

Neural Tangent Kernel

Convergence and Generalization in DNNs

Arthur Jacot, Franck Gabriel, Clément Hongler

Ecole Polytechnique Fédérale de Lausanne

March 18, 2019

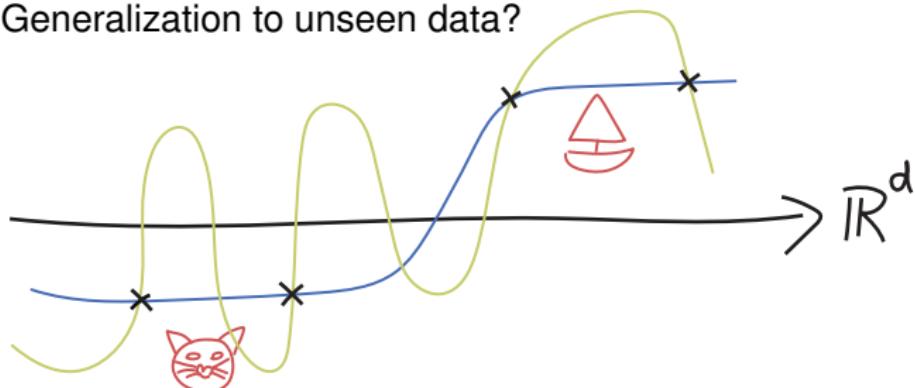
Searching in a function space

images
|
labels

- ▶ Training set (x_i, y_i) of size N
- ▶ Optimize in a function space \mathcal{F} :

$$\min_{f \in \mathcal{F}} C(f) = \min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^N (f(x_i) - y_i)^2$$

- ▶ Efficiency for large datasets/input dimensions?
- ▶ Generalization to unseen data?



Linear Model: Random Features

- ▶ Choose P features $f^{(p)} \in \mathcal{F}$
- ▶ Define a parametrization of functions $F : \mathbb{R}^P \rightarrow \mathcal{F}$:

$$F(\theta) := f_\theta = \frac{1}{\sqrt{P}} \sum_{p=1}^P \theta_p f^{(p)}$$

parameters
↓

Example:

choose the features $f^{(p)}$ iid with $\mathbb{E}[f^{(p)}(x)f^{(p)}(y)] = K(x, y)$.

What does it converge to?

Gradient descent on the composition $C \circ F$

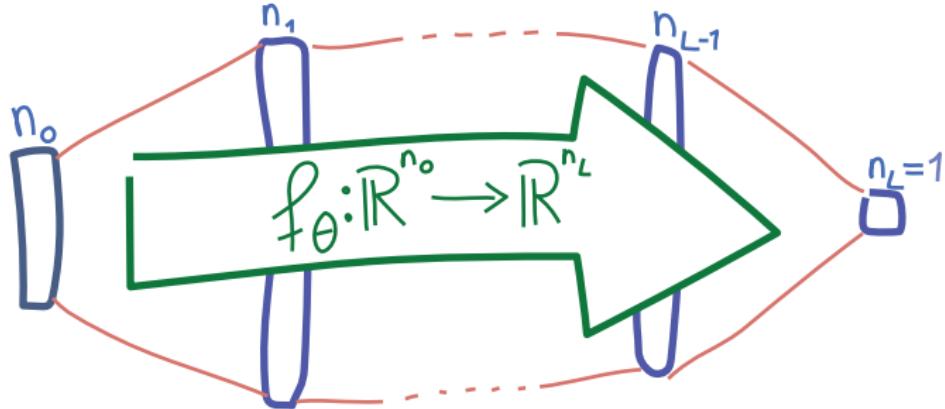
$$\mathbb{R}^P \xrightarrow{F} \mathcal{F} \xrightarrow{C} \mathbb{R}$$

1. Underparametrized $P < N$:
Strictly convex \Rightarrow unique solution
2. Overparametrized $P > N$:
Convex \Rightarrow minimal norm solution
3. Infinite parameters limit $P \rightarrow \infty$:
Kernel regression w.r.t the kernel K
Gaussian process prior $\mathcal{N}(0, K)$

Nonlinear Model: Neural Networks

- $L + 1$ layers each containing n_ℓ neurons
- Non-linearity function $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ e.g. $\sigma(x) = \max(x, 0)$
- Parameters $\theta = (W^{(0)}, \dots, W^{(L-1)}), W^{(\ell)} : \mathbb{R}^{n_\ell} \rightarrow \mathbb{R}^{n_{\ell+1}}$
- Non-linear parametrization $F^{(L)}(\theta) = f_\theta$:

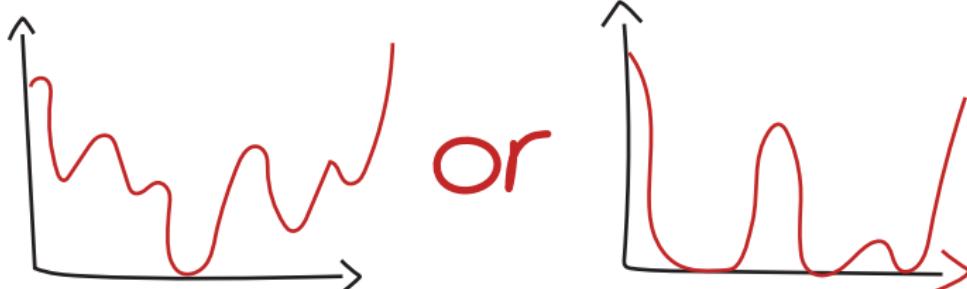
$$\alpha^{(0)}(x) = x \xrightarrow{\frac{1}{\sqrt{n_0}} W^{(0)}} \tilde{\alpha}^{(1)} \xrightarrow{\sigma} \alpha^{(1)} \xrightarrow{\frac{1}{\sqrt{n_0}} W^{(1)}} \dots \xrightarrow{\frac{1}{\sqrt{n_{L-1}}} W^{(L-1)}} \tilde{\alpha}^{(L)} =: f_\theta$$



Loss surface

The loss $C \circ F^{(L)}$ is non-convex

1. Symmetries: swapping neurons
 2. No bad local minima if the network is large enough
 3. Similarity to physical models
- ⇒ gradient descent works well in practice for large networks
⇒ study the infinite-width limit ($n_1, \dots, n_{L-1} \rightarrow \infty$)



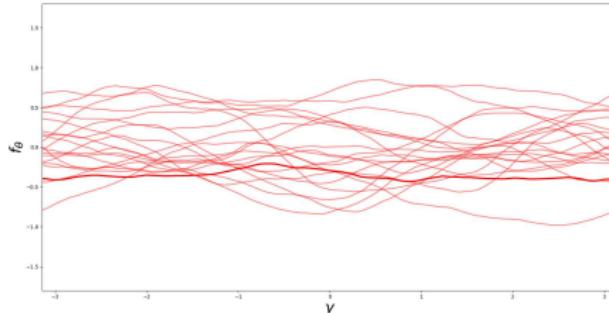
Initialization: DNNs as Gaussian processes

- ▶ Initialize the parameters $\theta \sim \mathcal{N}(0, Id_P)$.
- ▶ In the infinite width limit $n_1, \dots, n_{L-1} \rightarrow \infty$ the preactivations $\tilde{\alpha}_i^{(\ell)}(\cdot; \theta) : \mathbb{R}^{n_0} \rightarrow \mathbb{R}$ are iid Gaussian processes of covariance $\Sigma^{(\ell)}$:

$$\Sigma^{(1)}(x, y) = x^T y + 1$$

$$\Sigma^{(\ell+1)}(x, y) = \mathbb{E}_{\alpha \sim \mathcal{N}(0, \Sigma^{(\ell)})} [\sigma(\alpha(x))\sigma(\alpha(y))]$$

- ▶ In particular f_θ is a Gaussian processes of covariance $\Sigma^{(L)}$.



Training: Neural Tangent Kernel

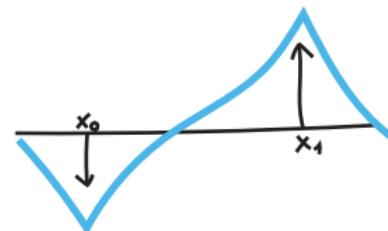
- Gradient descent:

$$\partial_t \theta_p = -\partial_\theta (C \circ F^{(L)}) = \frac{2}{N} \sum_{i=1}^N (y_i - f_\theta(x_i)) \partial_{\theta_p} f_\theta(x_i)$$

- Evolution of f_θ :

$$\partial_t f_\theta(x) = \sum_{p=1}^P \partial_t \theta_p \partial_{\theta_p} f_\theta(x)$$

$$= \frac{2}{N} \sum_{i=1}^N (y_i - f_\theta(x_i)) \left(\sum_{p=1}^P \partial_{\theta_p} f_\theta(x_i) \partial_{\theta_p} f_\theta(x) \right)$$



- Neural Tangent Kernel (NTK):

$$\Theta^{(L)}(x, y) := \sum_{p=1}^P \partial_{\theta_p} f_\theta(x) \partial_{\theta_p} f_\theta(y)$$

Asymptotics of the NTK

Problem:

The NTK is random at initialization and varies during training!

⇒ **Theorem (NeurIPS 2018):** Let $n_1, \dots, n_{L-1} \rightarrow \infty$, for any $t < T$:

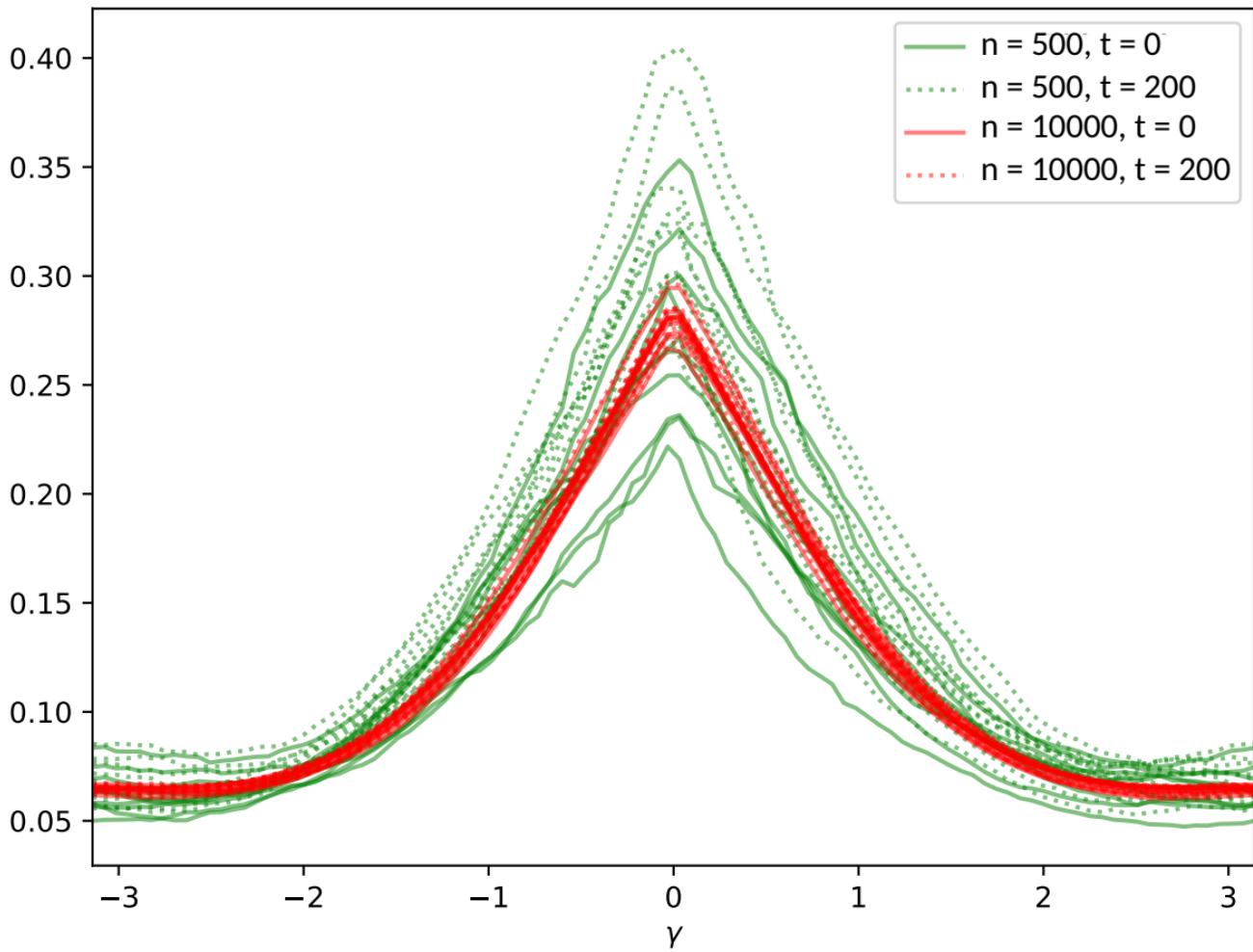
$$\Theta^{(L)}(t) \rightarrow \Theta_{\infty}^{(L)}$$

where

$$\Theta_{\infty}^{(L)}(x, y) = \sum_{\ell=1}^L \Sigma^{(\ell)}(x, y) \dot{\Sigma}^{(\ell+1)}(x, y) \dots \dot{\Sigma}^{(L)}(x, y)$$

with

$$\dot{\Sigma}^{(L)}(x, x') = \mathbb{E}_{\alpha \sim \mathcal{N}(0, \Sigma^{(L-1)})} [\dot{\sigma}(\alpha(x)) \dot{\sigma}(\alpha(x'))]$$



Kernel gradient descent

Kernel \Rightarrow Hilbert space of functions \Rightarrow Kernel Gradient

$$\partial_f C = \langle \nabla_{\Theta_\infty} C(f_{\theta(t)}), \cdot \rangle$$

Complete infinite-width dynamics:

$$f_{\theta(0)} \sim \mathcal{N}(0, \Sigma^{(L)})$$

$$\partial_t f_{\theta(t)} = -\nabla_{\Theta_\infty} C(f_{\theta(t)})$$

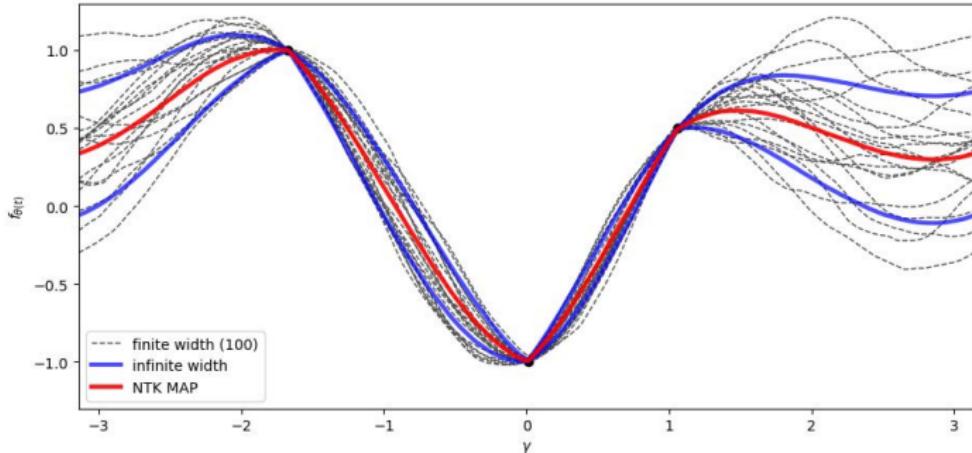
positive definite NTK \Rightarrow convergence to a global minimum

Consequences

In the infinite-width limit, DNNs converge to:

- Least-squares cost \Rightarrow kernel regression (in expectation)
- Cross-entropy losses \Rightarrow kernel maximum margin classifier
- Early stopping acts as a regularization

Bayesian interpretation: Gaussian process prior $\mathcal{N}(0, \Theta_\infty)$



Ideas of the proofs

- ▶ Initialization: sequential law of large numbers to show the convergence of the NTK $\Theta^{(\ell)}$ of subnetworks.
- ▶ Training: Grönwall
 - ▶ Growing number of parameters => they move less individually
 - ▶ The activations move less and less
 - ▶ The NTK $\Theta^{(\ell)}$ of subnetworks become fixed
- ▶ Appears to generalize to other architectures

Tangent kernel for linear models

- ▶ For linear models $\partial_{\theta_p} f_{\theta} = \frac{1}{\sqrt{P}} f^{(p)}$
- ▶ The Tangent Kernel is constant

$$\Theta^{lin}(x, y) = \frac{1}{P} \sum f^{(p)}(x) f^{(p)}(y)$$
$$\xrightarrow{P \rightarrow \infty} \mathbb{E}[f^{(p)}(x) f^{(p)}(y)] = K(x, y)$$

- ▶ DNNs behave like linear models when $P \rightarrow \infty$!
 - ▶ Actually $\|\mathcal{H}F^{(L)}\|_{op}$ is $\mathcal{O}(n_{\ell}^{-1/2+\epsilon})$
 - ▶ But there is more: $\partial_t \Theta^{(L)}$ is $\mathcal{O}(n_{\ell}^{-1})$

DNNs as linear models

1. Rich random features from simple and fast computations (GPUs)
2. The weights serve both as parameters and as source of randomness
3. Different architectures:
 - 3.1 Convolutional networks
 - 3.2 Recurrent networks
 - 3.3 Attention mechanism
 - 3.4 And many more
4. But there is still a gap in performance which is not explained by the NTK

Conclusion

1. The NTK gives a complete description of infinite-width DNNs
2. In this limit, DNNs behave like linear models!
3. Is there an actual advantage to the non-linearity?

Thank you!