
Neural Tangent Kernel
Convergence and Generalization in DNNs

Arthur Jacot, Franck Gabriel, Clément Hongler

Ecole Polytechnique Fédérale de Lausanne

March 18, 2019



Searching in a function space

� Training set (xi , yi) of size N
� Optimize in a function space F :

min
f∈F

C(f ) = min
f∈F

1
N

N∑
i=1

(f (xi)− yi)
2

� Efficiency for large datasets/input dimensions?
� Generalization to unseen data?



Linear Model: Random Features

� Choose P features f (p) ∈ F
� Define a parametrization of functions F : RP → F :

F (θ) := fθ =
1√
P

P∑
p=1

θpf (p)

Example:
choose the features f (p) iid with E[f (p)(x)f (p)(y)] = K (x , y).



What does it converge to?

Gradient descent on the composition C ◦ F

RP F−→ F C−→ R

1. Underparametrized P < N :
Strictly convex⇒ unique solution

2. Overparametrized P > N :
Convex⇒ minimal norm solution

3. Infinite parameters limit P →∞:
Kernel regression w.r.t the kernel K
Gaussian process prior N (0,K )



Nonlinear Model: Neural Networks

� L + 1 layers each containing n� neurons
� Non-linearity function σ : R → R
� Parameters θ =

(
W (0), ...,W (L−1)), W (�) : Rn� → Rn�+1

� Non-linear parametrization F (L)(θ) = fθ:

α(0)(x) = x
1√
n0

W (0)

−→ α̃(1) σ→ α(1)
1√
n0

W (1)

−→ ...

1√
nL−1

W (L−1)

−→ α̃(L) =: fθ



Loss surface

The loss C ◦ F (L) is non-convex

1. Symmetries: swapping neurons
2. No bad local minima if the network is large enough
3. Similarity to physical models

⇒ gradient descent works well in practice for large networks
⇒ study the infinite-width limit (n1, ...nL−1 → ∞)



Initialization: DNNs as Gaussian processes

I Initialize the parameters θ ∼ N (0, IdP).
I In the infinite width limit n1, ...,nL−1 →∞ the preactivations
α̃

(`)
i (·; θ) : Rn0 → R are iid Gaussian processes of

covariance Σ(`) :

Σ(1)(x , y) = xT y + 1

Σ(`+1)(x , y) = Eα∼N(0,Σ(`)) [σ(α(x))σ(α(y))]

I In particular fθ is a Gaussian processes of covariance Σ(L).



Training: Neural Tangent Kernel
� Gradient descent:

∂tθp = −∂θ(C ◦ F (L)) =
2
N

N∑
i=1

(yi − fθ(xi))∂θp fθ(xi)

� Evolution of fθ:

∂t fθ(x) =
P∑

p=1

∂tθp∂θp fθ(x)

=
2
N

N∑
i=1

(yi − fθ(xi))




P∑
p=1

∂θp fθ(xi)∂θp fθ(x)




� Neural Tangent Kernel (NTK):

Θ(L)(x , y) :=
P∑

p=1

∂θp fθ(x)∂θp fθ(y)



Asymptotics of the NTK

Problem:
The NTK is random at initialization and varies during training!

Let n1, . . . , nL−1→∞, for any t < T :

Θ(L)(t) → Θ(L)
∞

where

Θ(L)
∞ (x , y) =

L∑
�=1

Σ(�)(x , y)Σ̇(�+1)(x , y)...Σ̇(L)(x , y)

with

Σ̇(L)(x , x ′) = Eα∼N (0,Σ(L−1))[σ̇(α(x))σ̇(α(x
′))]



3 2 1 0 1 2 3

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 n = 500, t = 0
n = 500, t = 20
n = 10000, t = 0
n = 10000, 0

n = 500, t = 0
n = 500, t = 200
n = 10000, t = 0
n = 10000, t = 200



Kernel gradient descent

Kernel ⇒ Hilbert space of functions ⇒ Kernel Gradient

∂f C =
〈
∇Θ∞C(fθ(t)), ·

〉

Complete infinite-width dynamics:

fθ(0) ∼ N (0,Σ(L))

∂t fθ(t) = −∇Θ∞C(fθ(t))

positive definite NTK =⇒ convergence to a global minimum



Consequences

In the infinite-width limit, DNNs converge to:
I Least-squares cost⇒ kernel regression (in expectation)
I Cross-entropy losses⇒ kernel maximum margin classifier
I Early stopping acts as a regularization

Bayesian interpretation: Gaussian process prior N (0,Θ∞)



Ideas of the proofs

I Initialization: sequential law of large numbers to show the
convergence of the NTK Θ(`) of subnetworks.

I Training: Grönwall
I Growing number of parameters => they move less

individually
I The activations move less and less
I The NTK Θ(`) of subnetworks become fixed

I Appears to generalize to other architectures



Tangent kernel for linear models

I For linear models ∂θp fθ = 1√
P

f (p)

I The Tangent Kernel is constant

Θlin(x , y) =
1
P

∑
f (p)(x)f (p)(y)

−→
P→∞

E[f (p)(x)f (p)(y)] = K (x , y)

I DNNs behave like linear models when P →∞!
I Actually

∥∥HF (L)
∥∥

op is O(n−1/2+ε
` )

I But there is more: ∂t Θ
(L) is O(n−1

` )



DNNs as linear models

1. Rich random features from simple and fast computations
(GPUs)

2. The weights serve both as parameters and as source of
randomness

3. Different architectures:
3.1 Convolutional networks
3.2 Recurrent networks
3.3 Attention mechanism
3.4 And many more

4. But there is still a gap in performance which is not
explained by the NTK



Conclusion

1. The NTK gives a complete description of infinite-width
DNNs

2. In this limit, DNNs behave like linear models!
3. Is there an actual advantage to the non-linearity?


	presentation_NTK _modif
	edited_circle_NTK_convergence_L4_beta01
	presentation_NTK _modif



