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Fundamental question

How come deep neural networks generalize well ?

# number of parameters >> training data

YET no systematic overfitting

Hot question in deep learning,
Recent propositon based on information theory



Information theory on deep networks

(Stochastic) layers variables t;, = f(W(é)tg_lge) W

changing with weights learning !

Mutual information with inputs and outputs

p(x, ty)
[(X:T,) = / dxdt, p(z, t,)log — KLp(x, t)||p(x)p(te)]
p(x)p(te)
I(Y;Ty)
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0.8
:
: . s 0.6
12 binary input neurons, ' ~
bins to discretize activations g =o04
(R. Shwartz-Ziv, N. Tishby 2017.) ¢ 0.2
0
0.0
1 3 5 7 9 11
I(X;T)

Claim: compression of information on inputs linked to generalization
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Information bottleneck principle (N. Tishby, F. C. Pereira, and W.Bialek. 1999.)
What are good hidden representations in terms of information ?
9 A
X—t—=Yy

Intuitions :

1. Hidden layer should help to predict output: max I(Y,T)
0

2. Useful representation get rid of the unnecessary: I(X, T) <C

Learning objective:

meax [(Ya T@) o ﬁl(Xa TE)

Information bottleneck Lagrangian

Questions raised for deep learning theory :
1. Can we efficiently train neural networks with this alternative criteria ?
2. Trade-off already optimized by commonly used training algorithms (SGD) ?



How general is this observation ?

First small network tested
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(A. Saxe et al, 2018)
(R. Shwartz-Ziv, N. Tishby 2017.)

Same experiment with ReLUs without compression



How general is this observation:
Challenges to test the hypothesis

1 — Definition of mutual information between layers of DNNs

2 — Precise evaluation of the mutual information



How general is this observation:
Challenges to test the hypothesis

1 — Definition of mutual information between layers of DNNs



Definition of the mutual information I(X;Ty)

Deterministic neural networks

p(T¢|X) =6 (T — Fw (X))

I(X;T,) = H(T,;) — H(T;|X) Shannon entropy for continuous
T;oo_/ variables can diverge

Regularization strategies to keep finite mutual infromation

K
1
1. Discretize values Pi = K Z 0(b; <tk < bit1)
k=1

Nbins
H = — Z pilnp;
=1

2. Add noise in the network p(teltr_1) = Proise (te — fF(Witp_1))
(A. Saxe et al, 2018)

(R. Shwartz-Ziv, N. Tishby 2017.)
(A. Saxe et al, 2018)

H(T,|X) = / dxdty p(a, te)log p(ts]x)< o
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Regularization 1: Discretization a posteriori

. tanh
First small network tested
Even binning of activations VS Even binning of pre - activations
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(R. Shwartz-Ziv, N. Tishby 2017.) (A. Saxe et al, 2018)

Interpretation: Compression due to binning of saturating tanh activations



Regularization 1: Discretization a posteriori

First small network tested
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(A. Saxe et al, 2018)
(R. Shwartz-Ziv, N. Tishby 2017.)

Interpretation: Compression due to binning of saturating tanh activations ?



Regularization 2: Stochastic neural networks  tanh

MNIST experiment

Add noise t; = f(z;) = f(W(g)te—l + €)
Pick optimal noise promoting regularization

Estimate finite mutual info [ (X;T,) = H(T,) — H(T¢|X)
using Kolchinsky et al. 2017 non parametric method:

*  Kernel density estimation from K samples - O(K?) runtime

* Upper and lower bound on Ml —up to log K

5 hidden layers NN
trained on MNIST
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Loss of information due to organized saturation tanh activations



Regularization 2: Stochastic neural networks
MNIST experiment

tanh . : .
| awgn x linear x quadratic x exponential
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Method not precise enough to conclude for ReLUs




How general is this observation:
Challenges to test the hypothesis

1 — Definition of the mutual information between layers of DNNs
- Mutual information in deterministic networks is diverging
- Need to be careful about how the computation is regularized

- Continuous stochastic networks appears more principled
- Butis hard ...

2 — Precise evaluation of the mutual information
- A formula inspired by statistical physics

- Application to follow mutual information during learning



Computing information theoretic quantities for large
networks is a hard problem

How to compute the mutual information ?

p(x,ty)

] K Lp(x,tp)||p(x)p(te)]

I(X;Ty) = /dxdtgp(x,tg)log

Unknown distributions
— Non parametric estimates unreliable in high dimensions
(based on pairwise distances between samples)

Known distributions
— Numerical integration exponentially hard
— Particular subcases ? Closed forms or reliable approximations ?



Analytical formula for linear DNN

1 2 L
Given
 Synthetic Gaussian inputdata p(x) = N(x; 0,y)
* Linear activations ty = WO  WWx 4 ¢
* Gaussian additive noise e ~ N(0,%)

Analytical expression of mutual information (Pinsker 1964)

1 1
I(Ty;X) = 5 ln [(QW)NEIW“)---W“)W(”T...W(@T + E’] — 5 I [(2me) V|2

A relevant setting to study deep learning ?

v’ Large networks
X Non linear networks

X Arbitrary dataset (only Gaussian !)



Replica formula for entropies:
model of stochastic multilayer networks

Given Wi W 14%%
. ty= fe(w(ﬁ)fe(w(ﬁ—l) : --fE(W(l)x) )

« Kwon factorized input distribution Px(x) = HPO(Q%')

* Orthogonally invariant random weight matrices
177489 74 g 740N

A A

arbitrary diagonal

i.i.d. from Haar

Result: The entropy of each layer in the thermodynamic (=large size) limit is
1

lim — H(T,) =min extr ¢u(A,V,A V)
No—o00 No AV, AV

M. G., A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, L. Zdeborova - arXiv:1805.09785 — NIPS 2018



Replica formula for entropies:
a glance at the replica symmetric potential

1 ~ -
Formula: lim — H(ty) =min extr ¢y(A,V,A V)
No—o0 [Ng AV,AV

0
. - 1] -
Potential: ¢£(Aa V, A7V) =1 <t03 to + \/f%) - 5 Z Ok—1 [Aka + oL ALV, — ka (Aka)}
1 k=1
/—1
. ~ = 1 i - ~
+ ) [H(tklék; Awt1, Vi, pr) = 5 log(ZWeAkH)} + e H (te|€e; Ve, pe)
k=1

* Asymptotic prediction in the size of the network

* Additive over the layers

* Expressed via scalar entropies and mutual informations
* Depending on the weights through their spectrum

Efficient implementation of extremization: 1 sphinxteam / dnner

M. G., A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, L. Zdeborova - arXiv:1805.09785 — NIPS 2018



Where does the replica formula come from ?

Single layer Generalized Linear Models (GLMs) with i.i.d measurement matrices
y = f(Wx) with W;; i.i.d

Statistical physics community from 80’s to now (Derrida, Gardner, Mézard, Tanaka, ...)
Rigorous works (Reeves et al 2017, Barbier et al 2017, ...)

This talk: extension to multilayer

-

a8 Perceptron (single layer) with orthogonally invariant input patterns

(Kabashima and Shinzato 2008, 2009)

y = sign(Wx) with W = USV 7’

~N

Multilayer GLMs

ML-AMP algorithm and free energy (i.i.d weight matrices)
(A. Manoel, F. Krzakala, M. Mézard, L. Zdeborova 2017)

ML-VAMP algorithm (orthogonallly invariant weight matrices)
(A. K. Fletcher, P. Schniter, S. Rangan 2017)

Free energy and mutual information (orthogonally invariant weights), heuristic
alternative to replicas (G. Reeves 2017)



Why trust the heuristic of the replica formula ?
lim iH(Tg) = min extr ¢;(A,V,A,V)
No—oco No A VAV
* Agreement with other heuristics
e Similar formula established from different arguments (G. Reeves 2017)

(D. Donoho et al. 2009, S. Rangan. 2011,

e MLAMP-MLVAMP algorithms L. Zdeborova and F. Krzakala. 2016,
A. Manoel et al 2017, A. Fletcher al 2017)

* Many rigorously proven subcases

separable input  smooth arbitrary weight matrices

Work / Ref #1 .
ork / Re ayers distribution activations ensemble indep

Conjecture arbitrary arbitrary arbitrary orthogonally inv




Why trust the heuristic of the replica formula ?
lim iH(Tg) — min extr gbg(A,V,A,V)
No—oo No A VAV
* Agreement with other heuristics

e Similar formula established from different arguments (G. Reeves 2017)

(D. Donoho et al. 2009, S. Rangan. 2011,

e MLAMP-MLVAMP algorithms L. Zdeborova and F. Krzakala. 2016,
A. Manoel et al 2017, A. Fletcher al 2017)

* Many rigorously proven subcases

separable input  smooth arbitrary weight matrices

Work / Ref #layers distribution activations ensemble indep
Conjecture arbitrary arbitrary arbitrary orthogonally inv
Pinsker 1964 arbitrary Gaussian linear w. awgn arbitrary
Reeves et al. 2016 . . : - .

Barbier et al. 2017 single arbitrary arbitrary i.i.d entries
Reeves 2017 arbitrary tree  Gaussian linear w. awgn orthogonally inv

Barbier et al. 2018 single arbitrary linear w. awgn orthogonally inv*




Why trust the heuristic of the replica formula ?

1 - o~
lim —H(Ty) =min extr ¢s(A,V,A V)
No—oo Ny A VAV
* Agreement with other heuristics
e Similar formula established from different arguments (G. Reeves 2017)

(D. Donoho et al. 2009, S. Rangan. 2011,

e MLAMP-MLVAMP algorithms L. Zdeborova and F. Krzakala. 2016,
A. Manoel et al 2017, A. Fletcher al 2017)

* Many rigorously proven subcases

separable input  smooth arbitrary weight matrices

Work / Ref #layers distribution activations ensemble indep
Conjecture arbitrary arbitrary arbitrary orthogonally inv
Pinsker 1964 arbitrary Gaussian linear w. awgn arbitrary
Reeves et al. 2016 . . : - .

Barbier et al. 2017 single arbitrary arbitrary i.i.d entries
Reeves 2017 arbitrary tree  Gaussian linear w. awgn orthogonally inv
Barbier et al. 2018 single arbitrary linear w. awgn orthogonally inv*

—>  Our paper two bounded support arbitrary i.i.d entries



Rigorous result for 2-layer with Gaussian i.i.d. weights

Theorem:

Suppose
e (H1) the input units distribution Py is separable and has bounded support;

e (H2) the activations f; and fy corresponding to Pl(tlﬂ;\ng)TX) and
Pg(tg,i‘WEQ)Ttl) are bounded C? with bounded first and second deriva-
tives w.r.t. their first argument;

o (H3) the weight matrices W), W(2) have Gaussian i.i.d. entries.

Then for model with two layers L = 2 the high-dimensional limit of the entropy
is rigorously given by the replica formula.

M. G., A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, L. Zdeborova - arXiv:1805.09785 — NIPS 2018



Can we follow information during learning
with the replica formula?

1 ~ ~
lim —H(Ty) =min extr ¢,(A,V,A,V)
No—oo Ny AV, AV

](X, Tg) ?



Synthetic data framework for supervised learning

 Teacher - student scenario: Input data with separable prior Px(x) =[] Po(z:)
/

, Y=
Ny = —1
. i.i.d. input

* Generalization: including generative models

e non trivial distribution

l w® w®)

i.i.d. latent a @ ....... @ @ @ ......
- ANG /

Y
generative model

teacher

student

e.g. Variational Auto Encoders Kingma et. al 2014, Rezende et al 2014
e.g. Generative Adversarial models Goodfellow et al. 2014



Learning orthogonally invariant weight matrices

“USV-layers”

student

How to guarantee orthogonal invariance during learning ?

* |nitialize Gaussian i.i.d W matrices

* Perform singular value decomposition
* Onlylearn spectrum (N degrees of freedom instead of N2)

orthogonal

W, Uy
H

fixed

diagonal

Sy
|1
< EE

learned

orthogonal

Vi

i

fixed

Side note: Related weight constraints for speed concerns

ACDC: A STRUCTURED EFFICIENT LINEAR LAYER

Marcin Moczulski'  Misha Denil'  Jeremy Appleyard® Nando de Freitas'*

permutation diagonal
\ «
Wy =A4,Q Dgfc—l

cosine transforms



Learning experiments framework

Be careful with
1) Data: synthetic data sets

2) Weights: preserving orthogonal invariance

Code available in GitHub

W

Ue
H11

marylou-gabrie / learning-synthetic-data

Se

T

Compute entropies in large DNNs throughout training with replicas

1 ~ ~
lim —H(Ty;) =min extr ¢y(A,V,A V)
N0—>OO NO A,V,A—av

Code available in GitHub sphinxteam / dnner

Next: Numerical experiments

W)

Vi

i
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Safety-check on linear networks

Wy 0
Model: t, = W) ... Wx 4 ¢ zi ~ N(0,1) ()

_5
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Task: regression min ||y — y||?

Test: deviation of replica estimator from analytical (frep — Iemct)2
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Exploratory experiment: A binary classification example

Model: linear generative model — non-linear student

tp=f(WO fF(WIx).. +¢€) &~N(0,107?)
Task: predict Y = sign(yg) for each X
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I(X;Ty)
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Compression as well with non-saturated activation functions



Exploratory: A second binary classification example

Model: linear generative model — non-linear student

tp=f(WO fF(WIx).. +¢€) &~N(0,107?)
Task: predict Y = sign(yg) for each X

initial
var <Wf€))

2. E
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Picture still not simple




How general are compressions ?
Recap from the replica formula strategy

With the replica method we have access to

v Non linear network
Large networks (but only USV layers with N parameters)
X Real data (but sophisticated synthetic data)

Our experiments

— Random weights:
e different non-linearities behaving differently

— Learning experiments:
 Compressions even with RelLU

* Yet not systematic



Conclusion & Perspectives

- Validate hypothesis that SGD optimizes the information bottleneck Lagrangian
for stochastic NN is very hard in general

- Cases accessible to experiments appear not to follow a clear trend
- Interpretation for deterministic networks remains an open question

Yet, still a lot of directions under scrutiny by the community

- Many training algorithms for supervised and unsupervised learning using

information related concepts

M. Chalk et al.. Relevant sparse codes with variational information bottleneck 2016. A. Achille et al. Information
Dropout: Learning Optimal Representations Through Noisy Computation 2018. - A. Alemi et al. Deep variational
information bottleneck. 2017. - A. Achille et al. Emergence of Invariance and Disentangling in Deep Representations.
In ICML 2017 Workshop on Principled Approaches to Deep Learning, 2017.- A. Kolchinsky, et al. Nonlinear
Information Bottleneck. arXiv:1705.02436, 2017. - M.l. Belghazi et al. MINE: Mutual Information Neural Estimation.
2018 - S. Zhao et al . InfoVAE: Information Maximizing Variational Autoencoders. arXiv:1706.02262, 2017. etc.

- Interesting discussions about other forms of information or interpretation of
the information

Goldfeld, Z. et al. Estimating Information Flow in Neural Networks. (2018), Achille, A et al, S. Critial learning periods in
deep networks. (2018), etc.
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