ 1,

P1/2[H(Rkn,2n)] ≥ 217−8k. (5.15)

Proof. We cover the kn × 2n rectangle by (k − 2) rectangles Ri of size 3n × 2n, so
that the intersection of two neighbouring rectangles Ri, Ri+1 is a square denoted by Si (see
Figure 5.7).

Figure 5.7. Tiling a long rectangle by 3× 2 rectangles and squares.

Then, by the FKG inequality again,

P1/2[H(Rkn,2n)] ≥ P1/2

[ k−2⋂
i=1

H(Ri) ∩
k−3⋂
i=1

V (Si)
]

≥ P1/2[H(R3n,2n)]k−2P1/2[S2n]k−3 ≥ 2−7(k−2)2−(k−3) = 217−8k,

(5.16)
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and the proof is completed. �

The last two lemmas are originally due to Russo [Rus78] and Seymour and Welsh
[SW78]. The proof we presented is due to Bollobás and Riordan.

1.2. Proof of Kesten’s theorem. We can now prove the Kesten’s theorem (Theo-
rem 5.1). We start with a lower bound on pc(Z2).

Lemma 5.9. On Z2, θ(1
2
) = 0. This implies pc(Z2) ≥ 1

2
.

Proof. Consider the dual lattice Z2
? and the dual percolation as in the proof of Peierl’s

argument (recall that any dual edge is open iff the unique ‘standard’ edge that it is crossing
is closed). Let S = S6n ⊂ Z2

? by 6n×6n square centred at (1
2
, 1

2
). Let R1

n, . . . , R
4
n by 2n×6n

rectangles as on Figure 5.8, and let Fn be the event ‘there is an open crossing in every Ri
n,

i = 1, . . . , 4 along the 6n direction’ (see Figure 5.8 again).

Figure 5.8. The event Fn.

By the FKG inequality and Lemma 5.8,

P1/2[Fn] ≥ P1/2[H(Ri
n)]4 ≥ (217−8·8)4 = 2−100. (5.17)

If Fn occurs, then the open cluster of the origin (in the standard percolation) is con-
tained in S6n. Therefore,

θ(1/2) = P1/2[0↔∞] ≤ P1/2[∩i∈NF c
4i ]. (5.18)

Since, for any i 6= j we have (∪4
k=1R

k
4i) ∩ (∪4

k=1R
k
4j) = ∅, the events F4i , i ∈ N are

independent. Therefore,

θ(1/2) ≤ P1/2[∩i∈NF c
4i ] =

∏
i∈N

P1/2[F c
4i ] ≤ (1− 2−100)∞ = 0 (5.19)

and the lemma is proved. �

Exercise 5.10. Deduce from the presented proof that P1/2[sup{‖x‖∞ : x ∈ C0} ≥ k] ≤ k−c,
for some c > 0.

It remains to prove an upper bound on pc(Z2), that is pc(Z2) ≤ 1
2
. Suppose that this

is not true, that is pc(Z2) > 1
2
. Then p = 1

2
is sub-critical and we can apply Menshikov’s

theorem (Theorem 3.1),

P1/2[H(Sn)] ≤
∑

x∈left edge of Sn

P1/2[x↔ ∂B(n, x)] ≤ ne−cn
n→∞−−−→ 0. (5.20)
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(Here, B(n, x) is the box centred at x with side 2n). However, this contradicts Corollary 5.4
which states P1/2[H(Sn)] ≥ 1

2
for all n. This completes the proof of Kesten’s theorem.

The application of the Menshikov’s theorem in the previous argument might appear
unsatisfactory, given the complexity of the proof of this theorem. There are however simple
proofs of pc(Z2) ≤ 1/2, the presented one is the shortest given our previous work. Different
proofs can be found in [Gri99] and [BR06a].

2. Conformal invariance of critical percolation: Smirnov’s Theorem

This section follows closely Chapter 7 of the book of Bollobás and Riordan [BR06a].
In these notes, we do not give detailed proofs of all statements, some of them we even state
without proof. The goal is to explain the main ideas of the proof and to give details on
those places where we found them important for understanding these ideas.

2.1. Conformal invariance conjecture. We summarise first some facts from the
complex analysis needed to formulate the conformal invariance of the critical percolation.
In this section we consider lattices in the plane R2 that we identify with the complex plane
C. A domain D ⊂ C is a non-empty connected open subset of C. If D, D′ are domains,
then a conformal map from D to D′ is a bijection f : D → D′ which is analytic with
non-vanishing derivative at every point of D. Note that then the inversion f−1 is analytic
on D′. The analyticity of f implies that conformal maps preserve angles (which explains
the terminology ‘conformal’): the images by f of two crossing line segments in D are two
curves crossing at the same angle as the segments.

By Riemann Mapping Theorem if D, D′ 6= C are two simply connected domains (do-
mains without holes), then there exists a conformal map f from D to D′. Actually, there
exist infinitely many of such maps.

We write D̄ and ∂D for the closure and the boundary of D. We say that D is a Jordan
domain if ∂D is a Jordan curve, that is the image of a continuous injection γ : S1 → C,
where S1 = R/Z is the circle. By theorem of Carathéodory, if D, D′ are Jordan domains
and f a conformal map from D to D′, then f can be uniquely extended to a continuous
bijection f̄ from D̄ to D̄′.

By k-marked domain (D;P1, . . . , Pk) we understand a Jordan domain D together with
k points P1, . . . , Pk on its boundary. We always assume that these points are ordered anti-
clockwise on ∂D. Another consequence of the Riemann Mapping Theorem is the following
claim.

Theorem 5.11. If (D;P1, P2, P3), (D′;P ′1, P
′
2, P

′
3) are two 3-marked domains, then there

exists a unique conformal map f : D → D′ such that its extension f̄ satisfies f̄(Pi) = P ′i ,
i = 1, 2, 3.

We now consider 4-marked domains D4 = (D;P1, . . . , P4), D′4 = (D′;P ′1, . . . , P
′
4). We

call D4 and D′4 conformally equivalent if there exists a conformal mapping f : D → D′

which fixes all four boundary points, that is f̄(Pi) = P ′i for all i = 1, . . . , 4. (This mapping
is either unique or does not exists, as can be seen from the last theorem.) We denote by
A1, . . . , A4 the arcs of ∂D4; Ai joins Pi with P(i+1), i = 1, . . . , 43.

We now formulate the conformal invariance conjecture. Let Λ be any ‘suitable4’ lattice
in the plane, δΛ its scaling by factor δ > 0, Pp a percolation (bond or site) on Λ (or
its scaling), and pc(Λ) its critical parameter. For a 4-marked domain D4 we denote by

3In these notes, we always identify P5 with P1 when considering 4-marked domains. When considering
3-marked domain we identify P4 with P1

4For what ‘suitable’ means see page 182 of [BR06a].
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Pδ(D4,Λ, pc(Λ)) to be the probability that in the percolation on δΛ with parameter pc(Λ)
there exists an open path joining arcs A1 and A3

5

Conjecture 5.12. The limit

P (D4) := lim
δ→0

Pδ(D4,Λ, pc(Λ)) (5.21)

exists, lies in (0, 1), and is independent of the lattice Λ. Moreover, it is conformal invariant:
If D4 and D′4 are two conformally invariant 4-marked domains, then

P (D4) = P (D′4). (5.22)

From our previous results it follows that limδ→0 Pδ(D4,Λ, p) = 0 (resp. 1) when p <
pc(Λ) (resp. p > pc(Λ)). Moreover, the RSW theory (which can be easily extended to
any reasonable lattice Λ) can be used to show that 0 < lim infδ→0 Pδ(D4,Λ, pc(Λ)) ≤
lim supδ→0 Pδ(D4,Λ, pc(Λ)) < 1. The conjecture thus predicts, in addition, the existence of
the limit and its conformal invariance.

2.2. Smirnov’s Theorem. Smirnov’s Theorem [Smi01] states that the conformal
invariance conjecture holds in one special case, namely for site percolation on the equilateral
triangular lattice T.

Theorem 5.13. For the site percolation on the triangular lattice T, the limit

P (D4) := lim
δ→0

Pδ(D4,T, pc(Λ)) (5.23)

exists and is conformally invariant.

Moreover, the value P (D4) can be ‘computed’ as follows. Consider 4-marked domain
D′4 which is equilateral triangle with vertices P ′1 = (1, 0), P ′2 = (1/2,

√
3/2), P ′3 = (0, 0),

with an additional point P ′4 = (x, 0), x ∈ (0, 1). For an arbitrary 4-marked domain
D4, let fD be the unique conformal map from D to D′ which fixes first three vertices of
D4

6, that is f̄(Pi) = P ′i , i = 1, . . . , 3. This maps sends P4 onto segment joining P ′3, P ′1:
fD(P4) =: (xD, 0), xD ∈ (0, 1).

Theorem 5.14 (Cardy’s formula in Carleson formulation). (i) The domain D′4 sat-
isfies P (D′4) = x.

(ii) Let D4 be an arbitrary 4-marked domain. Then P (D4) = xD.

We now give (non-complete) the proofs of these two theorems. We start by several
preliminary remarks. We use the fact that site percolation on triangular lattice can be
represented as a tiling of the hexagonal lattice H, see Figure 1.3. This representation can
be then used to prove that pc(T) = 1/2.

Exercise 5.15. Adapt the proof of Kesten’s theorem to show the last claim.

In the same way the RSW theory can be extended to the critical site percolation on T.
One of its consequences is the following lemma.

Lemma 5.16 (Radial RSW lemma). Let A be the annulus in the plain with inner radius
r− and outer radius r+, A = {z ∈ C : r− < |z| < r+}. We say that A has a radial open
(closed) crossing in δT if there exists nearest-neighbour path of open (closed) vertices of δT
intersecting the inner and outer boundary of A.

5We do not give the exact definition of ‘joining’ here. Any reasonable definition does the job.
6This map is generally very hard to find explicitly
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Let δ < r−/1000. Then there exists an absolute constant α > 0 such that

P[A has a radial open (closed) crossing on δT] ≤
(r−
r+

)α
. (5.24)

Here and later, P denotes the critical site percolation on T.

sketch of the proof. Consider a sequence Ai, i = 1, . . . , k, of concentric annuli:
inner radius of Ai equals 2i−1r−, the outer radius of Ai is 2ir−. If k = blog2(r+/r−)c, then
all Ai’s are contained in A. In every Ai draw six rectangles as on Figure 5.9. By standard

Figure 5.9. Illustration of the proof of the radial RSW lemma.

RSW lemma, the probability that any of these rectangles has a closed crossing along the
longer direction is bounded below by a positive constant c. Let Ei be the event ‘there is a
closed connection in all six rectangles drawn in Ai’. By the FKG inequality, P[Ei] ≥ c6. If
any of Ei occurs, than there cannot be an open radial crossing. Therefore, the probability
that A has an open radial crossing is bounded from above by

P[∩ki=1E
c
i ] ≤ (1− c6)k ≤ (r−/r+)α. (5.25)

(For the first inequality we used the fact that the annuli Ai are ‘disjoint’, and thus Ei are
independent). �

2.3. Discrete domains and colour switching. We now present so called colour
switching lemma that is at heart of the proof of Smirnov’s theorem. To present this lemma
we need however precise what we mean by open crossing of a domain.

We consider triangular lattice δT and the corresponding hexagonal lattice δH. We call
G = Gδ ⊂ δT discrete domain if the union of corresponding closed hexagons is simply
connected in C. We write ∂−G = {x ∈ G : ∃y ∼ x, y /∈ G} for the inner boundary of G
and ∂+G = {x /∈ G : ∃y ∼ x, y ∈ G} for the outer boundary of G. We always assume that
discrete domain is ‘nice’ in the sense that both inner and outer boundary are simple loops
(closed path without repetitions) in δT.

k-marked discrete domain G is a discrete domain together with k points v1, . . . , vk ∈
∂−G ordered in anti-clockwise order around the loop ∂−G. For convenience, we always
assume that vi has at least two neighbours in ∂+G (This is quite mild, since any site in
∂−G that does not have two such neighbours is adjacent to a site in ∂−G which does).

We denote by Ai the part of δ−G between vi, vi+1
7, vi and vi+1 included. We partition

∂+G into sets A+
i in the way that A+

i is a path starting at a neighbour of vi and ending at
a neighbour of vi+1. This is possible since we assume that all vi’s have two neighbours in
∂+G.

Let G be a 4-marked domain. We say that G has an open crossing from A1 to A3 if
there is an open path in G starting in A1 and ending in A3. Other crossings are defined
analogously.

7with obvious identification vk+1 = v1
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Lemma 5.17. G has either open (black) crossing from A1 to A3 of white crossing from
A2 to A4.

Exercise 5.18. Show the lemma. Hint. Consider the tiling containing all hexagons cor-
responding to G ∪ ∂+G. Colour all hexagons of G black iff the corresponding site is open,
all hexagons of A+

1 and A+
3 black and all hexagons of A+

2 , A+
4 white. Use the argument as

in the proof of Kesten’s theorem to show the claim.

We now state the colour-switching lemma. We consider 3-marked domain G ⊂ T (Here
δ is irrelevant so we set δ = 1.) and three points x1, x2, x3 ∈ G \ ∂−G which form a
triangle (in the anti-clockwise order). We write B1B2W3 for the event ‘there exist three
disjoint paths γ1, γ2 and γ3 in G such that γi starts in xi and ends in Ai, i = 1, 2, 3; γ1

and γ2 are black (open), and γ3 is white (closed)’. We define events B1W2B3, W1W2W3,
etc. analogously. We are interested in probabilities of (in total eight) events we have just
defined.

By black/white symmetry (remember pc = 1/2) we have identities of the type

P[W1W2B3] = P[B1B2W3]. (5.26)

So there are potentially only four distinct probabilities. The colour-switching lemma states
that three of them are equal.

Lemma 5.19 (Colour switching).

P[B1B2W3] = P[B1W2B3] = P[W1B2B3]. (5.27)

Remark 5.20. In general P[W1W2W3] 6= P[W1W2B3].

Proof. We will show

P[B1W2B3] = P[W1B2B3] = P[B1W2W3]. (5.28)

The remaining identities follows by relabelling.
We consider tiling of G ∪ ∂+G by black, white and grey tiles. The hexagons of G

are black iff the corresponding sites are open, the hexagons of A+
1 black, A+

2 white and
A+

3 grey. Let I be the interface graph, that is the subgraph of H consisting of all edges
separating black and white tiles together with their endpoints. Every vertex of I has degree
two, possible exceptions are the vertex y on the boundary of A+

1 and A+2 and all vertices
incident to grey region. This implies that the path P in I starting in y should end at the
boundary of the grey region.

Let w ∈ H be the barycentre of x1, x2, x3 and let z be the other vertex of the edge
separating the hexagons corresponding to x1 and x2. Let ~e be the oriented edge (z, w).

Claim 5.21. On B1W2, the path P starting in y traverses ~e in the positive direction.

Proof. Let γ1 realises B1 and γ2 realises W2 be two necessarily disjoint paths. We
form a cycle C ⊂ T by following γ1 from x1 to A1, then A+

1 to its end, then A+
2 to the

neighbour of the endpoint of γ2, and then γ2 from A2 to x2. Walking along this cycle, the
colour changes exactly twice, once from black to white when crossing the edge adjacent to
y, and once from white to black, when crossing ~e.

The path P enters the interior of C at its first step. It cannot end inside of C, since
there are no grey hexagons there. So it must exit it and the only possibility how to exit
the interior of C is via edge ~e. Moreover, it follows from the ordering of xi’s and Ai’s that
z is in the interior of C and w not, so ~e should be traversed in the positive direction. �
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Claim 5.22. Let P ′ be defined as follows: start at y, continue along I and stop if ~e is
traversed in the positive direction or if we reach the grey region. Let N(P ′) ⊂ T be the set
of sites whose hexagons are adjacent to P ′. Then if P ′ ends in ~e, then N(P ′) contains two
paths γ1, γ2 witnessing B1 and W2.

Sketch of the proof. The path P ′ has the property that it has black hexagons on
its left-hand side (when walked starting from y) and white hexagons on its right-hand side.
Moreover, white and black parts of N(P ′) are connected. If P ′ traverses ~e in the positive
direction, then x1 is white, x2 is black, and it is possible to extract a path γ1 (γ2) from the
white (black) part of N(P ′) joining x1 (x2) to A1 (A2). The paths γ1, γ2 are necessarily
disjoint since they have different colours. �

From the previous two claims we obtain

Claim 5.23. B1W2 holds iff P ′ ends in ~e.

Claim 5.24. B1W2B3 (resp. B1W2W3) holds iff P ′ ends in ~e and there is a path γ3 ⊂ G
of black (resp. white) vertices joining x3 to A3 using no vertex of N(P ′).

Sketch of the proof. Suppose that B1W2B3 holds and γ1, γ2, γ3 are the witnessing
paths. Construct the cycle C as in the proof of Claim 5.21. From this proof it follows that
P ′ lies entirely within C, apart from its initial and terminal edge. In particular, every site
of N(P ′) is inside or on C. But γ3 cannot cross C, so γ3 lies entirely outside C and is
disjoint from N(P ′).

The reverse implication is immediate from the previous claim. The proof for the event
B1W2W3 is analogous. �

We can now finish the proof of the colour-switching lemma. Let Λ = 2G be the space
of all possible arangement of colours of hexagons in G, every arangement has the same
probability. Let ω ∈ Ω and let P ′(ω) be the path P ′ as above. Define the arangement ω′

by

ω′(x) =

{
ω(x) if x ∈ N(P ′(ω)),

1− ω(x) if x /∈ N(P ′(ω)).
(5.29)

The path P ′ depends only on the state of sites in N(P ′), by the locality of the algorithm
constructing it. Hence P ′(ω) = P ′(ω′) and thus ω′′ = ω. Therefore, the map ω 7→ ω′

is a bijection on Ω. By colour symmetry, this map is also measure preserving. But if
ω ∈ B1W2B3, then ω′ ∈ B1W2W3. This implies

P[B1W2B3] = P[B1W2W3], (5.30)

and completes the proof of the lemma. �

2.4. Separating events. Consider now a discrete domain Gδ ∈ δT a point z ∈ δH
that lies in the ‘interior’ of G. We define events

E3
δ (z) = {Gδ contains a black path from A1 to A2 separating z from A+

3 }. (5.31)

and E2
δ (z), E1

δ (z) by relabelling cyclically. Observe that we require a separating path, that
is the situation depicted on Figure 5.10(b) is not contained in E3

δ (z).

Claim 5.25. Let x1, x2, x3 and w, z be as in the previous claims. Then E3
δ (z) \ E3

δ (w)
occurs iff B1B2W3 occurs.
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Figure 5.10. (a) Separating event E3
δ (z). (b) a situation not in E3

δ (z).

Sketch of the proof. (E3
δ (z) \ E3

δ (w) =⇒ B1B2W3). Since z is separated from
A+

3 and w not, there must be black paths γ1, γ2 witnessing B1 and B2 (recall that x’s and
A’s are ordered anti-clockwise). We need thus to find a paths γ3 witnessing W3. Obviously,
x3 is white since otherwise γ1x3γ2 would separate w from A+

3 . By duality, it is also easy
to see that if we cannot realise W3 there is a black cycle around x3. The hard part of the
proof is to show that it is possible to extract a path from this cycle and from γ1 and γ2.
For details see [BR06a], p. 205.

(B1B2W3 =⇒ E3
δ (z) \ E3

δ (w)). Trivial. �

LAST LECTURE WILL BE COMPLETED.
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