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Introduction



Supervised machine learning
e given input/output training data (x(), y(1) .. (x(M) (")
e build a function f such that f(x) & y for unseen data (x, y)

Gradient-based learning

e choose a parametric class of functions f(w,-) : x — f(w, x)
e a loss / to compare outputs: squared, logistic, cross-entropy...

e starting from some wp, update parameters using gradients

Example: Stochastic Gradient Descent with step-sizes (17(K))x>;
[Refs]:
Robbins, Monroe (1951). A Stochastic Approximation Method.

LeCun, Bottou, Bengio, Haffner (1998). Gradient-Based Learning Applied to Document Recognition.
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Linear: linear regression, ad-hoc features, kernel methods:
f(w,x) =w- ¢(x)
Non-linear: neural networks (NNs). Example of a vanilla NN:

f(w,x) =W oW, jo(...0(W{ x+b1)...)+b_1)+ by

with activation o and parameters w = (W, b1), ..., (Wi, b).
Al @ o T~
e

x[2] — \./
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Challenges for Theory

Need for new theoretical approaches

e optimization: non-convex, compositional structure
e statistics: over-parameterized, works without regularization

Why should we care?

o effects of hyper-parameters

e insights on individual tools in a pipeline

e more robust, more efficient, more accessible models
Today’s program

e lazy training

e global convergence for over-parameterized two-layers NNs

[Refs]:

Zhang, Bengio, Hardt, Recht, Vinyals (2016). Understanding Deep Learning Requires Rethinking Generalization.
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Lazy Training



Tangent Model

Let f(w, x) be a differentiable model and wy an initialization.

Wo

Ry

X

f(Wo. ")
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Tangent Model

Let f(w, x) be a differentiable model and wy an initialization.

Wo

Tangent model

Te(w, x) = f(wo, x) + (w — wp) - Vi f(wp, x)

Scaling the output by o makes the linearization more accurate.
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Lazy Training Theorem

Theorem (Lazy training through rescaling)

Assume that f(wp,-) = 0 and that the loss is quadratic. In the
limit of a small step-size and a large scale «, gradient-based
methods on the non-linear model af and on the tangent model Tr
learn the same model, up to a O(1/a) remainder.

e /azy because parameters hardly move
e optimization of linear models is rather well understood

e recovers kernel ridgeless regression with offset f(wp, ) and

K(x,x") = (V. f(wo, x), Vi f(wo, x))

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.
Du, Lee, Li, Wang, Zhai (2018). Gradient Descent Finds Global Minima of Deep Neural Networks.
Allen-Zhu, Li, Liang (2018). Learning and Generalization in Overparameterized Neural Networks |[...].

Chizat, Bach (2018). A Note on Lazy Training in Supervised Differentiable Programming.

5/20



Range of Lazy Training

Criteria for lazy training (informal)

IV (wo, )12
[ Te(w?, ) = f(wo, ) < T T
’ ’ [V2f (wo, -
~ —_—
Distance to best linear model “Flatness” around initialization

~ difficult to estimate in general

Examples
e Homogeneous models.
If for A > 0, f(Aw, x) = ALf(w, x) then flatness ~ |lwol|*

e NNs with large layers.
Occurs if initialized with scale O(1/+v/fan;,)
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Large Neural Networks

Vanilla NN with W/, "% A(0, 72 /fan;,) and b} "% A(0, 72).
Model at initialization
As widths of layers diverge, f(wo,-) ~ GP(0,Xl) where

X, x) = 1+ 7 Eogponlo(2'(x) - o (2 (X))

Limit tangent kernel

In the same limit, (V,, f(wo, x), V. f(wo, x')) — KL(x,x") where
KT (x,x') = K!(x, x" )X (x, x') + £ (x, x)

and £/1(x, ) = E,i..gp(o.x)o(2/(x)) - 6(2(x))].

~s cf. A. Jacot’s talk of last week

[Refs]:
Matthews, Rowland, Hron, Turner, Ghahramani (2018).Gaussian process behaviour in wide deep neural networks
Lee, Bahri, Novak, Schoenholz, Pennington, Sohl-Dickstein (2018). Deep neural networks as gaussian processes. 7/20

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.



Numerical lllustrations

circle of radius 1
gradient flow (+)
gradient flow (-

(a) Not lazy (b) Lazy

= end of training 7% not yet converged
3.5 = best throughout training ?

Test loss

Population loss at convergence

(c) Over-param. (d) Under-param.

Training a 2-layers ReLU NN in the teacher-student setting

(a-b) trajectories (c-d) generalization in 100-d vs init. scale 7 BT



Lessons to be drawn

For practice

e our guess: instead, feature selection is why NNs work

e investigation needed on hard tasks

For theory
e in depth analysis sometimes possible

e not just one theory for NNs training

[Refs]:
Zhang, Bengio, Singer (2019). Are all layers created equal?
Lee, Bahri, Novak, Schoenholz, Pennington, Sohl-Dickstein (2018). Deep neural networks as gaussian processes
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Global convergence for 2-layers NNs




Two Layers NNs

e

x[2] — \:/ — Y

With activation o, define ¢(w;, x) = ¢jo(a; - x + b;) and

f(w,x) = rlnz o(w;, x)

x[1] —

Statistical setting: minimize population loss E(, ) [¢(f(w, x), y)].

Hard problem: existence of spurious minima even with slight
over-parameterization and good initialization

[Refs]:
Livni, Shalev-Shwartz, Shamir (2014). On the Computational Efficiency of Training Neural Networks.
Safran, Shamir (2018). Spurious Local Minima are Common in Two-layer ReLU Neural Networks.

10/20



Mean-Field Analysis

Many-particle limit
Training dynamics in the small step-size and infinite width limit:

m

1
b = T 0 ) 5
1=

[Refs]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks. 11/20
Chizat, Bach (2018) On the Global Convergence of Gradient Descent for Over-parameterized Models |[...]



Global Convergence

Theorem (Global convergence, informal)

In the limit of a small step-size, a large data set and large hidden
layer, NNs trained with gradient-based methods initialized with
“sufficient diversity” converge globally.

e diversity at initialization is key for success of training
e highly non-linear dynamics and regularization allowed

[Refs]:
Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models |[...].
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Numerical lllustrations

107! 1071 4
107 — particle gradient flow 1021
—— convex minimization

1072 below optim. error
10-4 -—-mo 10°
10-° 1074
107 ~
10t 102 b 10° 102
(a) ReLU (b) Sigmoid

Population loss at convergence vs m for training a 2-layers NN in the
teacher-student setting in 100-d.

5 fr . . 13/2
This principle is general: e.g. sparse deconvolution. 3/20



Idealized Dynamic

e parameterize the model with a probability measure pu:

fluox) = [ olwoxddu(w), € PER)
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Idealized Dynamic

e parameterize the model with a probability measure pu:

fluox) = [ olwoxddu(w), € PER)

e consider the population loss over P(R):

F(1) = By [€(F (1, ), ¥)] -

~> convex in linear geometry but non-convex in Wasserstein
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Idealized Dynamic

e parameterize the model with a probability measure pu:

fluox) = [ olwoxddu(w), € PER)

e consider the population loss over P(R):

F(n) = Eqxy) [E(F(p, ), ¥)] -
~> convex in linear geometry but non-convex in Wasserstein
e define the Wasserstein Gradient Flow:

d .
po € P(RY), Sl = —div(ueve)

where vi(w) = =V F'(u;) is the Wasserstein gradient of F.
[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks
Ambrosio, Gigli, Savaré (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures.
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Mean-Field Limit for SGD

Now consider the actual training trajectory ((xk, yx) i.i.d):

w0 — WD) — 7, [ (W), x(9), y )]

Theorem (Mei, Montanari, Nguyen ’18)

Under regularity assumptions, if w1(0), w2(0), ... are drawn
independently accordingly to o then with probability 1 — e=*

1
1857 — el S e max{n, m} (z+ d+ Iog’:>

i

[Refs]:
Mei, Montanari, Nguyen (2018). A Mean-field View of the Landscape of Two-layers Neural Networks.
Mei, Misiakiewicz, Montanari (2019). Mean-field Theory of Two-layers Neural Networks: Dimension-free Bounds.
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Global Convergence (more formal)

Theorem (Homogeneous case)

Assume that g is supported on a centered sphere or ball, that ¢ is
2-homogeneous in the weights and some regularity. If u; converges
in Wasserstein distance to jis then jiso is a global minimizer of F.
In particular, if wi1(0), w2(0), ... are drawn accordingly to po then

lim F(pem) = minF.

m,t—00

e applies to 2-layers ReLU NNs (different statement for sigmoid)
e general consistency principle for optimization over measures
e see paper for precise conditions

[Refs]:
Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].
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Remark on the scaling

Change of init. scaling = change of asymptotic behavior.

Mean field Lazy

model f(w,x) L5 d(wi, x) ﬁ > p(wi, x)
init. predictor  ||f (wo, -)|| O(1/y/m) 0(1)
“flatness” IVFII2/I V3] O(1) O(v/m)
displacement  ||woo — Wyl 0(1) O(1/+/m)

e deep NNs need initialization in O(+/2/fan;,)

e vyet, linearization doesn't seem to explain state of the art perf
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Generalization : implicit or explicit

Through single-pass SGD
Single-pass SGD acts like gradient flow of population loss.

~> but needs convergence rate

Through regularization
In regression tasks, adaptivity to subspace when minimizing

min —
HEP(RI) n

/aﬁwx,du w) —

/ V(w)du(w)

where ¢ is ReLU activation and V' a ¢;-type regularizer.

~~ explicit sample complexity bounds (but differentiability issues)
~~ also some bounds under separability assumptions (same issues)

[Refs]:
Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks
Wei, Lee, Liu, Ma (2018). On the Margin Theory of Feedforward Neural Networks.
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Lessons to be drawn

For practice

e over-parameterization/random init. yields global convergence

e changing variance of initialization impacts behavior

For theory

e strong generalization guaranties need neurons that move

e non-quantitative technics still lead to insights
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What | did not talk about

Focus was on gradient-based training in “realistic” settings.
Wide range of other approaches

e loss landscape analysis

e linear neural networks

e phase transition/computational barriers

e tensor decomposition

[ ]

[Refs]:

Arora, Cohen, Golowich, Hu (2018). Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Aubin, Maillard, Barbier, Krzakala, Macris, Zdeborovd (2018). The Committee Machine: Computational to
Statistical Gaps in Learning a Two-layers Neural Network

Zhang, Yu, Wang, Gu (2018). Learning One-hidden-layer ReLU Networks via Gradient Descent.
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several regimes, several theories

calls for new tools, new math models

How do NNs efficiently perform high
dimensional feature selection?

[Papers with F. Bach:]

- On the Global Convergence of Over-parameterized Models using
Optimal Transport. (NeurlPS 2018).

- A Note on Lazy Training in Differentiable Programming.
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