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Introduction



Setting

Supervised machine learning

• given input/output training data (x (1), y (1)), . . . , (x (n), y (n))

• build a function f such that f (x) ≈ y for unseen data (x , y)

Gradient-based learning

• choose a parametric class of functions f (w , ·) : x 7→ f (w , x)

• a loss ` to compare outputs: squared, logistic, cross-entropy...

• starting from some w0, update parameters using gradients

Example: Stochastic Gradient Descent with step-sizes (η(k))k≥1

w (k) = w (k−1) − η(k)∇w [`(f (w (k−1), x (k)), y (k))]

[Refs]:

Robbins, Monroe (1951). A Stochastic Approximation Method.

LeCun, Bottou, Bengio, Haffner (1998). Gradient-Based Learning Applied to Document Recognition.
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Models

Linear: linear regression, ad-hoc features, kernel methods:

f (w , x) = w · φ(x)

Non-linear: neural networks (NNs). Example of a vanilla NN:

f (w , x) = W T
L σ(W T

L−1σ(. . . σ(W T
1 x + b1) . . . ) + bL−1) + bL

with activation σ and parameters w = (W1, b1), . . . , (WL, bL).

x [1]

x [2]

y
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Challenges for Theory

Need for new theoretical approaches

• optimization: non-convex, compositional structure

• statistics: over-parameterized, works without regularization

Why should we care?

• effects of hyper-parameters

• insights on individual tools in a pipeline

• more robust, more efficient, more accessible models

Today’s program

• lazy training

• global convergence for over-parameterized two-layers NNs

[Refs]:

Zhang, Bengio, Hardt, Recht, Vinyals (2016). Understanding Deep Learning Requires Rethinking Generalization.
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Lazy Training



Tangent Model

Let f (w , x) be a differentiable model and w0 an initialization.

×

•

w0

W0

f (W0, ·)

×
f (w0, ·)

w 7→ f (w , ·)

×f
∗

•

×

•
•

w0

W0

f (W0, ·)

×
f (w0, ·)

w 7→ Tf (w , ·)

Tf (w0,·)

×f
∗

•
•

Tangent model

Tf (w , x) = f (w0, x) + (w − w0) · ∇w f (w0, x)

Scaling the output by α makes the linearization more accurate.
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Lazy Training Theorem

Theorem (Lazy training through rescaling)

Assume that f (w0, ·) = 0 and that the loss is quadratic. In the

limit of a small step-size and a large scale α, gradient-based

methods on the non-linear model αf and on the tangent model Tf

learn the same model, up to a O(1/α) remainder.

• lazy because parameters hardly move

• optimization of linear models is rather well understood

• recovers kernel ridgeless regression with offset f (w0, ·) and

K (x , x ′) = 〈∇w f (w0, x),∇w f (w0, x
′)〉

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Du, Lee, Li, Wang, Zhai (2018). Gradient Descent Finds Global Minima of Deep Neural Networks.

Allen-Zhu, Li, Liang (2018). Learning and Generalization in Overparameterized Neural Networks [...].

Chizat, Bach (2018). A Note on Lazy Training in Supervised Differentiable Programming.
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Range of Lazy Training

Criteria for lazy training (informal)

‖Tf (w∗, ·)− f (w0, ·)‖︸ ︷︷ ︸
Distance to best linear model

� ‖∇f (w0, ·)‖2

‖∇2f (w0, ·)‖︸ ︷︷ ︸
“Flatness” around initialization

 difficult to estimate in general

Examples

• Homogeneous models.

If for λ > 0, f (λw , x) = λLf (w , x) then flatness ∼ ‖w0‖L

• NNs with large layers.

Occurs if initialized with scale O(1/
√
fanin)
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Large Neural Networks

Vanilla NN with W l
i ,j

i.i.d∼ N (0, τ2
w/fanin) and bli

i.i.d∼ N (0, τ2
b ).

Model at initialization

As widths of layers diverge, f (w0, ·) ∼ GP(0,ΣL) where

Σl+1(x , x ′) = τ2
b + τ2

w · Ez l∼GP(0,Σl )[σ(z l(x)) · σ(z l(x ′))].

Limit tangent kernel

In the same limit, 〈∇w f (w0, x),∇w f (w0, x
′)〉 → KL(x , x ′) where

K l+1(x , x ′) = K l(x , x ′)Σ̇l+1(x , x ′) + Σl+1(x , x ′)

and Σ̇l+1(x , x ′) = Ez l∼GP(0,Σl )[σ̇(z l(x)) · σ̇(z l(x ′))].

 cf. A. Jacot’s talk of last week
[Refs]:

Matthews, Rowland, Hron, Turner, Ghahramani (2018).Gaussian process behaviour in wide deep neural networks.

Lee, Bahri, Novak, Schoenholz, Pennington, Sohl-Dickstein (2018). Deep neural networks as gaussian processes.

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.
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Numerical Illustrations

(a) Not lazy

circle of radius 1
gradient flow (+)
gradient flow (-)

(b) Lazy
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(d) Under-param.

Training a 2-layers ReLU NN in the teacher-student setting

(a-b) trajectories (c-d) generalization in 100-d vs init. scale τ 8/20



Lessons to be drawn

For practice

• our guess: instead, feature selection is why NNs work

• investigation needed on hard tasks

For theory

• in depth analysis sometimes possible

• not just one theory for NNs training

[Refs]:

Zhang, Bengio, Singer (2019). Are all layers created equal?

Lee, Bahri, Novak, Schoenholz, Pennington, Sohl-Dickstein (2018). Deep neural networks as gaussian processes
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Global convergence for 2-layers NNs



Two Layers NNs

x [1]

x [2]

y

With activation σ, define φ(wi , x) = ciσ(ai · x + bi ) and

f (w , x) =
1

m

m∑
i=1

φ(wi , x)

Statistical setting: minimize population loss E(x ,y)[`(f (w , x), y)].

Hard problem: existence of spurious minima even with slight

over-parameterization and good initialization
[Refs]:

Livni, Shalev-Shwartz, Shamir (2014). On the Computational Efficiency of Training Neural Networks.

Safran, Shamir (2018). Spurious Local Minima are Common in Two-layer ReLU Neural Networks. 10/20



Mean-Field Analysis

Many-particle limit

Training dynamics in the small step-size and infinite width limit:

µt,m =
1

m

m∑
i=1

δwi (t) →
m→∞

µt,∞

[Refs]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Chizat, Bach (2018) On the Global Convergence of Gradient Descent for Over-parameterized Models [...]
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Global Convergence

Theorem (Global convergence, informal)

In the limit of a small step-size, a large data set and large hidden

layer, NNs trained with gradient-based methods initialized with

“sufficient diversity” converge globally.

• diversity at initialization is key for success of training

• highly non-linear dynamics and regularization allowed

[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].
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Numerical Illustrations
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Population loss at convergence vs m for training a 2-layers NN in the

teacher-student setting in 100-d.

This principle is general: e.g. sparse deconvolution.
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Idealized Dynamic

• parameterize the model with a probability measure µ:

f (µ, x) =

∫
φ(w , x)dµ(w), µ ∈ P(Rd)

• consider the population loss over P(Rd):

F (µ) := E(x ,y) [` (f (µ, x), y)] .

 convex in linear geometry but non-convex in Wasserstein

• define the Wasserstein Gradient Flow:

µ0 ∈ P(Rd),
d

dt
µt = −div(µtvt)

where vt(w) = −∇F ′(µt) is the Wasserstein gradient of F .

[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

Ambrosio, Gigli, Savaré (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures.
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Mean-Field Limit for SGD

Now consider the actual training trajectory ((xk , yk) i.i.d):
w (k) = w (k−1) − ηm∇w [`(f (w (k−1), x (k)), y (k))]

µ̂
(k)
m =

1

m

m∑
i=1

δ
w

(k)
i

Theorem (Mei, Montanari, Nguyen ’18)

Under regularity assumptions, if w1(0),w2(0), . . . are drawn

independently accordingly to µ0 then with probability 1− e−z ,

‖µ̂(bt/ηc)
m − µt‖2

BL . eCt max

{
η,

1

m

}(
z + d + log

m

η

)
[Refs]:

Mei, Montanari, Nguyen (2018). A Mean-field View of the Landscape of Two-layers Neural Networks.

Mei, Misiakiewicz, Montanari (2019). Mean-field Theory of Two-layers Neural Networks: Dimension-free Bounds.
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Global Convergence (more formal)

Theorem (Homogeneous case)

Assume that µ0 is supported on a centered sphere or ball, that φ is

2-homogeneous in the weights and some regularity. If µt converges

in Wasserstein distance to µ∞ then µ∞ is a global minimizer of F .

In particular, if w1(0),w2(0), . . . are drawn accordingly to µ0 then

lim
m,t→∞

F (µt,m) = minF .

• applies to 2-layers ReLU NNs (different statement for sigmoid)

• general consistency principle for optimization over measures

• see paper for precise conditions

[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].
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Remark on the scaling

Change of init. scaling ⇒ change of asymptotic behavior.

Mean field Lazy

model f (w , x) 1
m

∑
φ(wi , x) 1√

m

∑
φ(wi , x)

init. predictor ‖f (w0, ·)‖ O(1/
√
m) O(1)

“flatness” ‖∇f ‖2/‖∇2f ‖ O(1) O(
√
m)

displacement ‖w∞ − w0‖ O(1) O(1/
√
m)

• deep NNs need initialization in O(
√

2/fanin)

• yet, linearization doesn’t seem to explain state of the art perf
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Generalization : implicit or explicit

Through single-pass SGD

Single-pass SGD acts like gradient flow of population loss.

 but needs convergence rate

Through regularization

In regression tasks, adaptivity to subspace when minimizing

min
µ∈P(Rd )

1

n

n∑
i=1

∣∣∣∣∫ φ(w , xi )dµ(w)− yi

∣∣∣∣2 +

∫
V (w)dµ(w)

where φ is ReLU activation and V a `1-type regularizer.

 explicit sample complexity bounds (but differentiability issues)

 also some bounds under separability assumptions (same issues)
[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

Wei, Lee, Liu, Ma (2018). On the Margin Theory of Feedforward Neural Networks.
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Lessons to be drawn

For practice

• over-parameterization/random init. yields global convergence

• changing variance of initialization impacts behavior

For theory

• strong generalization guaranties need neurons that move

• non-quantitative technics still lead to insights
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What I did not talk about

Focus was on gradient-based training in “realistic” settings.

Wide range of other approaches

• loss landscape analysis

• linear neural networks

• phase transition/computational barriers

• tensor decomposition

• ...

[Refs]:

Arora, Cohen, Golowich, Hu (2018). Convergence Analysis of Gradient Descent for Deep Linear Neural Networks

Aubin, Maillard, Barbier, Krzakala, Macris, Zdeborová (2018). The Committee Machine: Computational to

Statistical Gaps in Learning a Two-layers Neural Network.

Zhang, Yu, Wang, Gu (2018). Learning One-hidden-layer ReLU Networks via Gradient Descent.
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Conclusion

• several regimes, several theories

• calls for new tools, new math models

Perspectives

How do NNs efficiently perform high

dimensional feature selection?

[Papers with F. Bach:]

- On the Global Convergence of Over-parameterized Models using

Optimal Transport. (NeurIPS 2018).

- A Note on Lazy Training in Differentiable Programming.
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